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Abstract
Given a homogeneous almost Kähler manifold(M, J, g) with nonpositive

curvature operator, we prove that ifg is an Einstein metric having negative sectional
curvature, then the almost complex structureJ must be integrable. Furthermore, such
(M, J, g) eventually has constant negative holomorphic sectional curvature and hence
is holomorphically isometric to a complex hyperbolic space.

1. Introduction

Let (M, g) be a Riemannian manifold, and let
V2 TpM denote the exterior algebra

over the tangent spaceTpM of M at p 2 M, equipped with the inner producthh , ii
defined by

hhX ^ Y, Z ^ Wii = g(X, Z)g(Y, W)� g(X, W)g(Y, Z), X, Y, Z, W 2 TpM.

The curvature tensorR of M gives rise to the curvature operatorR̂:
V2 TpM !V2 TpM

defined by

(1) hhR̂(X ^ Y), Z ^ Wii = g(R(X, Y)W, Z)

for any X,Y, Z,W 2 TpM. It is immediate to see that the curvature operatorR̂ is self-
adjoint with respect tohh , ii, so that the eigenvalues of̂R are all real. We say that
M has nonpositive curvature operator if all eigenvalues ofR̂ are nonpositive.

In 1991, T. Wolter conjectured that a simply connected homogeneous Einstein man-
ifold M with nonpositive curvature operator is symmetric ([6]). Weare concerned with
this conjecture whenM admits an almost Kähler structure.

More precisely, an almost complex manifold (M, J) equipped with an almost
Hermitian metricg with the closed fundamental 2-form8(X, Y) = g(X, JY) is called
an almost Kähler manifold, and it is called a Kähler manifoldif J is integrable, that is,
the Nijenhuis tensorN of J defined byN(X,Y) = [J X, JY]� J[ J X,Y]� J[X, JY]�
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[X, Y] vanishes identically. We say that an almost Kähler manifold M = (M, J, g) is
homogeneous if the group of almost complex isometries ofM acts transitively onM.

The aim of this paper is to study the geometry of homogeneous almost Kähler
manifolds with nonpositive curvature operator. We note that there exist many examples
of Kähler symmetric spaces with nonpositive curvature operator.

In connection with the Goldberg conjecture [1], it is plausible that a simply con-
nected homogeneous almost Kähler Einstein manifold with nonpositive curvature op-
erator is a Kählerian symmetric space. In this paper, assuming the negativity of the
sectional curvature, we prove the following

Theorem. Let (M, J, g) be a homogeneous almost Kähler Einstein manifold with
nonpositive curvature operator. If the sectional curvature of M is negative, then J is
integrable and(M, J, g) is holomorphically isometric to a complex hyperbolic space
(CHn, J0, g0).

2. Preliminaries

Let M = (M, J, g) be a homogeneous almost Kähler manifold with nonpositive
curvature operator̂R � 0. Then it is immediate from (1) that the nonpositivity ofR̂
implies that (M, g) has nonpositive sectional curvatureK � 0 everywhere. Hence, by
a result of Heintze [3], we may identifyM with a solvable Lie groupG with a left
invariant almost complex structureJ and a left invariant metrich , i. Note that, since
M is almost Kähler, the left invariant metrich , i is a Kähler metric onG with the
closed fundamental 2-form8(X, Y) = hX, JYi.

Assume now that (M,g) has negative sectional curvatureK < 0 everywhere. Then
M is known to be simply connected (see [4]), so thatM is identified with a simply
connected solvable Lie groupG.

Let g be the Lie algebra ofG consisting of left invariant vector fields onG. The
left invariant almost complex structureJ and the left invariant metrich , i on G in-
duce an endomorphismJ and an inner producth , i on g satisfying the following con-
ditions:
(i) J2 = � Id,
(ii) hJ X, Yi = �hX, JYi,
(iii) h[X, Y], J Zi + h[Y, Z], J Xi + h[Z, X], JYi = 0
for any X, Y, Z 2 g. Moreover, the Levi-Civita connectionr is given by

(2)
rXY =

1

2
[X, Y] + U (X, Y),

U (X, Y) = �1

2
((adX)�Y + (adY)�X)

for all X, Y 2 g, where ad is the adjoint representation ofg and � denotes transpose
with respect toh , i. As a result, the curvature tensorR(X,Y)Z = [rX,rY]Z�r[X,Y] Z
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is determined by the bracket product, so that we have

hR(X, Y)Y, Xi = kU (X, Y)k2 � hU (X, X), U (Y, Y)i � 3

4
k[X, Y]k2

� 1

2
h[X, [X, Y]], Yi � 1

2
h[Y, [Y, X]], Xi.(3)

Since (G, h , i) has negative sectional curvatureK < 0, the derived algebran =
[g, g] of g gives rise to a subspace of condimension 1 ing. Moreover, there is a unit
vector A in g orthogonal ton such that if we denote byD and S the symmetric and
the skew-symmetric part of the restriction adAjn : n ! n, then D and D2 + [D, S] are
both positive definite (see Heintze [3]). Also, it follows from (2) that

(4) rA A = 0, rAX = SX, rX A = �DX

for any X 2 n.

Suppose further that (G,h , i) is an Einstein manifold, that is, the Ricci tensor Ric
of G satisfies Ric(x, y) = chx, yi for some constantc. Then it is proved by Heber [2]
that D and S are derivations ofn, and commute with each other (DS= SD). Moreover,
by a straightforward computation we see that

(5) R(A, X)Y = �rDXY

for any X, Y 2 n.

3. Proof of Theorem

Let (M, J, g) be a homogeneous almost Kähler manifold with nonpositive curva-
ture operatorR̂ � 0. Since we assume that it has negative sectional curvatureK < 0
everywhere, we may identify (M, J, g) with (G, J, h , i), where G is a simply con-
nected solvable Lie group,J is a left invariant almost complex structure andh , i is
a left invariant Kähler metric onG.

Let g be the Lie algebra ofG. Note that sinceg is solvable,n is nilpotent, so
that the centerz of n is nontrivial. Recall thatg admits an inner producth , i and an
endomorphismJ on g satisfying Conditions (i), (ii) and (iii) in Section 2. Also, g is
decomposed into the direct sumg = RfAg � n, where A is a unit vector orthogonal to
the derived algebran = [g, g].

Let b be an orthogonal complement ofz in n. It is proved in Heintze [3] that if
(G,J,h , i) is a Kähler manifold with negative curvature, then (g,J,h , i) is isomorphic
to the Lie algebra of a solvable Lie group of holomorphic isometries which acts simply
transitively on the complex hyperbolic space (CHn, J0, g0). In particular, (g, J, h , i)
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satisfies the following condition:

(6)

g = RfAg � b� z, z = RfJ Ag
[ A, X] =

1

2
�X + SX, [A, J A] = �J A,

[X, Y] = �hJ X, YiJ A, [X, J A] = 0

for any X, Y 2 b and some� 2 R (for details, see [3]).
On the other hand, in the case when (G, J, h , i) is almost Kähler, we may prove

the following

Proposition 1. Let (G, J, h , i) be a homogeneous almost Kähler manifold with
nonpositive curvature operator. Suppose thath , i is an Einstein metric with negative
curvature. Then (g, J, h , i) satisfies Condition(6).

Proof. From Conditions (i) through (iii) together with the fact that D is positive
definite, it follows thatz =RfJ Ag (for details, see [5]). SinceD and S are both deriva-
tions of n, we see thatz and b are invariant byD and S, respectively. Hence there
exists� > 0 such that adA(J A) = �J A.

Let �1 < � � � < �s be the eigenvalues ofDjb and b� the eigenspace associated
with ��, for each� = 1, : : : , s. By virtue of Condition (iii) with X� 2 b�, J X� and
A, we then obtain

(7) hJ A, [X�, J X�]i = hJ X�, DJ X�i + hX�, DX�i > 0.

Hence, for any� 2 f1, : : : , sg, there exists�� 2 f1, : : : , sg such that�� + ��� = �.
Indeed, it holds that�� +�s+1�� = �, since we assume�1 < � � � < �s.

Let X 2 bs be an unit vector, and define a quadratic functionf on R by

f (x) = hhR̂(x A^ X + J X ^ J A), x A^ X + J X ^ J Aii, x 2 R.

Using (5), we see thatf is given by

f (x) = x2hhR̂(A^ X), A^ Xii + 2xhhR̂(A^ X), J X ^ J Aii + hhR̂(J X ^ J A), J X ^ J Aii
= x2hR(A, X)X, Ai + 2xhR(A, X)J A, J Xi + hR(J X, J A)J A, J Xi
= �x2hrDX X, Ai � 2xhrDX J A, J Xi

+ hrJ XrJ AJ A� rJ ArJ X J A� r[ J X,J A] J A, J Xi
= �x2�shrX X, Ai � 2x�shrX J A, J Xi � hrJ AJ A,rJ X J Xi + jrJ X J Aj2
= �x2�2

s + x�shJ A, [X, J X]i � �hJ X, DJ Xi + jrJ AJ Xj2,

where j � j denotes the norm defined byh , i.
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Then, using Condition (iii), for the discriminantD of f , we obtain

D = �2
shJ A, [X, J X]i2 � 4(��2

s)(��hJ X, DJ Xi + jrJ AJ Xj2)

� �2
s(hJ A, [X, J X]i2 � 4�hJ X, DJ Xi + 4hrJ AJ X, Xi2)

= �2
s(2hJ A, [X, J X]i2 � 4�hJ X, DJ Xi)

= 2�2
sf(hJ X, DJ Xi +�s)

2 � 2�hJ X, DJ Xig
= 2�2

sf(hJ X, DJ Xi � (�� �s))
2 + �(2�s � �)g.

Since the curvature operator̂R is assumed nonpositive,f (x) must be nonpositive for
all x 2 R, and henceD � 0. Note that, ifs� 2, then 2�s� � > 0, which implies that
D > 0. Therefore,s = 1, andDjb has only one eigenvalue 1=2�. Note that [b, b] � z,
since D is derivation.

Let fE1, J E1, : : : , Em, J Emg be an orthonormal basis ofb with respect toh , i.
Using Condition (iii) for Ei , J Ei and A, we obtain [Ei , J Ei ] = �J A for each i =
1, : : : , m. Also, it follows that

hR(X, J A)J A, Xi = hrXrJ AJ A� rJ ArX J A� r[X,J A] J A, Xi
= �hrX A, Xi + hrJ AX,rX J Ai = �1

2
�2jXj2 + jrX J Aj2

= �1

2
�2jXj2 +

�����
mX
j =1

(hrX J A, E j iE j + hrX J A, J Ej iJ Ej )

�����
2

= �1

2
�2jXj2 +

�����
mX
j =1

��1

2
hJ A, [X, E j ]iE j � 1

2
hJ A, [X, J Ej ]iJ Ej

������
2

= �1

2
�2jXj2 +

1

4

mX
j =1

(j[X, E j ]j2 + j[X, J Ej ]j2)

for any X 2 b. Then the Ricci curvature Ric(J A, J A) in the directionJ A is given by

Ric(J A, J A)

= hR(A, J A)J A, Ai +
mX

i =1

(hR(Ei , J A)J A, Ei i + hR(J Ei , J A)J A, J Ei i)
= ��2 +

mX
i =1

 
�1

2
�2 +

1

4

mX
j =1

(j[Ei , E j ]j2 + j[Ei , J Ej ]j2)

� 1

2
�2 +

1

4

mX
j =1

(j[ J Ei , E j ]j2 + j[ J Ei , J Ej ]j2)

!
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= �(m + 1)�2 +
1

4

X
i , j

(j[Ei , E j ]j2 + j[Ei , J Ej ]j2 + j[ J Ei , E j ]j2 + j[ J Ei , J Ej ]j2)

= �m + 2

2
�2 +

1

4

X
i 6= j

(j[Ei , E j ]j2 + j[Ei , J Ej ]j2 + j[ J Ei , E j ]j2 + j[ J Ei , J Ej ]j2).

On the other hand, we also see that the Ricci curvature Ric(A, A) in the direction
A is given by

Ric(A, A) =
mX

i =1

hR(A, Ei )Ei , Ai +
mX

i =1

hR(A, J Ei )J Ei , Ai + hR(A, J A)J A, Ai
=

mX
i =1

���
2
hrEi Ei , Ai � �

2
hrJ Ei J Ei , Ai�� �hrJ AJ A, Ai

=
mX

i =1

��1

4
�2 � 1

4
�2

�� �2 = �m + 2

2
�2.

Therefore, we obtain

Ric(J A, J A)� Ric(A, A)

=
1

4

X
i 6= j

(j[Ei , E j ]j2 + j[Ei , J Ej ]j2 + j[ J Ei , E j ]j2 + j[ J Ei , J Ej ]j2).
(8)

Since G is Einstein, we have Ric(A, A) = Ric(J A, J A). Hence it follows from the
above equations that

1

4

X
i 6= j

(j[Ei , E j ]j2 + j[Ei , J Ej ]j2 + j[ J Ei , E j ]j2 + j[ J Ei , J Ej ]j2) = 0,

which implies that [Ei , E j ] = [ J Ei , J Ej ] = [ Ei , J Ej ] = 0 for i 6= j . Finally, we re-
mark that [X, Y] = �hJ X, YiJ A for any X, Y 2 b. Indeed, it follows from the above
observations that

[X, Y] =

"X
i

(hX, Ei iEi + hX, J Ei iJ Ei ),
X

j

(hY, E j iE j + hY, J Ei iJ Ej )

#

=
X

i

(hX, Ei ihY, J Ei i[Ei , J Ei ] + hX, J Ei ihY, Ei i[ J Ei , Ei ])

= �X
i

(hX, Ei ihY, J Ei i � hX, J Ei ihY, Ei i)J A

= �hJ X, YiJ A.

Consequently, (g, h , i, J) satisfies Condition (6).
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Lemma 2. Let (G, J,h , i) be a simply connected homogeneous almost Kähler
manifold. If (g, J, h , i) satisfies Condition(6), then J is integrable. Moreover,
(G,J,h , i) is holomorphically isometric to a complex hyperbolic space(CHn,J0,g0).

Proof. If (g, J,h , i) satisfies Condition (6), it can be verified by a straightforward
computation that the Nijenhuis tensorN of J vanishes identically (see [5, Lemma 4]).
Hence J is integrable. Moreover, the sectional curvature of (G, h , i) is given by

hR(Y, X)X, Yi = �1

4
�2
�hX, XihY, Yi � hX, Yi2�� 3

4
�2hJ X, Yi2

= �1

4
�2 � 3

4
�2hJ X, Yi2,

whereX,Y 2 g are orthonormal vectors. In particular, substitutingJ X for Y, we obtain

hR(J X, X)X, J Xi = �1

4
�2 � 3

4
�2hJ X, J Xi2 = ��2,

which shows that the holomorphic sectional curvature is constant curvature��2.
Hence (G, J,h , i) must be holomorphically isometric to a complex hyperbolicspace
(CHn, J0, g0) with constant holomorphic sectional curvature��2.

It follows from Proposition 1 together with Lemma 2 that (G, J, h , i) is holo-
morphically isometric to a complex hyperbolic space. This completes the proof of
Theorem.
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