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1. Introduction

Let L"(q)=S%*'/Z, be the (2n+1)-dimensional standard lens space mod 4.
As difined in [7], we set

1 LG-l»l — Ln(q) ,
(1L.1) L = {2y, -+, 2,]EL"(q) | 2, is real =0} .

In the previous paper [15], we determined the KO-groups IEB(S’(L;"/LZ)) of the
suspensions of the stunted lens spacs L{/L; for j=1 (mod 2). For primes p,
the J-groups J(S’(Ly/L})) have been determined (cf. [11] for p=2 and [12] for
odd primes p). The purpose of this paper is to determine the KO- and J-groups
of suspensions of stunted lens spaces mod 4.

This paper is organized as follows. In section 2 we state the main theorems:
the structures of J(S/(L%/L3,)) for j=1 (mod 2) are given in Theorem 1, the
proof of which is similar to that for the case g=1 (cf. [11]) and omitted, the struc-
tures of KO(S’(L?/L%)) and J(S’(L?/L%)) for j=0 (mod 2) are given in Theo-
rems 2 and 3 respectively. In section 3 we prepare some lemmas and recall
known results in [8], [10] and [13]. By virtue of the results in [8], the proofs
of Theorem 2 and 3 for the case j=0 (mod 4) are given in section 4. Apply-
ing the method used in the corresponding parts of [8], we prove Theorems 2
and 3 for the case j =2 (mod 4) in the final section.

The authors would like to express their gratitude to Professor T. Kobayashi
and Professor H. Oshima for helpful suggestions.

2. Satement of results

Let v,(s) denote the exponent of the prime p in the prime power decom-
position of s, and m(s) the function defined on positive integers as follows (cf.

[3D):
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0 (p#2 and 530 (mod (p—1)))
(m(s)) = 14,()  (p*2 and s=0 (mod (p—1)))
vy — 11 (p=2 and s==0 (mod 2))

24vys) (p=2 and s=0 (mod 2)).

Let Z/k denote the cyclic group Z/kZ of order k. For an integer n, A(n)
denotes the group defined by

Z2Z]2  (n=0 (mod 8))
(2.1) An)=1{ Z/2 (n=1 or 7 (mod 8))

0 (otherwise) .

If j =1 (mod 2), then we have
KO(SH(L/Lss))~KO(S'(RP(m)| RP(n))

(cf. [15, Remark 4]), and the proof of the following theorem is similar to that
for the corresponding part of the theorem in [11].

Theorem 1. Let q,j, m and n be non-negative integers with q=1 and

m=n+2.
(1) Ifj=1 (mod 4), then we have

Z[m((m+))[2)DA(n+j)  (m=3 (mod 4))
A(n+j) (otherwise) .
(2) Ifj=3 (mod 4), then we have

Z|m((m+j4)/2) (m=1 (mod 4))

J(SH(L5[L3g))==

i Z2dZ[2 (m+j =2 (mod 8))
](S’ (LZq/LZq))Q.’ Z/2 (m+] =1 or 3 (mod 8))
0 (otherwise) .

ReMARK. (1) In the case m=n+1, S/(Lj*'/L}) is homeomorphic to the
sphere S***, and J-groups of the spheres are well-known:

Z|m(k/2) (k=0 (mod 4))
J(SH={ Z/2 (k=1 or 2 (mod 8))
0 (otherwise) .
(2) Ifj=1 (mod 2), then the above theorem and [11] imply
J(SH(L3,/L3,)) =] (S(RP(m)|RP(n)))
for any g.

In order to state the next theorem, we prepare functions 4, k,, a;, and b,
defined by
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ez [ OB
hy(n) = [n/8]+[(n+6)/8] .

i ay(m, n) = hy(m)—[(n+1)/4]—[(n+1)/8]—[(n+6)/8]

by(m, n) = hy(m)—[(n+7)[8]—[(n+5)/8] .

We denote the direct sum Z/n,Pp---PZ/n; by (n,, +++, n;), and Z by (o0).

(2.3)

Theorem 2. Let j, m and n be non-negative integers with m>n.
(1) Suppose j =0 (mod 4).
i) Ifnz3 (mod 4), then we have

~ Z[20mrint i @ Z [ Qbr(mtintd) (by(m—+-j, n+5)20)
KO(SH(Ly/L2)) = o
(SI(L¥ILY)) { 0 (by(m-+j, n+7)<0).

i) If n=3 (mod 4), then we have

ZQZ21mim D@ Z 20wkt (by(m-tj, ntj)20)
V4 (by(m+j, n+4)<0).

(2) Suppose j =2 (mod 4).
1) If m=n+9, then we have

KO(S/(Ly|LY) = Z |2 +HI-L006) A (m-+j— 1) DB (n-+)
where A(m) is the group difined by (2.1), and B(n) is the group defined by

KO(S*(Ly|Ly)) = {

Z (n=3 (mod 4))

B(n) = Z12Z|[2 (r=1 (mod 8))
Z|2 (n=0 or 2 (mod 8))
0 (otherwise) .

i) If n4+8=m>n, then the groups KO (S¥(L?[LY)) are isomorphic to the
corresponding groups in the following table :

m—n
1 2 3 4 5 6 7 8
n-+j (mod 8)

0 @@y @ |22 22|22 |22 | *22

1 @ @ | &2 | 42 | 42 | 42 442)](* 42,2
2 0 4 @) @) @ | Y 4,42 42,2
3 () | () | (o) | () | (o0, 4) [(e0, 4,2)((,2,2) (,2)
4 0 0 0 ® | *2 |22 @ *)

5 0 0 @ | %2 | 22| @ “) )

6 0 ® | *2) | 22| @ ) *) “)

7 (00) | (0,2) | (0,2) | (o0) | (o0,2) | (o0, 2) | (2,2) | (o0,2)
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ReMARK. (1) Combining this theorem with [15, Theorem 2], we obtain

the complete results for the groups IEE(Sf(LT/LQ)).
(2) The partial results for the case #=0 of this theorem have been obtained in

[8]-

In order to state the next theorem, we set

oGy m, ) = { a,(m, n) (7=0)

o8 { min {o,(j)+1, ay(m+j, ntj)y  (5>0)

' 5 | by(m, n) (7=0)
(7, m, m) = { min {v,(j)+1, b(m+j, n4j)} (7>0).

Main result is the following theorem.

Theorem 3. Let j, m and n be non-negative integers with m>n.
(1) Suppose j =0 (mod 4).
1) If n=%3 (mod 4), then we have
Z[200mm @ Z [2bGmm) ((j, m, n)=0)
0 (5(j, m, n)<0).
ii) In the case n=3 (mod 4), we have
Zim((n+j+1)/2)-2°DZ|2° D Z[2k  (b(j, m, n)=0)
Z[m((n+j+1)[2) (b(j, m, n)<0),
where 1, k, ¢ and d are integers defined by
. min {v,(n+1)—1, a(j, m, n)} (n+j=7 (mod 8))
' { min {py(n+1), a(j, m, n)} (n+j=3 (mod 8))
(2.5) k = min {v,(n+1)—1, b(j, m, n)}
¢ = max {a(j, m, n)—1, b(j, m, n)—k}

f(S"(Li”/Li))%'{

f(Sf(L’A"/L’I))g{

d = min {a(j) m, n)——z, b(]: m, n)"k} .

(2) Suppose j =2 (mod 4).
1) If m=n+9, then we have
J(SHLE|LD))=A(m+j—1)DC(n+)) ,
where A(m) is the group defined by (2.1), and C(n) is the group defined by

Z2m((n+1)/2)DZ)2 (n=3 (mod 4))
o | ZH®ZROZ2 (n=1 (mod 8))
®=1 zuez? (=0 or 2 (mod 8)

Z4 (otherwise) .
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i) If nt+-8=m>n, then the groups J(S(LY|L%)) are isomorphic to the corre-
sponding groups in the following table, where M denotes the integer m((n-+j+1)/2):

m—n
n+j (mod 8)
0 2 | 22 2 2,2) | 22) | (2,2) | 2,2) | 4, 2,2

1 2 3 4 5 6 7 8

0 @ G2 22 @ * “ C))
M) | (M,2) | (M,2)| (M) |(M,2)|(M2)|(M,2)| (M2

1 2 ) %42 42| 42 | 42 442)|4,42,2
2 0 4) 4 “4) 4) “*9 4,4,2)] 4,2,2
3 My | (M) | (M) | (M) | (M, 4)|(M,4,2)(M,2,2) (M,2)

4 (] 0 0 @ | &) |22 2 Q)

5 0 0 @ 42|22 @ “ “

6

7

Remark. (1) Combining this theorem with Theorem 1, we obtain the
complete results for the groups J(S/(L?/LY)).
(2) The partial results for the case j=n=0 of this theorem have been obtained

in [9].
3. Preliminaries

In this section we prepare some lemmas and recall known results which are
needed to prove Theorems 2 and 3.

Lemma 3.1. Let j be a positive integer with j =0 (mod 2) and k be an odd
integer. Then we have

K —1=k—1)(j/2) (mod 2V2+4)
Proof. Since k=1 (mod 8), we have
B —1=(R—1)((R)9D1 (k) VD-24 ... 41)
=k*—1)(j/2) (mod 2%).

This proves the lemma for the case v,(j)=1. Assume that

R —1=(k—1)(j/2) (mod 2v2(+4) |
Then we have

kK —1=(k —1)(k+1)

=(k*—1)(j/2)(K +1) (mod 2V29)+5)
=(F—1)(j2)2+E—1)(jj2)  (mod 2%5%)
=(k¥—1)(2j/2) (mod 222 +)

Since »,(j)=1, this implies
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Ki—1=(k*—1)(2j/2)  (mod 2()+4)
Thus the lemma is proved by the induction with respect to v,(j). qg.ed.
Considering the Z/4-action on S**!x C given by
exp (2 —1/4)(z, u) = (z-exp(2m\/—1/4), u-exp 2z\/—1/4))
for (2, )& S*™*! X C, we have a complex line bundle
7: (S™HIXC)(ZH) > L.

Then we have the following elements
{ = p—1eR(Li*)

(1) = p*—1eR(Li™Y).

The following proposition is well known.

(3.2)

Proposition 3.3. If m=2, then we have
(1) (Mahammed [13]) The ring K(LY) is isomorphic to the truncated polynomial

ring
Z[o]/(e™A, (e +1)'—1),

where (aI"/A1+Y, (a-+1)*—1) means the ideal of Z[o] generated by o™™*' and
(e+1)'—1.

(2) (Kobayashi and Sugawara [10]) The group K(LY) is isomorphic to the direct
sum of cyclic groups of order 2Im/*1+1, 2Im/A1 gpd 2Um=DI4 generated by o, o(1)+
2401 6 and o (1) o 42U 6 yespectively.  That is,

R(LY)={a, o(1), o(V)a} >K{X,, X,, X3},

where X, =2I"Ag X, =2ImMg(1) 1 22 g  gnd X, =2m-2Mg(1)o+
22[(M+2)/4]a..

The following lemma is obtained by the above proposition.

Lemma 3.4. Let u be a positive integer. Then, in K(LY),
o =a,0+b,0(1)+c,0(l)o,
where a,, b, and c, are integers defined by

a, = (—2)*,
2(—4) /o1 (#=0 (mod 4))
. 0 (#=1 (mod 4))
u (—4)w-ar (=2 (mod 4))

—2(—4)«94 (=3 (mod 4))
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and

—2v~2 (#=0 (mod 4))
2472 2(—4) D (#=1 (mod 4))
=242 (—4)@ DA (u=2 (mod 4))
247 (—4)eal (#=3 (mod 4)).

Proof. By making use of the relation (o+1)*=1, we obtain equalities

Ayyy = —zau ’
bu+1 = au'—zcu
and

Cut1 = bu_- 26,‘,

where a,=1, ,=0, and ¢;=0. Thus the lemma is proved by the induction with
respect to u. q.e.d.

For each integer n with 0=<n<m, we denote the inclusion map of L} into
L} by i, and denote the kernel of the homomorphism

@) R(LY) — R(LY)
by V,. Then by Proposition 3.3 and Lemma 3.4, we obtain the following lemma.

Lemma 3.5. Let u be a positive integer with 2u<<m. Then we have

o (u=1)

| e(h)—2¢ (u=2)
7T (=12 Ie(1) g +-2¢16)  (u=1 (mod 2) and u>1)
(—1)w-Dr2(26-202 (1) 4 2471 ) (=0 (mod 2) and u>2)

modulo the subgroup V,,.
Considering the Z/4-action on S**!'x R given by
exp (27 —1/4)(3, v) = (z-exp 27/ —1/4), —0)
for (2, v)€S**' X R, we have a real line bundle
v: (S X R)/(Z]4) — L.
We set
x = v—1eKO(LE ).

It is easy to see that
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o(x) = (1)

(36) ro(1)) = 2,

where ¢: KO— K is the complexification and 7: K— KO is the real restriction.
Let

I: K(X)— K(S*X)
and

I; KO(X) — KO(S®X)
be the Bott periodicity isomorphisms for K- and KO-theory respectively. Then
we have the following proposition.

Proposition 3.7. (1) (Kobayashi and Sugawara [10]) If j=0 (mod 8)
and m=2, then KO(S’(LY)) is isomorphic to the dierct sum of the cyclic groups of
order 2™ and 2":™ generated by r(I’"*(c)) and I¥3(x)+2/W(17%(c)) respective-
ly. That is,

KO(S/(L) =< {r(I7%(a)), TH¥ ()} >KAYy, Vi,
where Y,=2M"y(I/%(g)) and Y ,=2"" [}/3(x)-2k0m+ Il [12(g)).

In the case j=0 (mod 8) and m—1, the group KO(S'L})=KO(S/*) is

isomorphic to Z|2 generated by 1¥*%(x).
(2) (Kobayashi [8]) Ifj=4 (mod 8) and m=4, then the group KO(S’(LY)) is
isomorphic to the direct sum of the cyclic groups of order 2M™+9% gud 2 (m+9-2
generated by r(I'"*(c)) and r(I'"*(a(1)+2"1* &) respectively. That is,
KO(S(L)={r(I"(a)), (I o) DKAY,, Yab >,
where Y, =2M"+9"2y (i (5)) and
Y2 — th(m+4)—zr(Ij/z(d(l)))_|_2h2(m+4)+[m/4]-1r(Ij/2(a.)) .

If j=4 (mod 8) and 1<m<4, then we have KO(Si(L))==0.

4. Proof for the case j=0 (mod 4)

In this section we prove the parts (1) of Theorems 2 and 3. Throughout
this section, j denotes a non-negative integer with j =0 (mod 4).

We consider the elements y, and y, of KO(S’LY) defined by
» = r(["*(c))
(+1) [ ) (=0 (mod 8))
{ r(I(a(1))) (=4 (mod 8)).

, =
According to [1] and [4], we have the following lemma.
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Lemma 4.2. The Adams operations are given by the following formulae.

kil?y, (k=1 (mod?2))

2ki2y, (j=0 (mod 8) and k=2 (mod 4))
kil*y, (j =4 (mod 8) and k=2 (mod 4))
0 (k=0 (mod 4)).

Bly, (k=1 (mod 2))

0 (k=0 (mod 2)).

(1) () =

@ v ={
For each integer n with 0=<n<m, we denote the kernel of the homomor-
phism
@im)': KO(S'Ly) — KO(S’L3)
by VOj,,.
Lemma 4.3. If 0<n<m, then we have
Z[20am i) =hy(nt§) =Lty Z[Dbolm+ )= byt DH(m+5)/4]
VO » = (ho(m—+j) Z hy(n+7)—[(n+5)/4])
0 (ho(m~+7) <hy(n—+j)—[(n+7)/4]) -

Proof. By Proposition 3.7, VOj, , is the subgroup of I?é(SfLZ‘) generated
by Y, and Y,, where

B2 (1—4[j/8]+j/2=n)
Y, ={ 2™y, (=0 (mod 8) and n=2)
2mtH-2,, (=4 (mod 8) and n=4)
and
2y, (7 =0 (mod 8) and n=1)
¥, — Y2 (j =4 (mod 8) and 4>n=0)
2] 2k y, 4 2may) (=0 (mod 8) and n+1)

2haH0=2( 5, | DIATHLy, ) (=4 (mod 8) and n=4) .

Consider the case hy(m-+j)=h,(n+j)—[(n+j)/4]. Suppose that [(m+j)/4]+
hy(n+j)=h(n+j) and m=2. Then we have the relations 4;,=0 (i=1, 2), where
2mmy, (=0 (mod 8) and n=1)
A, = { 2nhmtH=2y, (=4 (mod 8) and 4>n=0)
2lmtD-h@+)Y,  (otherwise)

and
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B { 2ka(m)( 3y, - 2Am/41y ) (j=0 (mod 8))
T 2y 2y (=4 (mod 8)).
Setting
g (1—40j/8]+jl22n=1+2[j/8]—j [4)
T Ay 2mmi by -tk 4, (otherwise) ,
_ih (1—4[j/8]4j/2zn=1+2[j/8]— j/4)
“= Y, 21D byt HIm+DITY | (otherwise)
and
[ Yp2mianty, (1—40/8]+i2z2n=1+2[j/8]—j/4)
U, = (Z[m/q—[m]_l)yl _l_zhl(n+j)—hz(n+j)—[(n+j)/4] Yz (otherwise) s
we have
Ay = 2D ki) [ty
and

— Dhy(m+7)—hy(n+5)+[(n+5)/4
A2—22(m §)=hy(n+i)+[(n J)/]uz_

Noting that

g {4 (1—4j/8]4jj2=n=1+2[j/8]— j/4)
P 4y omtmr -tk g, (otherwise)

y._{% (1—4[j/8]+j2=n=1+-2[j/8] — j[4)
| 2mO k-t Yy, (otherwise)

and

_ —2miT gyt u, (1—4[/8]+j/2=zn=1+-2[j/8]—j/4)
N G B, 0 o 0 T TR A (T R (otherwise) ,

we see that VOj, , is isomorphic to the group generated by », and u, with rela-
tions 4;=0 (=2, 3). This implies the lemma for the case [(m+§)/4]+hy(n+j)
=hy(n+j) and m=2.

Suppose that h(m-+j)+ [(n-+)/4]1Z h(n-+)> [(m-5) 4]+ hy(n-+j) and nek 1.
Then we have n+j=1 (mod 8), n-+2=m>n and VOj, ,=Z|2 generated by Y,.
If =1 and 2=<m=<3, then we have VOj, ,~Z/2 generated by Y,. If n=0,
the lemma follows from Proposition 3.7. Thus the proof of the lemma for the
case hy(m+-j)=hy(n-+j)—[(n+7j)/4] is completed.

If hy(m+j) <h(n-+j)—[(n+j)/4], then we have [(m-+j)/8]=[(n+j—4)/8].
This implies hy(m+7)=h(n+), him-+-j)=hsn-+) and [(m-+j)H]=[(n+7)/4].
Hence we have VO;, ,==0.

Thus the proof of the lemma is completed. q.e.d.
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Suppose that #3=3 (mod 4). Then we have

ay(m+j, ntj) = hy(m-+j)—h(n-+j)—[(n+j5)/4]
and
by(m+j, n-+j) = hy(m—+j)—hy(n+j)+[(n+5)/4] -

Thus the part i) of (1) of Theorem 2 is proved by making use of [15, Corollary
3] and Lemma 4.3.

Proof of the part i) of (1) of Thoerem 3. We set
44) U0, = /.2 (Ok‘(x]r"———l)VO.’;.,n) .
Since the order of VOj} , is equal to a power of 2, we have
UOhn= 5 (W—1)VO4, = 3} (WF—1)VO}, = 2549VO4,,

by Lemma 4.2 and Lemma 3.1. Since the order of I?é(S"(LZ'/L’J)) is finite,
we have

J(S/(L?[LY)=VOj, ,|UO} , = VO, ,[2DH V0], , .

Thus the part i) of (1) of Theorem 3 is proved by making use of Lemma 4.3.
q.e.d.

Now, we turn to the case #=3 (mod 4). In the rest of this section, =
denotes a positive integer with n=3 (mod 4). It follows from [15] that we
have the commutative diagram

0 0
KO(S7+m+) = KO(S7*n+1)
B 5,

4.5) 0— VO;,nu—fl—’ I%(S"(LT/LQ‘)) _fz__) %(Siﬂﬂ) 0

|
0 VO ——> VOhas o ROSHL LAY — 0
. .

0 0

of exact sequences. Since 1?5(8””“) is isomorphic to Z, the upper row of
(4.5) splits. Choose ye KO(S’(L¥/L})) such that B=f,(y) generates the group

Eé(S’”’"“). Then we have an isomorphism
f: VOi, s @ KO(S77+Y) — KO(S/(L7/LY))
defined by f(x, k8)=Ff,(x)+ky for every (x, k)€ V O} ...DZ. This proves the
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part ii) of (1) of Theorem 2. Moreover, we have the following lemma.
Lemma 4.6. If j=0 (mod 4) and n=3 (mod 4), then there is an element
yeKO(S/(LY|L%)) which satisfies the following conditions.
(1) B=fy(p) generates the group KO(S/**+").
20-1l2y), (n+j+1=4 (mod 8))
) | 209y, 2090y, (n+1=3=0 (mod 8))
@) )= 20-Dlhy, 2092y, (n+1=j=4 (mod 8) and n>3)
A (=4 (mod 8) and n=3).
Proof. Suppose that j=0 (mod 8) and #n=7 (mod 8). By the proof of

Lemma 4.3, we have

VO a1 = {20400y, 200y}
and

VO py = {20-D02y  2=3l4y, 4 20-9)/20) 1%,
Hence

RO(S(L" [L57))2% V04, s] VO pir < Z 4

and the first group is generated by f,(2~3/y,4-2¢=3/2y) It follows from
the commutativity of the diagram (4.5) that the element y can be chosen to
satisfy fy(y)=2""34y,+2#-92y = The proofs for the other cases are similar.

q.e.d.

In the rest of this section, we fix an element yGI’(\(S(S"(LT/Li)) which
satisfies the conditions of Lemma 4.6.

Lemma 4.7. If k is an odd integer, then the Adams operation \* is given
by
YH(y) = BTy (IR IR AL (4(5)
Proof. We necessarily have
V() = w+h(*)

for some integer u and an element ¥€ VOj, ,.:. By using the +r-map f,, we
see that u=k®*/*Y/2_ Under f;, f,(x) maps into x and y maps into fy(y), and
we see that

YHfoy)) = RO y) +x .

It follows from Lemma 4.2 that
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Flf(y) = BT f(y) s
This implies that
5 = (BRI ) ()

and

YH(3) = KOOy f (x)
= KOy (RIP— KT (41()) qed.

We now recall some definition in [3]. Set ¥=KO(S/(L¥/L%)) and let f be
a function which assigns to each integer k£ a non-negative integer f(k). Given
such a function f, we define Y, to be the subgroup of Y generated by
F PP —1)(9)|kEZ, yE Y} ;
that is,
Y, ={O*—1)(y) |kEZ, yeY})>.
Then the kernel of the homomorphism J”: Y— J”(Y) coincides with ﬂ Y,,

where the intersection runs over all functions f.
Suppose that f satisfies

(4.8)  f(R)=m-+max {v,(m((n+j+1)/2))| p is a prime divisor of &}

for every keZ. For each odd integer 7, N(7) denotes the integer chosen to
satisfy the property

4.9) IN@p)=1 (mod 27) .

In the following calculation we put (n-4j4-1)/2=u for the sake of simplicity.
From Lemmas 3.1 and 4.7, we have

R Bt —1)(y)
= RIW(k— D)y R/ D((RI—") [ 4)f,(4f())
= RSO — 1)y+-R7 B N 250 (12— 1) —u(k* — 1)) [ 2597+ £, (4f ()
= ROk —1)y+k O N(uf29)(((j/2)(k* — 1) —u(k*— 1)) [22*2)f, (4f ()
(mod f(UO}, 411))
= (R D(R*— 1240022502y — N(u/259) (n+ 1) [2)y(4F4(9))) -

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

f(UOgpns) U R P(Y*—1)(y) [kEZ})
= {AUOR 1) U {m(w)/ 272052750 2y — N[ 2% ) (n-+1)2)f, (4o )} >

Therefore,
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Y, = (U0 wa1) U Am((n+j+1)/2)y— Mf,(4fs(y)} >

where M = (m((n+j+1)/2)/2% DN ((n-+ j+1)[2%++D)((n+1)/2).  Since
this is true for every function f which satisfies (4.8), we have

410)  J'(V)=YKf(UOg ni1) U {m((n+j+1)/2)y— Mf(4f(9)}> -

Suppose that b(j, m, n)=0. It follows from the proof of Lemma 4.3 that
VO3, pr 152 Z |20+t Z[20m+imti) j5 generated by

B 2(n+1)/4y2+(2[(m+n+1)/4] +2(n+1)/2)y1 (] = 0 (mod 8))
1 2(”~3)/‘y2+(2[('“-““)/4]‘{"2(”“)/2)}’1 (]E4 (mod 8))

and

249y, 4 NmtwtDMy  (j=p—3=0 (mod 8))
2Dy, L OUmn+SIALy, (j=n—3=4 (mod 8))
2Dy, | Jmtnt1)A]y, (j=n+1=0 (mod 8))
23y, | J(mtatD)/aly, (j=n+1=4 (mod 8)).

Uy =

By Lemma 4.6, we have

2u—u,  (n+j=3 (mod 8))
Ho(y) =1 m—w, (j=4 (mod 8) and 7=3)
(1 _2[(m—n+3)/4])u1+(1 +2[(m—a+3)/4])u2 (otherwise) .

Therefore

T (V)=<y, uy, upp[<{Myy+ Mu,+ M,u,, 200 mmy, 20Gmm gy

where
M, = m((n+j+1)/2),
—2M (n+j =3 (mod 8))
M ={ —M (j =4 (mod 8) and n=3)
—(1—=2Lm=n+3/41) By (otherwise)
and
M= { —(14-2Um=s+N N (n4j=7 (mod 8) and n>3)
N 7 (otherwise) .
Set

__ [ min {a(j, m, n), v,(n+1)} (n+j =3 (mod 8))
N { min {a(j, m, n), v,(n+1)—1}  (n+j=7 (mod 8))
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and
k = min {b(j, m, n), vy(n+1)—1}.

Since v,(M)=v,(n+1)—1, the greatest common divisor of M, and 2¢V:m» js
equal to 2%, and the greatest common divisor of M, and 2°U:™" is equal to 2%
Choose integers e;, €, e; and ¢, with

€ 260mm) 1o, M, = 2
and
eg200mm g M, = 2k .

For the sake of simplicity, we put a=a(j, m, n) and b=¥5(j, m, n) in the follow-
ing calculation. If a—i=b—k, then we have

| Myy-+ Mu,+Myu, [ 27 M,y
A( 2'u, ) = ( 207k*i((e, Mo/ 27 )y +-uy)
2bu, 24((ey M| 2*)y +(ea My 24wy +-u)!
where
i9a6—i — 1/2!' _(MZ/Zk)Za-'b—H‘k'
A= (eZZb"' e 207k —e, M, [2* )
e 0 & i
and det A=1. This implies that
J(Y)=Z|2°"  MyDZ 2> *iDZ[2 .

On the other hand, if 5—%>a—7, then we have

Myy-+Mu,+M,u, [ 27k M,y
B ( 2%u, = ( 2%u,
28y, 2k((ey Mo/ 2%) y+-(e, M,y 2% u,+u,) !

where

tzb‘k _(Ml/zi)z—a-i-b'h'—k — 2/2k
B = (O 1 0 )
(A 0 €3 /
and det B=1. This implies that
J(Y)=Z|2* *M,DPZ2°DZ/2* .

Thus we have
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(4.11) If j =0 (mod 4), n=3 (mod 4) and b(j, m, n)=0, then we have
J(SULEILY)=Z [m((n+j+1)[2)-2°DZ[2*+ © Z[2*

where 1, k, ¢ and d are integers defined by (2.5).

Next suppose that b(j, m, n)<<0. It follows from Lemma 4.3 that we have
VOj, 4+1=20. This implies that the homomorphism f, in the diagram (4.5) is
an isomorphism of yr-groups. Thus we obtain

(4.12) If j=0 (mod 4), n=3 (mod 4) and b(j, m, n)<<0 then we have
J(S(L2|LY)=Z[m((n-+j+1)[2).

Now, combining (4.11) and (4.12) we obtain the part ii) of (1) of Theorem
3. Thus the proof for the case j=0 (mod 4) is completed.

5. Proof for the case j=2 (mod 4)

In this section we prove the parts (2) of Theorems 2 and 3. Throughout
this section j denotes a positive integer with j =2 (mod 4). Consider the ele-
ments %, %, and x; of K(S7LY) defined by

x, = I"q,
(5.1) x, = Iq(1),
%y = I (a(1)o) .

According to [1], we have the following lemma.
Lemma 5.2. The Adams operations are given by the following formulae.

B (x,+x,4+x5) (k=3 (mod 4))

N (k=1 (mod 4))

M) =) =7 pin,y, (k=2 (mod 4))
0 (k=0 (mod 4)) .

N (k=1 (mod 2))
@) ¥ = { 0 (k=0 (mod 2)) .

R (—x3—2x,) (k=3 (mod 4))

(3) YH(xs) = &, (k=1 (mod 4))
0 (k=0 (mod 2)) .

Consider the elements X,, X, and X, of K(S/LY) defined by
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X — { A+ 5 (n=1)
X3 (n=0)
2L+, (n=0 or 3 (mod 4))
(5.3) X, = { 2A+DM L JLHD/2 (n=1 or 2 (mod 4))
2Ln=1/4] . (n=1 or 2 (mod 4))
X, = { 2[~DAly 4 NG+, (p=0 or 3 (mod 4) and n=3)
x (n=0).

For each integer n with 0=<n=<m, we denote the kernel of the homomorphism
(™' R(SLr) — K(S'L3)
by V... Then by Proposition 3.3, we have
(5.4) Vs = <{X;, X, XD
Consider the Bott exact sequence (cf. [5] and [6, (12.2)])

. c ) rol '~ = 9~
(5.5) — KO(S**X) — K(S**X) —> KO(S’ X) — KO(S'*'X) —

for X=L7?|L}, where 0 is the homomorphism defined by the exterior product
with the generator of KO(S"). Using the isomorphisms

VO3 Fynsrym = KOS (L7 L+
and
Vi atns 1212 K(S* (LY L+

we obtain the exact sequence

-1

2 I oc__. ry = ; 6
(5.6) > VO, — Vi, . —+ KO(S/(LFLE) > G — 0,
where u=[(n+1)/2] and
G { KO(S#*Y(L7[L2)  (m+j=0, 1 or 2 (mod 8))
“lo (otherwise) .
Consider the generators y, and y, of Eé(S’”’zLT) defined by (4.1).
Lemma 5.7. (1) I toc(y,)=2x,+x,+x,.

-1, ) * (j =6 (mod 8))
(2) I7toc(y,) = { 2, (=2 (mod 8)).

Proof. (1) By (4.1), we have
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I7oc(y,) = I"Y(cor(I9*D7%(a))) = I%((1+-2)(c))
= P20 +o(1)+o(1)o) = 202,42
(2) Ifj=6 (mod 8), then by (3.6) we have
I%oc(yy) = 179" (c(a)) = P(o(1)) = ;.
If j =2 (mod 8), then we have

I7toc(y,) = I (I 9D (cor(a(1)))) = T%((1+2)(a(1)))
= [i2(25(1)) = 2x, . qe.d.

5.1. Proof for the case n=0 (mod 2). By Proposition 3.7 and (5.4),
we have

{24 y,, 240y, +20My,)}>  (j=6 (mod 8))
< {Zhl(nﬂ)—zyh 2h2(n+4)—-2(y2 20 yl)}>

(j=2 (mod 8) and n=4)
Ayp v (j=2 (mod 8) and 0=n=2)

VO =

and Vi ,=<{{X,, X,, X3}>. Using Lemma 5.7, we obtain

(5.8) For the homomorphism r, in the exact sequence (5.6), we have

2X,, (1—2M X, 4+ X, 2090 X > (n+j=2 (mod 8) and nz4)
X, XX, 12X (j=2 (mod 8) and n=0)
X, (1— 208X, 200X 3> (n4-§ =6 (mod 8) and n=4)
Rern =\ cix, X, +2x3> (j=6 (mod 8) and n=0)
C2X,—X,, 200X, 12X} (n4-j =0 (mod 8))
| <C2X,—X,, 20 DMX, L X }> (n+j =4 (mod 8)).

If m=n+2, then Im 7, is isomorphic to the group generated by {X,, X,, X;}
with relations 4;=0 (1=7<5), where

2X, (n+j =2 (mod 8))
4, =1 X, (n+j =6 (mod 8))
2X,—X, (n=2 (mod 4)),
(1—2"4)X,+ X, +20+94X,  (4<n=0 (mod 4))
4 — X, +X,+2X, (n=0)
2| amanx 10X, (n+7 =0 (mod 8))

20-2AX, L X, (n+j =4 (mod 8)),
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m=w+DMIX, | Jm=n-DMAm=nD_1)X,  (4<n=0 (mod 4))

Ay = 2[(".-2)/4]){1_‘_22[(»1+2)/4]){a (n=0)
2Lm=mla1 X, | Q2(m-m)/4] X (n=2 (mod 4)),
2Um=mH1 X 4 D2 m=m)l41 X, (4=n=0 (mod 4))
A, = { 20w X, pama+ X (n=0)
2Am=n=DAYQ X, | (2Lm-#+DMI_1)X,) (n=2 (mod 4))
and
2Lm+2)/21 )7, (n=0)
Ay = { 2m-mia X (otherwise) .

Thus we obtain
(5.9) If m+j—2=n-+j=2 (mod 8) or m+j—6=n+j=2 (mod 8), then we have

n(Vin=<{X,, X,, X;}>K{4,, 4, B3}>
{ Z[ A+ DI LD 72 (n+j=0 or 2 (mod 8))
| zjpumriva-ierim (n+j =4 or 6 (mod 8)),

where By=2lm+DHA1-Ln+tHM X

2X, (n+j =2 (mod 8))

A4 =1 X, (n+j =6 (mod 8))
2X,—X, (n=2 (mod 8))

and

20X, 4 X, +(1—2"X, (4=n=0 (mod 4))

| 2 XX, (n=0)

2T omennx 40X, (n+j =0 (mod 8))

20-DMY L X, (n+j =4 (mod 8)).

If n4+j=2 (mod 8) and n+5=m=n-+2, then we have
fl(V;';,,”)%<{Xl, Xz; X3}>/<{Bh X2—2X31 4.X3}>g Z/4 )
where

B — { X,+2X, (n=4)
Tl x (n=0) .

In the case m=n-1, we have r(Vj, ,)=0.
By Lemma 5.2 and (5.8), we obtain the following.
(5.10) The Adams operations are given by the following formulae.
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kil2y (X,) (k=1 (mod 4))
(1) YMr(Xs) =1 —FPr(X;) (k=3 (mod 4))
0 (¢=0 (mod 2)).

2) (X)) =

() YN Xyt X))
{ rn(2* X4+ X,) (n=2 (mod 4) and k=1 (mod 2))
0 (n=2 (mod 4) and k=0 (mod 2)) .

{ r(X,) (n=0 (mod 4) and k=1 (mod 2))
(n=0 (mod 4) and k=0 (mod 2)).

By Lemma 3.1, (5.6), (5.9) and (5.10), we obtain the results for the cases
J=2 (mod 4), n=0 (mod 2) and m+j=3, 4, 5, 6 or 7 (mod 8).

We now turn to the case m+j=1 (mod 8). Suppose that m=n-3, and
consider the commutative diagram

0

?
VT 5 Ro(Si(L*ILy) 0
Vi, 3KOS(LYLY)

f I ¢
i 7‘2 — . —~ 1@ 2 —~—
0— K(Smﬂ 1) - KO(Sm+J)@KO(Sm+J n 2123 KO(S"‘+’+1)@KO(S"'+’)—>O

KO(SHY(Ly|Lz)) —> 0

0

of exact sequences, where 0,: KO(S"'*’)—»KO(S'”““) is an isomorphism. We
denote the generators of KO(S"‘“) and KO (S™**Y) by @, and w, respectively.

Since KO(S”'*’)%'Z/Z, Lemma 3.5 implies that K(S™*/~')=Z has a generator
v with

2(m=Dl g | DW=y (m=7)

=1 i

1

and 7,(y)=248, where B is a generator of the group I’{\(-)’(S’"”")zz. It fol-
lows from (5.9) that we have

28(8) = r(f(7))
_ { 72Dy L 2Dy (m2T)
T n(w) (m=3)
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2m=n=3liy (X) (n+j =6 (mod 8))

2m-n=lhy (X )42 n"DhAy(X,)  (n+j=2 (mod 8))
{ 2m=n=S)lty (X, (n=2 (mod 4)).

If m=n+7, we set a=g(B)—2{m-"NO-1=+2/41y (X ). Then we have 9(a)=h(v,),
and

0 (m=n+9)

2a 2{ nX)  (m=nt7).

By (5.10) and the fact 4g(83)=0, we have
vHa) = Rim+i-1)/2 g( ,3)—\ll“'(z(("—7)")-[(’”'2)/4]’1( X))

_ { o  (k:odd)
1o (k: even) .
According to [3, II], we have
N (k: odd)
Vi) { 0 (k: even)

(=1, 2). If m=n-+9, then the short exact sequence
0 — 7,(Vi.») = KO(SH(L7/L3)) ~ KO(S™*(L}/L5)) — 0
of yr-groups splits. Hence
KO(S/(Ly L) =r(Vi, D Z2D Z|2
and
J(SALE L) =] " (r(V .a) DZ[2D Z]2 .
If m=n--7, then we have
KO(S/(LILE) = <ry(Vh ) U {at, glon)}> = <{n(Xy), @, glo)h -

Since ord KO(S/(L¥L%))=32 by [15], ord {r,(Xy)>=ord {a>=4 and ord{g(w,)>
=2, we have

KO(SH (LY LD)) == J(SHLILD))=Z/4AD Z/4D Z|2 .
If m=n-+5 or n+3, then we have
KO(SH(L1/L2)) = <{8(8), glw}> -
Since ord KO(S’(Ly/L%))=8 by [15], ord {g(8)>=4 and ord<{g(e,)>=2, we have
KO(S/(Ly| L) = J(S/(Ly |LD) =~ Z4D Z]2.
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Thus we obtain the results for the case j =2 (mod 4), =0 (mod 2) and m+j =1
(mod 8).

The proof for the case j=2 (mod 4), =0 (mod 2) and m+j =0 (mod 8)
is similar to that for the above case, so we omit it.

Finally we consider the case m+j=2 (mod 8). Inspect the commutative
diagram

Vi —s KO(SHLE-?/L2) 0
| S 0 ~
Vi, —s KO(S(LYILY) ——> KO(S*™(LE/LE) —> 0

; roe~— 8 ~
R(S/(Lp|L3*) —> KO(SH (L L1~?)) — KO(SHY(L2/L3-2) —> 0

of exact sequences. Since
KO(S/(Ly|Lr-?) = KO(S/*" 2 [3) =~ Z|2D Z/2
by Proposition 3.7, and
H(R(S/(LTIL2) = KO(S™ (LY (LI )= Z/2,
the short exact sequence
0 — r(R(S'(LY/LE-?))) — KO(S/(LY/L1=?)) — KO(ST+Y(Ly/L1=%) = 0

splits. 'The Adams operations on I?é(Sf(Li"/Lf{“z)) or @(S”‘(LT/LQ’"% are
given by
o= { 1 (k: odd)
0 (k: even) .
Hence the short exact sequence
0= r,(V ) — KO(SH(L2/L3) —~ KO(S#Y(L¥/L%)) — 0

of yr-groups splits. Thus we obtain the result for the case j =2 (mod 4), n=0
(mod 2) and m-+j =2 (mod 8).
Thus the proof for the case j =2 (mod 4) and n=0 (mod 2) is completed.

5.2. Proof for the case n=3 (mod 4). Consider the following com-
mutative diagram, in which the row is exact.
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00— Vit —f-1—> R(S/(L?/LY)) _fi> R(S™++) — 0

|5
Vi & R(SILY)).

By Lemma 3.5, we can choose an element x&K(S/(L¥/L})) such that fy(x)
generates the group K(S**/+\=~Z and

fox) = 207002 4 2=y 4 O-D2g

Applying the method used in the proof of Lemma 4.7 to x, we obtain the fol-
lowing result by Lemma 5.2.

(5.11) The Adams operations are given by
R x4 (R —R*) [4)fy(4f5(x)) (k=1 (mod 2))

YHx) = { K a— (k" [4)f,(4f(%)) (k=0 (mod 4))
K xtf,(RP20-94 X, —k'f(x))  (R=2 (mod 4)),

where u=(n+j+1)/2.
This implies that cor(x)=(1++"")(x)=0. By (5.8), we have
ri(4fy(x)) = r((1—2¢ X 42X, 42094 X ) = 7 (X,) .
Thus we obtain
(5.12) (1) 2r(x)=r(cor(x))=0.

r(x) (k=1 (mod 2))

(2) ‘!’k(r(x)) — k(n+i+1)/2r(x) = { 0 (kEO (mod 2)) .

Inspect the following commutative diagram

0— Vhues Lo R(SH(LEILD) L R(S™7) — 0

7 r r

0— KO(SULT|Li*) > KO(S(L/LY) — KO(S*+*) — 0

of exact sequences. Since

Z|2 (n+j=1 (mod 8))

KO(S"++1) = { 0 (n+j =5 (mod 8)),

using (5.12) we see that the short exact sequence
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0> KO(SULE/L5*) — KO(SH(LE /L) — KOS+ — 0

of yr-groups splits. This implies that

~

K~O(Sj(LT/LZ')) ’é‘I’EO’(S"(LT/LT1))@K0(Sn+i+l)
and

J(SI(L2IL2) = J(S/(Ly L3 1) @ J(S*+i+Y) .

Thus, results of the case j=2 (mod 4) and #=3 (mod 4) follow from those of
the case j =2 (mod 4) and #=0 (mod 4).

5.3. Proof for the case n=1 (mod 4). Consider the following com-
mutative diagram, in which the row is exact.

0— Vo Lo R(SHLTILD) L R(S™) — 0

5
Vin < K(SIHLT)).

By Lemma 3.5, we can choose an element x&K(S/(L?/L%)) such that fy(x)
generates the group K(S***")~Z and

20-5)/4 | 2n=D2y (n=5)

%, (n=1).

s =1

Applying the method used in the proof of Lemma 4.7 to x, we obtain the fol-
lowing result by Lemma 5.2.

(5.13) The Adams operations are given by

R x-H((R72— ") [4)f,(4(x)) (k=1 (mod 4))
R x— (R B*)[4)f(4fs(x)) + B, (202 X+ 2 Xy — X))+ X, — X))
(k=3 (mod 4) and n=5)
R x— (R R)[4)fy(4f (%) +RF( X+ X)
(k=3 (mod 4) and n=1)
R x—(R"[4)fy(4f(x)) + (R7[2) 20D, 2X,— X,)
(k=2 (mod 4))
R x— (K [4)f(4(x)) (k=0 (mod 4)),

where u=(n-j+1)/2.

Ph(x) =

7

Inspect the following commutative diagram
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0 0 KO(S™+7) 0

v . —10 A —~ . 6 — .

VO — Vi vor —s RO(S/(LY/LIY)) — KO(S™YL7/LEY)
flv , & 5 ~h1

VO — R(S/(LT/L3)) —> KO(S* (L7 |L;)) — KO(S7*(L¥[L3))

— I loc f2 r —-{g} 0 -~ hz

KO(Sn+i+3) — K Su+i+1) —_— KO(S"HH) N KO(Sn+j+2) — 0

v

0 0 KO(SI™Y(Ly 1Y)
of exact sequences. By Proposition 3.7, we have

C{2#DRy, 208y, | 26-DRYyLS  (j=2 (mod 8) and nZ5)
{202y | 2=Diky) | D=2y L (=6 (mod 8) and n=5)

VO =
' <Ay 292> (j=6 (mod 8) and n=1)
<Ayp 324> (j=2 (mod 8) and n=1).
Using Lemma 5.7, we obtain
(5.14) Kerr, = {{/i(2X,— X)), L2 X+ X,)}D .
If m=n+3, then we have
Coker g, KO(S"+i+2)

~{ Z2  (n+j=7 (mod 8))
“lo (n+j =3 (mod 8)),

and hence
r(R(S"*) = g,(KO(S/(L/LD)
_ { gEO(S"”“) (n+j =7 (mod 8))
KO(S*+i+Y) (n+j =3 (mod 8)).
Since A, is a monomorphism, we have Ker g,C7(V} ,41). Thus we obtain a
split short exact sequence
0 KO(S/LY/L3) Ker g, -2 RO(S/(LyILD) 25 20,
where
Ker g, = <{r,(2" VM X,+ X,)> .
By (5.9), we obtain

(5.15) If m=n+-3, then we have
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rl(V’j".""'l)/Kerglg({Xn Xz» X3}>/<{Al) Bz; Bs}> ’
Whefe Al=2X2—X1, B2=2('-I)I‘X3+X2 and B3=2[(M'“‘1)/4]X3.
Thus the group I?(S(S’(LZ‘/LQ)) is determined by using results of the case

j=2 (mod 4) and n=2 (mod 4). In order to determine the group J(S/(L¥/L%)),
we use the following fact which is obtained from (5.13) and (5.14).

(5.16) The Adams operations are given by

EHI DRy () L (B2 —R®HYOR) [4)r,(f(4fo(x)))  (B=1 (mod 4))
YHro(%)) = | B0y () — (K2R 4OR) 4y (f,(4f(%)))  (R=3 (mod 4))
ROHITO 2y () (ROHIHOR 4)r,( f (4 (%)) (k=0 (mod 2))

Set U=k ‘Zt}ld(xp"’——l)I’{\(-)—(S"(LZ’/LZ“‘)). By Lemma 3.1 and (5.9), we have
U=L{4r(X;)>. If k=€ (mod 4) (6=41), then we have

((ERI2— R +i+D0%) |4y, f,(4f(x))
= ((ERP— RO+ 2)g,(r,( X)) (mod g,(V))
=((k—€)/2)g:(r(Xa)) (mod g,(U))
= ((R*HHDR—1)[2%04 D) 0,(ry( X)) (mod gy(V)) -
Thus we have J (S-’(LZ'/L;‘))zEé(S’(LZ‘/LQ))/ U,, where U, is the subgroup of
kB(Sf(LT/LZ)) generated by 4g,(r,(X;)) and m((n—+j+1)/2)r,(x) —2g,(r,(X3)).
Suppose m+j=3, 4, 5, 6 or 7 (mod 8). Then we have
J(SHLE|LE) = o), gi(ri(Xa)} DK {4y, A3k
where A,=m((n-j-+1)/2)r((x)—2,(r,(Xy)) and
(X)) (mznt9)
4= (X)) (n+8Zmzn+)
&(r(Xs)) (nt+4z=m=n+3).
Thus we obtain the results of the cases j =2 (mod 4), n=1 (mod 4) and m+j =
3,4,5,60r 7 (mod 8).

Since Ker g,=r,({2* Y X;+ X,>), the rest of the proof is similar to that
for the case j =2 (mod 4) and #=2 (mod 4).
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