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0. Introduction

Let KU and KO be the complex and the real K-spectrum, respectively. For
any CW-spectrum X its KU-homology group KU,X is regarded as a (Z/2-graded)
abelian group with involution because KU possesses the conjugation z/)al. Given
CW -spectra X and Y we say that X is quasi KO,-equivalent to Y if there exists an
equivalence f : KOA X — KO AY of KO-module spectra (see [8]). If X is quasi
KO,-equivalent to Y, then KO,X is isomorphic to KO.Y as a KO,-module, and
in addition KU, X is isomorphic to KU,Y as an abelian group with involution. In the
latter case we say that X has the same C-type as Y (cf. [2]). In [10] and [11] we have
determined the quasi KO,-types of the real projective space RP* and its stunted pro-
jective space RP*/RP'. Moreover in [12] we have determined the quasi KO,-types
of the mod 4 lens space L% and its stunted lens space L%/L! where we simply de-
note by L2™*! the usual (2n+ 1)-dimensional mod 4 lens space L™(4) and by L3" its
2n-skeleton L (4). In this note we shall generally determine the quasi KO,-types of
a weighted mod 4 lens space L™(4;qo,---,q,) and its 2n-skeleton LF(4;qo,- -, qn)
along the line of [12].

The weighted mod 4 lens space L™(4;qo,--*,qn) is obtained as the fiber of the
canonical inclusion i : P™(qo,---,qn) — P"*'(4,q0, --,q,) of weighted projec-
tive spaces (see [3]). Using the result of Amrani [1, Theorem 3.1] we can calcu-
late the KU-cohomology group KU*L™(4;qo, --,qn) and the behavior of the con-
jugation Z' on it. Our calculation asserts that £ L2 (4;qo, - -,gn) has the same C-
type as one of the small spectra £2SZ/2" v P,,, SZ/2" vV P}, and PP ,, and
X'L™(4; 90, - ,qn) has the same C-type as one of the small spectra £2M, V P} ,,
M, v P!,, MPP],, and £*™ VvV S'L3(4;q0,---,qn) (see Proposition 3.2). Here
SZ/2" is the Moore spectrum of type Z/2" and M,, P, ., P)';, PP, ,, and MPP;
are the small spectra constructed as the cofibers of the maps in : ! — SZ/27,
in : $18Z/28 — SZ/2°%, in +qjj : $18Z/2 — SZ/2%, (7j,in) : £1SZ/2t —
SZ/2" v SZ/2° and (im7ij,i7) : B1SZ/2t — M, vV SZ/2°, respectively, in which
i:%% - SZ/2" and j : SZ/2" — X! are the bottom cell inclusion and the top cell
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projection, iy : SZ/2" — M, is the canonical inclusion,  : £! — X0 is the sta-
ble Hopf map, and 7 : £15Z/2" — X0 and 7 : ¥2 — SZ/2" are its extension and
coextension satisfying 72 = n and jf = 7.

In [12, Proposition 3.1 and Theorem 3.3] we have already characterized the quasi
KO,-types of spectra having the same C-type as SZ/2" v P),, M, vV Py,, PP, .,
or MPP; ;. (see Theorems 1.2 and 1.3). In §1 we introduce some new small spectra
X having the same C-type as SZ/2" V P,, or M, V P, ,, and calculate their KO-
homology groups KO,X (Propositions 1.5 and 1.7). In §2 we shall characterize the
quasi KO,-types of spectra having the same C-type as SZ/2"V P, , or M,V P, ; (The-
orems 2.3 and 2.4) by using the small spectra introduced in §1. Our discussion devel-
oped in §2 is quite similar to the one done in [6, §4] in order to characterize the quasi
KO,-types of spectra having the same C-type as SZ/2" vV SZ/2° (see [6, Theorem
5.3]). In §3 we first calculate the KU-cohomology group KU°L™(4;qo,--,q,), and
then investigate the behavior of the conjugation 1/)61 on it (Proposition 3.1). Dualizing
this result we study the C-types of L = L™(4;qo,---,q») and Ly(4;q0,-*,qn) as is
stated above (Proposition 3.2), and moreover calculate the sets S(L) = {2¢; KOq; L =
0 (0 < i < 3)} (Lemma 3.3). Since P, and 2P/ | ., have the same C-type
we can apply Theorems 1.2, 1.3, 2.3 and 2.4 with the aid of Proposition 3.2 and
Lemma 3.3 to determine the quasi KO,-types of the weighted mod 4 lens spaces
L™(4;q0,---,q,) and L3(4;qo,---,¢n) as our main results (Theorems 3.5 and 3.6).

1. Small spectra having the same C-type as SZ/2" Vv P,,or M.VP,,

1.1. Let SZ/2™ (m > 1) be the Moore spectrum of type Z/2™, and i : ¥° —
SZ/2™ and j : SZ/2™ — X! be the bottom cell inclusion and the top cell projection,
respectively. The stable Hopf map  : ! — X0 of order 2 admits an extension 7 :
$15Z/2™ — %0 and a coextension 7 : ¥2 — SZ/2™ satisfying 7i = n and jij = 7.
As in [13] (see [8]) we denote by My, N n, Pmns Ppypns Phyys Bmns Ry, , and
K. the small spectra constructed as the cofibers of the following maps in : £! —
SZ/2m, in%j, #ij, if), in+7j : £1SZ/2" = SZ/2™ and 7y, in?q, 47 : L3SZ/2" —
SZ/2™, respectively. In particular, P;,_, ; is simply written as V,. The spectra V,,
and M, are exhibited in the following cofiber sequences:

m—17 3 3 m
20 225 0m) 2 v, 25 51,50 5 o) 24 6, B4 5

where C(n) and C(7) are the cofibers of the maps 1 : ¥1 — ¥0 and 7 : £1SZ/2 —
%0, and ip : X% — C(n) and i : £° — C(#) are the bottom cell inclusions. Note that
C(%) is quasi KO,-equivalent to X4

Moreover we denote by v P, ,, P,‘,f,n, vEBmn, R,‘,’,,n, VR MPpn, PMy, n,
MR,,, and RM,, , the small spectra constructed as the cofibers of the following
maps:
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ivij : B1SZ[2" = Vi, ijv : SV, - SZ/2™,
ivim?j : SBSZJ2" = Vi, i’y : B3V, = SZ/2™,
(1.1) Evnj: TPSZ/2" = Vi,
iMfij 2 SSZJ2" - My, ka0 B'M, — SZ/2™,
imin?j : L3SZ)2" = My, imPka : S2M, — SZ/2™,

respectively, where iy : SZ/ 2m=1 4V, and ip : £° — M,, are the canonical inclu-
sions, and &y : ¥5 — V,, is the map satisfying jy &y = ijn for the canonical projec-
tion jy : Vi, — £25Z/2. Here we understand iy7j =i : £° — SZ/2 and &y = 7 :
¥3 — §Z/2 when m = 1. According to [6, Proposition 3.2] and its dual the spectra
VP, P ., VRmn and RY, . (m > 2) are quasi KO,-equivalent to £2Py 41 m—1,
Y5 Pni1.m—1, £2V'Ny, n and X8V’ N,, ,,, respectively. Here the spectrum V'N,, , is
constructed as the cofiber of the map 7jj V in?j : £1§Z/2m~-1 v £1§Z/2" — SZ/2,
and it is quasi KO,-equivalent to ¥%V,, Vv £25Z/2" if m > n. The S-dual spectrum
NV, of V' Ny, , and the spectrum VR, , have been introduced in [13, Proposi-
tion 3.1], and the spectra M Py, , and PM,, , were written as MV, . and V'M,, .,
respectively, in [12, Propositions 2.3 and 2.4]. On the other hand, the spectra M R, ,
and RM,, ,,, have the same C-type as M, V SZ/2". Note that M R,, ,, is quasi KO,-
equivalent to M,, V £*SZ/2" if m > n, and RM,,, is quasi KO,-equivalent to
SZ/2™ v £4M,, if m > n. By a routine computation we obtain the KO-homology
groups KO, X (0 < i <7 of X = MR,,, (m < n) and RM,, , (m < n) as
follows:

X\i 0 1 2 3 4 5 6 7
(1.2)  |MBRmn.| z/2m@z/2"n 0 Z®Z/2 2/2 Z/2m @ Z/2" Z/2 Z& (x)n Z/2
RMmn|Z/2m @ Z/2"F) Z/2 Z® (¥)m Z/2 Z/2™ 1@ Z/2"t 0 ZeoZ/2 Z/2
where (x); & Z/4 and (%), 2 Z/2® Z/2 if k > 2.

For any maps f : Y¥iSZ/2t - Z, and g : £!Z, — SZ/2° whose cofibers are
denoted by X,; and Y; ., we introduce new small spectra X P, , and P'Y;; . con-
structed as the cofibers of the following maps

(f,if) : £iSZ/2t - Z, v Xi~15Z/2°,

(1.3) )
iV g:X1SZ/2Vv¥EiZ, - SZ/2°,

respectively. In particular, the spectra NP, , and PP, , are written as NV, .41
and PV, .41 in [13, Proposition 3.1], respectively, and RP.,, = SZ/2" V £V,
and VRP,”&1 =V.Vv EZVH_l. By virtue of [6, Propositions 3.2 and 3.3] the spec-
ta y PP, ,, P'P,,, P'P},  and P'R,, , are quasi KO,-equivalent to £*K, .1,
2P, 41,5 4Psy1, and £2V'Nyy, ., respectively. On the other hand, the spectrum
VRP], , is quasi KO,-equivalent to R, _.,, R'R, .41 or V, V£V, according as

r>s+1,r=s+1orr <s, and the spectrum P'RY, _ is quasi KO,-equivalent

s,1,r
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to Z4Rs+1,,‘, R'Rei1,00r Vo V ¥4V, according as r > s+ 1, r=s+1orr <s.
Here the spectrum R'R,,, has been introduced in [13, Proposition 3.3]. The spectra
PP',s,t’ VPP,"s’t, PP, MPP,’YM and P'PM, ., were written as Us ¢, Virt,

,
st MU, and U'M,: in [12], respectively, and their KU-homology groups

with the conjugation wal and their KO-homology groups have been obtained in [12,
Propositions 2.1, 2.2, 2.3 and 2.4].

Proposition 1.1.
i) “The X = PP],, or yPP], case”

r>t>s r>t<s
KUpX = Z/2"®Z/2t® Z/2¢ Z/2" @ Z/2t" 1@ Z/2°H)

1 2r—t 0 1 2r—£+1 _27‘—-2
e 0 -1 0 0 -1 1
0 -1 1 0 0 1
r<t>s r<t<ls
KUpX = Z/27 Y@ Z/2tt @ Z/2° Z/)2"" Y @ Z/2t ® Z/25H)
1 0 0 1 0 0
,/,51 = _ot—r+2  _1 o _ot—r+1  _1 1
—ot-r+l 1 1 0 0 1

i) “The X = MPP!,, case”

r>t>s r>t<s
KUpX = ZozZ/2r®Z/2t® Z/2° Z®Z/2m® Z/2t" 1 @ Z/25F!
-10 0 O -1 0 0 0
b=l = -1 1 27—t 0 -1 1 2r—t+l _or—t
c - 0 0 -1 0 0o 0 -1 1
0 0 -1 1 0 0 0 1
r<t>s r<t<s
KUpX > ZeZz/2r lez/2tP @ Z/2° ZoZ/2 1@ Z/2t® Z/2H!
-1 0 0 o -1 0 0 0
-1 -1 1 0 0 -1 1 0 0
"/JC - 2t—r+l _2t—r+2 ~1 0 ot—r _2t—r+1 -1 1
0 —2t=r+1  _1 1 0 0 0 1

iii)  Their KO-homology groups KO;X (0 <1 < 7) are tabled as follows:

X\ 0 1 2 3 4 5 6 7
PP, | Z/27®Z/2° Z/2 (¥)t-1,© Z/2 Z/2 Z/27" 1@ Z/2°F! 0 zZ/2t 0
0

vPP,, Z/2r"te@z/2° 0 Zi2tez/2 Z/2 Z/2"@ Z/25tY Z/2 (%)i-1,r
MPP! Z/2rdZ/2° 0 Z@Z/2t®Z/2Z/2 Z/2"@Z/2°t! 0 Z@Z/2t 0

7,8,t

where (x)p1 = Z/2¥%2 and (%), = Z/2*1 & Z/2 if | > 2.
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For any spectrum X having the same C-type as PP, , or MPP] , we have
already determined its quasi K O,-type in [12, Theorem 3.3].

Theorem 1.2.

i) If a spectrum X has the same C-type as PP, ,, then it is quasi KO.-
equivalent to one of the following small spectra PP}, S*PP],, vPP,,,
and ©*y PP] , ;.

ii) If a spectrum X has the same C-type as MPP),,, then it is quasi KO.-
equivalent to either of the small spectra MPP}, , and S*MPP] .

Applying Theorem 1.2 we see that

(14) the spectra P'P,;,, P'PY, and P'PM,,, are quasi KO,-equivalent to
S2PP! 14 1,4 L°vPPl; ,, and 32MPP],,, , ,, respectively (see [12,
Corollary 3.4]).

We can also show the following result (see [12, Proposition 3.1]).

Theorem 1.3.
i) If a spectrum X has the same C-type as SZ/2" V P,',, then it is quasi KO,-
equivalent to one of the following wedge sums SZ/2" Vv P)',, £*SZ/2" Vv P/,,
V.V P/, and £V, V P},.
ii) If a spectrum X has the same C-type as M, V Py, then it is quasi KO-
equivalent to either of the following wedge sums M,V P,', and £*M, V P},.

1.2. Since P, and X?P/_; ., have the same C-type a routine computation
shows

Proposition 1.4.
i)  The spectra NP, , VRP,,, RP!, | .1, vRP., 1,41, PRss, and PRY, .
have the same C-type as the wedge sum SZ[2" V P, ,.
ii)  The spectra MRP}, ; .., and P'RM,; . have the same C-type as the wedge

sum M,V P, ,.

Note that if r > t the spectra RP,,,, vRP],, and MRP; ,, are quasi KO.-
equivalent to SZ/2"VE?P,,, V., VE2P,, and M,V X2P} ,, respectively, and if r < s
the spectra P'R; ¢ ,, P’R:”t)r and P'RM;, . are quasi KO,-equivalent to £*SZ/2"Vv

P,,, £*V, V P}, and *M, V P} ,, respectively. By use of [13, Propositions 2.2 and
3.1] and (1.2) we can easily calculate

Proposition 1.5. For the small spectra X listed in Proposition 1.4 the KO-
homology groups KO;X (0 <1i <7) are tabled as follows:
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i\X| NP, RP,., vRP,, VRP,,,
(t>2) (r<it) (r<t) (t>2)
0 zZ/2" @ Z/2° zZ/2r @ Z/2 zZ/2r— 1@ zZ/2t  Z)2r @ Z/25H!
1 Z/2 z/2 0 Z/2
2 |(Z2teZ/2@2Z/2 Z[2° & (%)r Z/2° ® Z/2 Z/2t Z/2
3 Z/2®Z/2 Z/2 Z/2 Z/2
4 |z/rtl@z/2st Z/27 @ Z/2t @ Z)2 Z/2" @ Z/2t ® Z)2 Z)27H! @ Z/2°
5 Z/2 Z/2 Z/20 Z/2 Z/2
6 z/2 zZ/2st @ Z/2 Z[25%! @ (%), Z/2t® Z/2
7 0 Z/2 Z/2 Z/2
i\ X P'Rs,t,r P'RY,, MRP] . P'RM; t,r
(s<r,t>2) (s<rt>2) (r<t) (s<r)
0 Z/2*® Z/2" Z/2° @ Z/27+! Z/2 & Z/2 Z/2* @ Z/27+!
1 0 zZ/2 0 0
2 Z/2t" '@ Z/2 Z/2"leZ/20Z/2 ZoZ/2*0Z/2 ZoZ/2tTleZ/2
3 z/2 z/2 zZ/2 Z/2
4 [(M)s=1,t ®Z/27H (K)s14 @ Z/27  Z[27®Z/2° D Z[2 (¥)s—1,4 D Z/27F!
5 Z/2® Z/2 Z/2 Z/2 Z/2
6 (Z/2tdZ/20Z/2 Z/2t e Z/2 zoz/2Hez/2 ZoZ/2t® Z/2
7 z/2 Z/2 Z/2 Z/2

where (x)x1 = Z/282 and (%), = Z/28*1 @ Z/2 if | > 2, and (x)o, is abbreviated
as ().

Let N/, P/ and R} denote the small spectra constructed as the cofibers of the
following maps n?%j, 7 : £15Z/2' - ¥° and %5 : £35Z/2' — %°, respectively.
Consider the small spectrum N'P] constructed as the cofiber of the map (n%j,7) :
¥15Z/2t — ¥° Vv £° Then we have two maps ifyp : £° — N'P; and plyp :
¥0 — N'P! whose cofibers are N and P/, respectively. These two maps are relat-
ed by the equality iy pj = pypn?s : £1SZ/2t — N'P/. In particular, iy p = (2,7) :
$0 o 20V C®H) and plyp = (1,0) : 2% — £° v C(7) when t = 1. We denote
by N'P],, P'N;, and F*™ the spectra constructed as the cofibers of the following
maps 2"plyp, 2%y p and f™ = 27pl\ p + 2™ilyp : £° = N'P], respectively. In par-
ticular, N'P}, = C(7) V §Z/2" and P'N}, is quasi KO,-equivalent to £*R] ;. On
the other hand, F{"™ = C(7)VSZ/2" if n <m, F|"" = C()VVpy1 if n =m+1,
and it is quasi KO,-equivalent to X*R; ., if n > m + 1. Whenever ¢ > 2 we can
regard that the induced homomorphisms py p, and iy p, : KUpX? — KUyN'P] are
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given by piyp,(1) = (1,0,0) and iy p,(1) = (0,2,1) in KUyN'P} 2 Z®Z e Z[2!!
because iy p may be replaced by iy p + 2¢py p if necessary. Hence it is easily shown
that
(1.5) i)  the spectra N'P], and P'N_, have the same C-type as SZ/2" V P/ and
£0V P} ,, respectively, and
ii)  the spectrum F;"™ has the same C-type as SZ/2"V P} when n < m, and
as X°V P}, , when n > m.
By use of [8, Proposition 4.2] and [9, Proposition 2.4] we can easily calculate the
K O-homology groups KO;X (0<i<7) of X =N'P/,, PN/, and F;*™ (t > 2)
as follows:

X\i 0 1 2 3 4 5 6

N'P. | zZ®z/2m z/2 Z]2t®Z/2 Z/2 Z®Z/2"+' Z/2 Z/2*
P'N.,|z&Z/2® Z/2 zZ/2*®Z/2 Z/2 ZeZ/2**' Z/2 Z/2t
FP™ | Zzez/2b zj2 z/2teZ/2 Z/2 ZoZz/2H' Zz/2 Z/2t

(1.6)

S O O (N

where | = min{n,m}.

Choose two maps hly : ¥2 — N/ and ply : C(7) — N; whose cofibers
coincide with C(n?) and V/, respectively, where C(n?) is the cofiber of the map
n? : ¥% —» ¥% and V/ = Py, which is quasi KO.-equivalent to X6V} (see [13]).
Then there exist two maps Ayp : C(j) = N'P/ and pip : C(7) — N'P] satis-
fying jiypAvp = hwnjj and jypplyp = ply for the canonical projection jip :
N'P! — N. In particular, we may choose as Nyp = (),2) : C(77) = Z°V C(7)
and plyp = (0,1) : C(7) — £° Vv C(7) when t = 1. Here the map X : C(7j) — X°
satisfies the equalities \i = 4 and ¢\ = 4 (see [13, (1.3)]). Whenever ¢ > 2, we can
regard that the induced homomorphisms gy p, and Ayp, : KUgC() = KUyN'P/
are given by piyp(1) = (1,0,0) and Nyp,(1) = (0,2,1) in KUN'P{ = Z® Z &
Z/2t~! because plyp and Ay p may be replaced by piyp + kil y A and My p + lifsy A
if necessary. By virtue of [13, Lemma 1.5] we obtain that the cofiber of piyp is
quasi KO,-equivalent to $*P/. On the other hand, by use of [13, Lemma 1.2 and
Proposition 4.1] (or [9, Theorem 4.2]) we see that the cofiber of Ay p is quasi KO,-
equivalent to X*N/. More generally, the cofibers of the maps 2"plyp and 25\ p
are quasi KO,-equivalent to *N'P], and £*P'N],, respectively, because N'P; and
Y4N'P] have the same quasi K O,-type (see [9, Corollary 4.5]).

Using the maps f;"™, pjyp and Ay p we introduce new small spectra N'P'F;"™
and P'N'F;;™ constructed as the cofibers of the following maps

"V 2 pyp B0V C(7) = N'P,

(1.7) .
TV 2 Ay p : B0V C(7) » N'P,

respectively. In particular, N'P'F";™ is equal to (C(7) A SZ/2") v SZ/2" if n <m,
to (C(A)ASZ/27)V SZ/2m*2 if n =m+1>r, and to (C(7) ASZ/2")V §Z/2m+!
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if n > m+1> r. Moreover it is quasi KO,-equivalent to 4V, 1V Vi1, TR, o
or LR, ., accordingasn=m+1<r,n=m+1l=rorn>m+1<r (use

[6, Proposition 3.1]). On the other hand, P'N'F™ is just R}, ;.4 .41 introduced in
[13]. By a routine computation we can easily show

Proposition 1.6.
i)  The spectrum N'P'F[;™ (t > 2) has the same C-type as SZ/2" NV P},_ ... if
m >n <, and as SZ/2" V P}, , if otherwise.
ii)  The spectrum P'N'F};™ (t > 2) has the same C-type as SZ/2"~™**V P, . if
n>m<s, and as SZ/2" V P, , if otherwise.

Using (1.6) we can easily calculate

Proposition 1.7. For the spectra X = N'P'F;™ and P'N'F;™ (t > 2) the
KO-homology groups KO; X (0 <1 < 7) are tabled as follows:

i\ X N'P'E™ P'N'FI™

0 { zZ/2n@ z/2mntrHl (m>n <) { zj2n—mtstl g Z/2™ (n>m <s)
z/i2rti g z/2m (otherwise) Z/2" @ Z /25! (otherwise)

1 z/2 z/2

2 Z/2t® Z/2 Z/2t® Z/2

3 z/2 Z/2

. {2/2""’1 @z/2m "t (m>n<r) {Z/Z"‘"”“"EBZ/Z'"‘"1 (n>m<s)
zZ/2m @ Z/2mH] (otherwise) zj2ntl @ z/2¢ (otherwise)

5 z/2 z/2

6 Z/2t® Z/2 Z/2t® Z/2

7 z/2 Z/2

2. The same quasi KO,-type as SZ/2"V P, , or M,V P, ,

2.1. Let X be a spectrum having the same C-type as SZ/2"V P, ;. Then its self-
conjugate K-homology group KC; X (0 <i < 3) is given as follows:

KCX2Z|2®Z/2°®Z/2,Z/2" ® Z/2°T ,Z/2@ Z)2® Z/2'" ", Z/2 ® Z/2
according as ¢ = 0, 1, 2, 3. In addition,
KO/WX®oKOsX=Z/20Z/2 and KO3 X ®d KO: X = Z/2® Z/2.

Hence KO;11X (0 < i < 3) are divided into the nine cases (A,D) with A=a, b, ¢
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and D=d, e, f as follows:

(@) KOWX =2K0OsX=Z/2 (b) KOsX =0 () KO1 X =0

2.1
@D (d) KOsX 2KO:X=Z7Z/2 () KO:X =0 (f) KO3X =0.

The induced homomorphisms (—7,77¢)s : KC; X = KO;11 X ® KO 15X (i =0,2)
are represented by the following matrices

1
%=w(08?)JNWMﬂ%ﬂﬂ%Zﬂ®W2

100
%:w(OIO)Jn@wmmm*azp@mz

respectively, where @g, @2 : Z/20Z/2 — Z/2® Z/2 is one of the following matrices:

(1) (2) 3) (4) ) (6)

2.2) 10 0 1 11 01 1 0 11
(0 1) (1 O) <0 1) (1 1) (1 1) (1 0)‘

Evidently it is sufficient to take as g or s only the matrix (1) in case of (b), (c),
(e) or (f). By using a suitable transformation of KUy X similarly to [6, 4.1] we can
verify that in case of (a) the matrix (1) as (o is replaced by (5), and in case of (d)
the matrix (1) as ¢, is replaced by (5) if » < s, and by (3) if r > s. Therefore it
is sufficient to take as o the matrices (1), (2) and (3) in case of (a), and as ¢, the
matrices (1), (2) and (3) in case of (d) and r < s, and (1), (2) and (6) in case of (d)

and r > s.
Let X be a spectrum having the same C-type as M,V P, ;. Then its self-conjugate

K-homology group KC;X (0 <13 < 3) is given as follows:
KCX=Z/®Z/2°® Z/2,Z/2" & Z/2°F1,
ZoZI2oZ20Z/27,Z0 Z/2
according as 7 = 0, 1, 2, 3. In addition,
KO)1 X9 KOs X 27Z/2 and KO3 X ® KO X = Z/2® Z/2.

Hence KOs; 11 X (0 < i < 3) are divided into the six cases (A, D) with A = b, ¢
and D = d, e, f given in (2.1). The induced homomorphisms (—7,77¢). : KC; X —
KO; 11X ® KO;;sX (i =0,2) are represented by the following matrices

By = (0,0,1) : Z/2" ® Z/2° @ Z/2 — Z/2

1
¢2=W<g 0? 8):Z@Zﬂ®Zﬂ®ZﬂFI%Zﬂ®Zﬂ,
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where ¢y : Z/2®Z/2 — Z/2& Z/2 is one of the matrices given in (2.2). Evidently it
is sufficient to take as (o, only the matrix (1) in case of (e) or (f). On the other hand,
it is sufficient to take as o, the matrices (1), (2) and (3) in case of (d) and r < s, and
(1), (2) and (6) in case of (d) and r > s.

Given a spectrum X having the same C-type as SZ/2" V P;, or M, V P, we
define its p-type (A, D, i, j) where A =a, b,c, D=d, e, fand 1 <14, j <6, using
the above notations as in [6, §4].

Lemma 2.1.

i) Let X be a spectrum having the same C-type as SZ/2" V P ,. Then its p-type
is one of the following 25 types: (a, d, 1, j), (a, e, i, 1), (a, f, 1, 1), (b, d, 1, j),
(c.d 1,5, (b,e 1, 1), (b f1,1),( el 1)and (c, f, 1, 1) where i =1, 2,
3,and j=1,2,3ifr<sand j=1,2, 6ifr>s.

ii)  Let X be a spectrum having the same C-type as M, N P, . Then its p-type is
one of the following 10 types: (b, d, 1, j), (c, d, 1, 5), (b, e, 1, 1), (b, f, 1, 1),
(c,e 1, 1)and (c,f, 1, 1) where j =1, 2, 3ifr<sand j=1,2 6ifr>s.

2.2. Using [6, Lemmas 4.2 and 4.3] we can easily determine the -types of the
small spectra appearing in Propositions 1.3 and 1.5.

Proposition 2.2.

i)  The spectra NP] ,, VRP) ,, (t > 2), RP], .41, VRP/; 1,41, P'Reyr
and P'RY, . (t > 2) have the following ¢-types (a, e, 3, 1), (a, d, 4, 1), (a
d 1, 3),( d 1,3),(c d 1, 6) and (a, d 1, 6), respectively.

ii)  The spectra MRP;, , .., and P'RM,; . have the following p-types (c, d, 1,
3) and (c, d, 1, 6), respectively.

iii) The spectrum N'P'F[™ (t > 2) has the following o-type (a, d, 4, 1),
(a, d, 4, 3) or (a, d, 4, 2) according as m > n < r, m > n = r or other-
wise, and the spectrum P'N'F];™ (t > 2) has the following -type (a, d, 4, 2),
(a, d, 4, 6) or (a, d, 4, 1) according as n > m < s, n > m = s or otherwise.

Let X be a spectrum having the same C-type as SZ/2"V P;, or M,V P, ,. If a
spectrum Y has the same C-type as X, then we can choose a quasi K U,-equivalence
f:Y -5 KUAX with (wal/\])f = f. If there exists amap h : Y - KO A
X satisfying (ey A 1)h = f for the complexification map ey : KO — KU, then h
becomes a quasi K O,-equivalence (see [8, Proposition 1.1]). After choosing a suitable
small spectrum Y having the same p-type as X we can prove the following theorems
by applying the same method developed in [6], [8] or [9].

Theorem 2.3. Let X be a spectrum having the same C-type as SZ/2"VP; , (t >
2). Then it is quasi KO.-equivalent to one of the following small spectra (cf. [6, The-
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orem 5.3]):

i)  Thecase of r < 5:Y,VY,,, NP} , X*NP} ,, vRP), | .1, Z'vRP}, | ,\1,
VRP.,,. S'VRP,,, RP., .1 SRP., | .\ N'PE.

ii) The case of T >s:Y, VY, NP. , S'NP) ., P'Ry¢r *P'Ryy .
VRP.,, S*VRP.,, P'RY,,, S‘P'RY,, P'N'F;.

Here Y, = SZ/27, ¥*SZ/2", V, or £*V,, and Y,y = P, ,, ©*P,,, 2P}, .1,
or 26F)tl—l,.s+1'

Theorem 2.4. Let X be a spectrum having the same C-type as M, V P, ,. Then
it is quasi KO,-equivalent to one of the following small spectra:
i)  The case of r<s5:Y,VY,y, MRP}, , ., S*MRP}, | ...
ii)  The case of r >s:Y, VY4, PPRM, ., S*P'RM, ;..

Here Y, = M, or ©*M,, and Y, = P, ,, S*P,,, ©*P/_, .., or Z5P}_, ...

Combining Theorem 2.3 with Proposition 2.2 iii) we get

Corollary 2.5.
i) The spectrum N'P'F;™ (t > 2) is quasi KO,-equivalent to VRP}, .. ..., if
m>n<r, and to S*VRP)  , ifm>n>r orm<n.
ii)  The spectrum P'N'F}™ (t > 2) is quasi KO,-equivalent to S*VRP)_, ..
ifn>m<s, and to VRP, ;, if n>m > s or n <m.

3. Weighted mod 4 lens spaces

3.1. Let S2"*!(qo,---,qy,) denote the unit sphere S2"*+! c C™*! with S!-action
defined by A - (zo, -, Zn) = (A x0,---,AIz,) € C™*! for any A € S C C. Then
we set

P"(‘Io» 0T ,(In) = S2n+l(q0’ e 7Qn)/Sl
L™(g;q0, 1 qn) = S (g0, -+, a)/(Z/q)

where Z/q is the g-th roots of the unity in S! C C. Denote by L3 (g;qo,--*,qn) the
subspace of L™(q;qo, - -,q,) defined by

L§(g;:90," -+ qn) = {[%0, "+, Zn] € L™(¢; 90, -+ Gn)|Zn is real > 0}.

Of course, P™(1,---,1), L™(g;1,---,1) and L{(g;1,---,1) are the usual complex
projective space CP™, the usual mod ¢ lens space L™(q) and its 2n-skeleton Lg(q),
respectively. For a weighted mod 4 lens space L™(4;qq,--,q,) We may assume that
@=""=¢1=4¢="""=¢4s-1=2and ¢gys=---=¢q, =1 where 0 <r <
r + s < n. For such a tuple (qo,---,q,) we simply set P(r,s,t) = P™(qo," " ,qn),
L(r,s,t) = L™(4;q0, - ,qn) and Lo(r,s,t) = L§(4;q0, - -,qn) With n =7 + s+ ¢.
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Moreover we shall omit the “r” as P(s,t), L(s,t) or Lo(s,t) when r = 0. Notice that
L(r,s,t) = 2" L(s,t) and Lo(r,s,t) = 2" Lo(s,t).

Denote by <y the canonical line bundle over CP™ and set a = [y]—1 € KU°CP™.
Then it is well known that the (reduced) KU-cohomology group KU*CP} =
Z[a]/(a™*') where CP} denotes the disjoint union of CP™ and a point. Accord-
ing to [1, Theorem 3.1] the map ¢ : CP™ — P(r,s,t) defined by ¢[zg,--,z,] =
[z@,---,zi] with n = r + s + t induces a monomorphism ¢* : KU*P(r,s,t) —
KU*CP™ and the free abelian group KU*P(r,s,t) has the following basis {71, -,
T,} such that o*T; = a(2)! for 1 <1 <7, *Tryk = a(2)"a()k for 1 < k < s
and *Tyiern = a(2)"a(1)%a? for 1 < h < t, where a(1) = (a + 1)2 — 1 and
a(2) =(a+1)*-1.

In order to calculate the K U-cohomology group KU*L(s,t) we use the following
cofiber sequence

3.1) L(s,t) - P(s,t) = P(1,s,t)

where 6 is the natural surjection and i is the canonical inclusion (cf. [3, Assertion 1]).
Since a(2) = 2a(1) + a(1)? = 2a(1) + 2a(l)a + a(1)a®? = 4a + 6a® + 4a® + a*,
the induced homomorphism * : KU*P(1,s,t) —» KU*P(s,t) is given as follows:
Ty = 2T + Tpqq for 1 < k < s—1, i*Ts = 2T + 2T541 + Ts42, 0*Tsyn =
AT i p + 6T pr1 + 4Tsyht2 + Tsynys for 1 < h <t and i*Tsy441 = 0. Using the
(n,n)-matrix Ex = (ek, --,€n,0,---,0) we here introduce the two (n,n)-matrices
A, =2E1+ E; and B,, = 4F; +6E3 +4E3 + E4, where e; is the unit column vector
entried “1” only in the j-th component. Moreover we set

Cop = (é‘g §t> where £ = (0,---,0,2e; + e2).
Then the induced homomorphism i* : KU°P(1,s,t) — KU®P(s,t) is expressed
as (Cot,0) : @, 1411 Z — D, Z Therefore KUL(s,t) = CokerC,, and
KU'L(s,t) = Z. In particular, KU°L"(2) = KU°L(n,0) = CokerA, and
KU®L"(4) = CokerB,,.
Recall that the KU-cohomology groups KU°L™(2) = Z[o]/(o"*!,0(1)) and
KU°L"™(4) & Z[o]/(6™*1,0(2)) are given as follows (see [4, 5]):
iy KU°L™(2) = Z/2" with generator o,
ii)y KU°L?™(4)=Z/2*™H1gZ/2m@Z/2™! with generators o, o(1) and o(1)0,
KUCL?m+1(4) = 7/22m+2 ¢ Z /2™ @ Z/2™ with generators o, o(1) + 2™*1o
and o(1)o, where o = 6*a and o (i) = 0*a(i).
Therefore the induced homomorphism 6* : KU°CP™ — KU°L"(2) is given by
the following row:

(3.2) oan = (1)1, -2,--,(-2)"7Y) : @Z - Z/2™.
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On the other hand, the induced homomorphism 6* : KU°CP™ — KU°L"(4) is rep-
resented by the following (3, n)-matrix G,:

1 =2 4-—2mtl 1 —2—2mtl 44 9om+2
(33) Bam=|0 1 -2 * |, Bomy1=1{0 1 -2 * |
0 0 1 * 0 0 1 *

Notice that KU®L(s,t) is isomorphic to the cokernel of

<ﬁ€> @Za @z ) ® CokerB;.
t

Since B2mé = (0,---,0,e3) and Bormi1€ = (0,---,0,—2™+le; + e;), we can easily
calculate the KU-cohomology group KU?L(s,t) for t > 1 as follows:

KU°L(s,2m) = z/2°+™ @ 7/22m+1 g Z/2m—1

Zj2tm g Z/22m 2 @ Z/2™ (s <m)
Z|2stml g 7 /22 g Z /2™ (s > m).

3.4
GH KU°L(s,2m + 1) = {

Moreover we see that the quotient morphism d, ; : (D, Z) & CokerB, — KU°L(s, t)
is represented by the following matrix:
=2m t=2m+1>2s t=2m+1<2s

as 0 =20 0 Qa, 0 -2° 0 a, 287m-1 0 0
0 1 0 O 2m—stlg. 1 0 0 0 1 2m+l o |.
0 0 0 1 0 0 0 1 0 0 0 1

Since the induced homomorphism 6* : KU°P(s,t) - KU°L(s,t) is expressed as the
composition d,+(1 @ B¢), we can immediately give a basis of KU®L(s,t) (s,t > 1)
as follows:

(3.5) (6(1),0(s,1),0(s,3))B
where o(1) = 6*T, o(s,i) = 6*Ts4; and B, , (s,t > 1) is the matrix tabled below:
(_l)s—l 0 ( 1) 2s+1
3.6) v 2m = 0 1 2mtl—4g ||
0

0 1

m s>m

<
(_l)s—l 0 (_1)s2s+1 (_l)s—l (_1)s2s—m—1 (_1)3234—1
;’2m+1 = —2m_s+1 1 _4 0 1 _4 .
0 0 0 1



908 Y. NISHIMURA AND Z. YOSIMURA

3.2. Next we shall investigate the behavior of the conjugation d)c‘.l on
KU°L(s,t) (s,t > 1). Note that y5'a* = (=1)"a*(1 + a)~" and y;'a(1)* =
(=1)*a(1)*(1 + a)~2* in KU°CP". Since a(2) = (1 + a(1))? — 1 and a(1)%a(2) =
a(1)*{(a + 1)* — 1} it follows immediately that

¥5'a(l) = a(1) mod a(2)

e [a(1)*(a® + 30 + 3a) . s :even
Vo al)'a= {a(l)“(a2 +a) mod  a(1)a(2) s :odd
1 e s | a(1)°(3a® + 6a® + 4a) . s :even
Vo all)ye” = { —a(1)*(a® + 2a* + 4a) mod a(1)*a(2) s : odd.

Since a(1)*a?® = (—1)*2°a(1)—2a(1)*a mod a(2), the conjugation ¢5' on KUL(s,t)
behaves as

ve'(0(1),0(s,1),0(s,3)) = (0(1),0(s,1),0(s,3)) Ps
for the following matrix Pj:
1 3.2 3. 22n+1 1 _22n+1 22n+2
(37) Pgn = (0 -3 -8 5 P2n+1 = (0 -1 0 .
0 1 3 0 0 -1

Consider the following matrix C,; (s,¢ > 1) representing an automorphism on
KU°L(s,t):

3.8) s=2n<m,s=2n+1 s=2n>m
1 2571 0 1 2s-m71 ¢
Csom = 0 1 O) (O 1 0)
0 0 1 0 0 1
s=2n<m s=2n+1<m
1+2m 0 -2° 1 25711 -2m)  -2%(1-2m)
Csom+1 = ( 0 1 0 ) (22"‘_‘“ 1+ 2%(1-2m) 0 )
-2m= 0 1 0 0 1

s=2n>m >0 s=2n+1>m2>1 s=2n+1>m=0

1 00 1 28—m 4 2s—1 2stm
ma1 10
010 0 1 2 (0 1) .
0 01 0 0 1
In order to express the conjugation wal on KU°L(s,t) plainly we here change the

basis of KU®L(s,t) given in (3.5) slightly as follows:

(3.9) (0(1),0(s,1),0(s,3)) B, where B, ; = By ,Cs ;.
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Then the conjugation wal on KUL(s,t) is represented by the composition Bs”,th,Bg,t.
Therefore a routine computation shows

Proposition 3.1. On the KU-cohomology group KU®L(s,t) with basis (o(1),
0(s,1), 0(s,3))Bss (s,t > 1) the conjugation ' behaves as follows:
i) On KU°L(s,2m) = Z/2t™ @ Z/2°2™ 1 @ Z/2m 1,

s=2n<m s=2n>m s=2n+1
1 =28 25t 1 0 0 1 0 251
pl=10 1 0 0 1-2m+l gm+2 0 -1 0
0 1 -1 0 1 -1 0 O -1

ii) On KU°L(s,2m+1) = Z/25%™ @ Z/2?™*2 @ Z/2™ (s < m),

s=2n<m s=2n+1<m

1 0 0 1 0 0

Yo' = [0 1—2mtl om+2 2mst2 1 0
0 1 -1 0 0 -1

iii) On KU°L(s,2m + 1) & Z/25tm+l g Z/2?m+1 @ Z/2™ (s > m),

s=2n>m>0 s=2n+1>m>1s=2n+1>m=0
1 —2¢ 25+1 1 2™ 0

yal=10 1 0 0 -1 0 (1 O)

¢ - 0 1)°
0 1 -1 0 0 -1

Remark. When ¢ = 0, the conjugation ;' = 1 on KU®L(s,0) = Z/2° with
basis o(1).

We shall use the dual of Proposition 3.1 to study the behavior of the conjugation
Yz' on KU,Lo(s,t) and KU.L(s,t).

Proposition 3.2. The weighted mod 4 lens spaces ¥'Lo(s,t) and £'L(s,t) (s >
1,t > 0) have the same C-types as the small spectra tabled below, respectively (cf. [12,
Proposition 5.1]):

S1Lo(s,2m) S1L(s,2m) S1Lo(s,2m + 1)
s=2m<m PP i1 stm—1,m MPP ) atmtm  SZ/2YTVPL
s=2n>m Sz/2stm v Py Msym VP PPy i1 stmmt1

s=2n+1,m>1|225Z/2?m+ v P | S2Moemy1 VP, . EESZ/2™V Pl o0

s=2n+1,m=0 5z/2¢ 0V SZ/2° Sz/2v SZ/2H!
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Moreover ' L(s,2m + 1) has the same C-type as the wedge sum £2°V X! Lo (s, 2m +

1).

Proof. By dualizing Proposition 3.1 we can immediately determine the C-type
of X1Lo(s,t) because KU_;Lo(s,t) & KU®Lo(s,t) and KUpLo(s,t) = 0. On the
other hand, Proposition 3.4 below implies that ©'L(s,2m +1) has the same C-type as
¥2¢ v ©1Lo(s,2m + 1). We shall now investigate the C-type of X!L(s,2m) in case
of s = 2n < m. Note that KU_;L(s,t) & KU_1X?**2+1 @ KU_;Lo(s,t) and
KUyL(s,t) = 0. According to the dual of Proposition 3.1 the conjugations ;' on
KU_1L(s,2m) & Z @ Z/25T™ @ Z/2*™*t1 @ Z/2™! and KU_1Lo(s,2m + 1) =
Z)25t™ @ Z/22™*2 @ Z/2™ are represented by the following matrices

-1 0 0 0 . . 0
‘; _2,1n+1 (1) 2,,?+2 and [0 1-—2m+1 gm+2
c 1 0 -1 0 1 -1

for some integers a,b and c, respectively. As is easily verified, we may regard
that a = ¢ = 0 and b = 0 or —1 after changing the direct sum decomposi-
tion of KU_;L(s,2m) suitably if necessary. Consider the canonical inclusion map
i, : L(s,t) = Lo(s,t + 1). By virtue of (3.9) the induced homomorphism i} :
KU%Lo(s,t + 1) — KU°L(s,t) is actually represented by the matrix F,, =
B; tlBs,t.H. Since a routine computation shows that

1+2™ 0 -2
Fs,2m — _2m—s+2(1 + 2m—1) 1 2m+1 ,
—gm-etl 0 1

the induced homomorphism i . : KU_1L(s,2m) - KU_;Lo(s,2m+1) is expressed
as the following matrix

r 142 —2(142m1) —2mt2
Yy 0 2 0
z -1 1 2

for some integers z, y and 2. Here y must be odd because ir,. is an epimorphism.
Using the equality 1/)511' Lox = ¢ Lo*wgl we get immediately that b = y mod 2™, thus
b = —1. Therefore £' L(s,2m) has the same C-type as MPP;_ . ... ;. when s =

2n < m. In the other three cases the C-types of £1L(s,2m) are similarly obtained.
O

3.3. Using Proposition 3.2 we can immediately calculate KO; X®KO; 14X (i =
0,2) for X = Lo(s,t) and L(s,t) (s > 1,t > 0) as tabled below:
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X = Lo(2n,2m) L(2n,2m) Lo(2n,2m + 1) L(2n,2m + 1)
KOpX ® KOg4X = Z/2 0 Z)2 Z/2® Z)2
KO2X ® KOgX = Z/2 Z/2 Z/2 Z/2

X = Lo(2n +1,2m) L(2n+1,2m) Lo(2n+1,2m + 1) L(2n+ 1,2m + 1)
KOoX @ KOs X = (*x*)m Zl2® Z/2 Z/20 Z/2 Z/26 Z/2
KOy X ® KOgX = (**)m zZ/2 Z[2®Z/2 Z2®Z/20 Z/2

where (¥%)g = Z/2 and (xx),, ® Z/2® Z/2 if m > 1.

Lemma 3.3. For X = Lg(s,t) and L(s,t) (s > 1,t > 0) the sets S(X) =
{2i; KO2; X =0 (0 < i < 3)} are given as follows:
(i) X = Lo(2n,2m) L(2n,2m) Lo(2n,2m +1) L(2n,2m + 1)
S(X)= {4,6} {0,4,6} {0,6} {0,6} n+m : even
{0,6} {0,4,6} {4,6} {4,6} n+m : odd

(i) X = Lo(2n+1,2m) L(2n +1,2m) Lo(2n+ 1,2m +1) L(2n+1,2m + 1)

S5(X) = {0, 6} {0, 6} {o} {0} n,m : even
{0} {0,6} {0, 6} {0,6} n,m+1: even
{4,(6)}m {4,6} {4,6} {4,6} n,m+1:odd

{4, 6} {4,6} {4} {4} n,m : odd

where {4,(6)}o = {4,6} and {4,(6)},, = {4} if m > 1.
Proof. Consider the following (homotopy) commutative diagram
Lo(s,t) 2% P(s,t) = P(1,s,t—1)
i d Il ' di
L(s,t) - P(s,t) = P(1,s,t)

with two cofiber sequences, where the maps iz, i and ¢ are the canonical inclusion-
s, and the map iy is defined by ig[zo, -, Zs4t] = [2h 4, Z0, ", Ts4e). According
to [7, Theorem 2.4] the weighted projective space P(s,t) is quasi K O,-equivalent
to the wedge sum V,;,C(n), Z4"HmH v (v, mC (1)), T2 V (VpymC(n)) or
pint2 y pintamtd v (v, C(n)) according as (s,t) = (2n,2m), (2n,2m + 1),
(2n + 1,2m) or (2n + 1,2m + 1). In addition, P(1,s,t) is quasi KO,-equivalent to
the wedge sum Y2 v X2 P(s,t). Using the above commutative diagram we can imme-
diately obtain our result. O

Proposition 3.4. The weighted mod 4 lens space L(s,2m + 1) is quasi KO.,-
equivalent to the wedge sum L2+4m+3 v Ly(s,2m + 1).
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Proof. Consider the following commutative diagram

y2s+am+3 &, P(1,s,2m) —'> P(1,s,2m+1)
I ¢ | ‘
y2stamt3 2y BT 0(s 2m + 1) —£ B1L(s,2m + 1)

with two cofiber sequences. Since the quasi KO,-type of P(1,s,t) is given as in the

proof of Lemma 3.3 we see that the map 1A G : 2™+ KO — KO A P(1,s,2m)
O

is trivial. Hence our result is immediate.

Applying Theorems 1.2 and 1.3 and Proposition 3.4 with the aid of Proposition
3.2 and Lemma 3.3 we can immediately obtain

Theorem 3.5. The weighted mod 4 lens spaces X' Lo(2n,t) and 1 L(2n,t) for
n > 1 are quasi KQO,-equivalent to the small spectra tabled below, respectively (cf.

[12, Theorem 3]):

21Lo(2n,2m) T1L(2n,2m) S1Lo(2n,2m 4 1)

. ! ! "
n+m:even| PPy ot 1m MPPy i ongtm—1m VentmV Poig i

. ] ] 2n+4 1"
n+m:odd |vPP 1 onim_1.m MPPy i1 ontm—1,m S§z/2°"Fm v Pymt1,m+1

. 2 4 /1 /
n+m:even| SZ/22"t ™V P Manim VP VPP 1 ontmimtl

ii)

nt+m:odd| VanimV Py, ., Manim V Py m PPy t1,9n4m mt1
in cases when i) 2n < m and ii) 2n > m. Moreover X' L(2n,2m + 1) is quasi KO,-
equivalent to L4nH4m+4 v $114(2n,2m + 1).

Applying Theorems 2.3 and 2.4 in place of Theorems 1.2 and 1.3 we show

Theorem 3.6. The weighted mod 4 lens spaces ' Lo(2n + 1,t) and X' L(2n +
1,t) are quasi KQO.-equivalent to the small spectra tabled below, respectively:

slLo@n+1,2m) sIL@n +1,2m) S Lg@n+1,2m+ 1)
i) Vael >ARVA TS 24522V Vs, 00
ii) w25z vpy 2 Myt V Py SV VP s
iii) S Voat VP 22 Myt V Py S2SZ/2"V Py g
iv) Sz /22n+! »0v 5z/22+!1 Sz/2v Sz/22n*?
v) E(’SZ/22"‘+] v E()Prln—l,zn+m+l E(]MZmH v E()Pr’n—],zn+m+l EGV'" v E()P'Zlm+l,2n+m+2
) | SV VISP, o EMap VESPL g E0522m vESE L

in cases when i) n is even and m = 0, ii) n and m > 2 are even, iii) n is even and
m is odd, iv) n is odd and m = 0, v) n is odd and m > 2 is even, and vi) n and
m are odd. Moreover £1L(2n + 1,2m + 1) is quasi KO,-equivalent to $4n+t4m+6 vy
S1Lo(2n +1,2m + 1).
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Proof. By a quite similar argument to the case of the real projective space RP*
(cf. [10, Theorem 5]) we can easily determine the quasi K O,-types of L1Lg(2n +
1,0) and ©!L(2n + 1,0). The quasi KO,-type of S'L(2n + 1,2m) for m > 1 is
immediately determined by applying Theorem 2.4 ii) with the aid of Proposition 3.2
and Lemma 3.3. On the other hand, the quasi KO,-types of £'L¢(2n + 1,2m) in
cases of ii) and vi) and those of £'Ly(2n + 1,2m + 1) in cases of iii), iv) and v) are
also determined by applying Theorem 2.3 and [6, Theorem 5.3] in place of Theorem
2.4 ii).

We shall now investigate the quasi KO,-types of ¥'1Lg(2n + 1,2m — 1) and
Y1Lo(2n + 1,2m) in case when n is even and m is odd. Consider the following
two cofiber sequences

pintdm 20 w1700 4+1,2m — 2) —% S1Le(2n + 1,2m — 1)
Déntdm+2 20 $ipon 41 9m — 1) =%  S1Lo(2n + 1,2m)

where ©1L(2n+1,2m—1) is quasi K O,-equivalent to 4" +4m+2v ¥l Lo (2n41,2m—
1) according to Proposition 3.4. Note that X1 L(2n + 1,0) is quasi KO,-equivalent to
$4 V Vany1. Since $1Lo(2n + 1,1) has the same C-type as SZ/2 Vv SZ/2*"*2 by
Proposition 3.2, [6, Proposition 3.2] asserts that it must be quasi KO,-equivalent to
$487/2V Vs, 12. Hence it is easily calculated that KO3Lo(2n+1,2) & Z/2¢Z/22"+3
and KO;Ly(2n + 1,2) is isomorphic to the cokernel of oo, : Z/2 = Z/2® Z/2 &
Z/22"*1, From Lemma 3.3 we recall that the set S(X) consists of only 0 for X =
Lo(2n + 1,2m — 1) or Lo(2n + 1,2m) under our assumption on n and m. Apply-
ing Theorem 2.3 i) and ii) combined with Proposition 3.2 we see that ¥!Ly(2n +
1,2m — 1) is quasi KO,-equivalent to one of the three spectra £2V,, _y V Py | o,
¥28Z/2m7 1V 22P) i onymer and EENPL o oimy When mo > 3, and
Y1Lo(2n + 1,2m) is quasi KO.-equivalent to one of the three spectra £2Va,, 41 V
Pyimms B28Z)/ 2™V E2P) | onimyy and Z2NPy oy When m >
1. Since $'L(2n + 1,2m — 2) is quasi KO,-equivalent to £*Mam_1V Py, 10 1 s
when m > 3, it is immediate that KO1Lo(2n+1,2m—1) & Z/2>™1@Z/2m 2@ Z/2.
Therefore £!Lo(2n+1,2m—1) must be quasi KO,-equivalent to XV, VP . 5.
when m > 3. Hence it is easily calculated that KO3Lo(2n + 1,2m) = Z/2 &
Z)22ntm+l @ 7/2 and KO7Lo(2n + 1,2m) is isomorphic to the cokernel of ag. :
Z]2 - Z]2® Z/2 ® Z/22"t™. Therefore £'Lo(2n + 1,2m) must be quasi KO.,-
equivalent to £2Vypi1 V Py, . When m > 3 as well as m = 1.

In case when n is odd and m > 2 is even the quasi KO,-types of ' Lo(2n +
1,2m — 1) and X'Ly(2n + 1,2m) are determined by a parallel argument. O

ReEmMARK.  According to Theorems 3.5 and 3.6, Lo(s,0) and L(s,0) are quasi
K O,-equivalent to the real projective spaces RP?* and RP?**!, respectively.
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