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0. Introduction

Let KU and KO be the complex and the real K-spectrum, respectively. For

any CW-spectrum X its If [/-homology group KU*X is regarded as a (Z/2-graded)

abelian group with involution because KU possesses the conjugation ψς1. Given

CW-spectra X and Y we say that X is quasi KO* -equivalent to Y if there exists an

equivalence / : KO Λ l 4 KO A Y of KO-modu\e spectra (see [8]). If X is quasi

KO*-equivalent to Y, then K0*X is isomorphic to K0*Y as a KO*-module, and

in addition KU*X is isomorphic to KU*Y as an abelian group with involution. In the

latter case we say that X has the same C-type as Y (cf. [2]). In [10] and [11] we have

determined the quasi KO* -types of the real projective space RPk and its stunted pro-

jective space RPh/RPι. Moreover in [12] we have determined the quasi K0* -types

of the mod 4 lens space L\ and its stunted lens space L\/Lι

A where we simply de-

note by Z/4n+1 the usual (2ra + l)-dimensional mod 4 lens space Ln(4) and by L\n its

2n-skeleton L Q ( 4 ) . In this note we shall generally determine the quasi KO* -types of

a weighted mod 4 lens space Ln(4; qo, — ' > Qn) and its 2n-skeleton LQ (4; q0, , qn)

along the line of [12].

The weighted mod 4 lens space Ln(4;q0, •••, ςrn) is obtained as the fiber of the

canonical inclusion i : Pn(q0,- - ,qn) -> P n + 1 (4,q0, ,q n ) of weighted projec-

tive spaces (see [3]). Using the result of Amrani [1, Theorem 3.1] we can calcu-

late the ifC/-cohomology group ifί/*Ln(4;<70? * ,<Zn) and the behavior of the con-

jugation ΨQ1 on it. Our calculation asserts that Σ1Lo(4;go? **• >9n) n a s t n e same C-

type as one of the small spectra Σ2SZ/2r V P'st, SZ/2r V P'Jt and PP'r^t, and

Σ1Ln(4;q0,' - ,qn) has the same C-type as one of the small spectra Σ 2 M Γ V P'st,

Mr V P'Jt, MPP^st and Σ 2 m V Σ1LJ(4;ί/o, •• -,qn) (see Proposition 3.2). Here

SZ/2r is the Moore spectrum of type Z/2r and M r , P5'?t, P'JV PP'r,s,t and MPP'rst

are the small spectra constructed as the cofibers of the maps iη : Σ 1 ->• SZ/2r,

iη : Σ1SZ/2t -> 5Z/2 S , 2/7 4- ryj : Σ1SZ/2t -> 5Z/2 S , (ήi,iηί) : Σ1SZ/2t ->

SZ/2r V 5Z/2 S and (iMήj,iή) : Σ1SZ/2t -> M r V 5Z/2 S , respectively, in which

i : Σ° -> 5 Z / 2 r and j : 5 Z / 2 r -> Σ 1 are the bottom cell inclusion and the top cell
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projection, %M SZ/2r -* Mr is the canonical inclusion, η : Σ 1 ->> Σ° is the sta-

ble Hopf map, and η : Σ1SZ/2r -+ Σ° and 77 : Σ 2 ->• SZ/2 r are its extension and

coextension satisfying fji = η and jή = 77.

In [12, Proposition 3.1 and Theorem 3.3] we have already characterized the quasi

KO*-typts of spectra having the same C-type as SZjT V P"v Mr V P"t, PP^t

or MPP'rst (see Theorems 1.2 and 1.3). In §1 we introduce some new small spectra

X having the same C-type as SZjT V P'st or Mr V P'st, and calculate their KO-

homology groups KO*X (Propositions 1.5 and 1.7). In §2 we shall characterize the

quasi KO*-types of spectra having the same C-type as SZ/2r\/P'st or MrVP'st (The-

orems 2.3 and 2.4) by using the small spectra introduced in §1. Our discussion devel-

oped in §2 is quite similar to the one done in [6, §4] in order to characterize the quasi

KO* -types of spectra having the same C-type as SZ/2r V SZ/2S (see [6, Theorem

5.3]). In §3 we first calculate the if{7-cohomology group KU°Ln(4',q0, ••• ,qn), and

then investigate the behavior of the conjugation ψ^1 on it (Proposition 3.1). Dualizing

this result we study the C-types of L — Ln(4; qor ", Qn) and LQ (4; q0, , qn) as is

stated above (Proposition 3.2), and moreover calculate the sets S(L) — {2i;KO2iL —

0 (0 < i < 3)} (Lemma 3.3). Since P'st and Σ 2 P / _ l j β + 1 have the same C-type

we can apply Theorems 1.2, 1.3, 2.3 and 2.4 with the aid of Proposition 3.2 and

Lemma 3.3 to determine the quasi KO*-types of the weighted mod 4 lens spaces

L n(4; qor " 1 Qn) and LQ (4; qo,-' 1 Qn) as our main results (Theorems 3.5 and 3.6).

1. Small spectra having the same C-type as SZ/2r V P'at or Mr V P j t

1.1. Let SZ/2m (m > 1) be the Moore spectrum of type Z/2 m , and i : Σ° -*

SZ/2m and j : SZ/2m -+ Σ 1 be the bottom cell inclusion and the top cell projection,

respectively. The stable Hopf map η : Σ 1 ->• Σ° of order 2 admits an extension ή :

Σ1SZ/2m -> Σ° and a coextension ή : Σ 2 -+ SZ/2m satisfying ηi = η and jή = η.

As in [13] (see [8]) we denote by M m , 7Vm,n, P m , n , P ^ n , P ^ n , β m , n , i ^ | T I and

K m ? n the small spectra constructed as the cofibers of the following maps iη : Σ 1 -»

5Z/2m, iη2j, ήj9 iη, iη+ήj : ΣιSZ/2n -> SZ/2m and ^ j , iη2η, ήη : Σ3SZ/2n ->
5 Z / 2 m , respectively. In particular, P^i^ is simply written as V^. The spectra Vm

and M m are exhibited in the following cofiber sequences:

Σ0 * ^ C(fj) I^VmJ^ΣliΣ0 2 ^ σ ( f / ) ^ ^ J^ Σ l

where C(ry) and C(ή) are the cofibers of the maps η : Σ 1 -> Σ° and 77 : ΣιSZ/2 ->

Σ°, and zp : Σ° -^ (7(77) and i : Σ° —> C(ή) are the bottom cell inclusions. Note that

C(η) is quasi KO* -equivalent to Σ 4 .

Moreover we denote by \ / P m , n , P^n, yRm,n, Rm,n> VR™,n, M P m , n , PMm,n,

MRm^n and RMm,n the small spectra constructed as the cofibers of the following

maps:
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ivήj : ΣxSZ/2n -> Vm, ήjy : Σ 1 ^ -

ivήη j •• Σ3SZ/2n -

ξvηj : Σ5SZ/2n -

iMήj : Σ1SZ/2n -

> Vm, ήη'

>Mm, ή

> Mm, ήη2

'<jv : Z3Vn ^

kM : Σ x M n -

kM : Σ 3 M n -

•> 5 Z / 2 m ,

•> 5 Z / 2 m ,

(1.1)

respectively, where i v : SZ/2rn~1 -> Vm and z M : Σ° -> M m are the canonical inclu-

sions, and ξy : Σ 5 -> F m is the map satisfying jVfv = 7777 for the canonical projec-

tion j v : Vm -> Σ2SZ/2. Here we understand iyr] = ΐ : Σ° -> 5Z/2 and ξv = 7777 :

Σ 3 —>> 5Z/2 when m — 1. According to [6, Proposition 3.2] and its dual the spectra

y P m ? n , P ^ n , vRrn.n and β j ^ | n (m > 2) are quasi KO*-equivalent to Σ 2 P n + i , m - i ,

Σ 6 P n + i , m - i , Σ2F ;JVm,n and Σ 6 F'iV m , n , respectively. Here the spectrum F'iVm,n is

constructed as the cofiber of the map ήj V iη2j : Σ 1 5 Z / 2 m ~ 1 V Σ1SZ/2n ->• SZ/2,

and it is quasi ifO*-equivalent to Σ 6 F m V Σ2SZ/2n if m > n. The 5-dual spectrum

•^Kι,m °f V'Nm^n and the spectrum Vi? m ? n have been introduced in [13, Proposi-

tion 3.1], and the spectra MPm,n and PMm,n were written as MV^^ and V M m 5 U ,

respectively, in [12, Propositions 2.3 and 2.4]. On the other hand, the spectra M Λ m ? n

and RMn,m have the same C-type as M7nVSZ/2n. Note that MRm^ is quasi KO*-

equivalent to M m V Σ4SZ/2n if m > n, and RM^^ is quasi TfO*-equivalent to

SZ/2171 V Σ 4 M n if m > n. By a routine computation we obtain the ifO-homology

groups KOiX (0 < i < 7) of X = MRm^n (m < n) and J RM m , n (m < n) as

follows:

(1.2)

X\i

MR,

RM,

•m,n

m,n

0 1

Z/2m Θ Z/2n 0 Z θ Z/2 Z/2 Z/2m Θ Z/2n + J Z/2 Z Θ (*)n Z/2

Z/2 m φZ/2 n + 1 Z/2 Z φ ( * ) m Z/2 Z/2"1"1 φ Z/2n + 1 0 ZφZ/2 Z/2

where (*)x ^ Z/4 and (*)fc ^ Z/2 Θ Z/2 if k>2.

For any maps / : ΣiSZ/2t "-> Z r and ^ : Σ*Z r -• 5Z/2 S whose cofibers are

denoted by Xr^ and y s r , we introduce new small spectra XP'rst and PΎsj,r con-

structed as the cofibers of the following maps

(f,iη) : ΣiSZj2t -> Z r V Σ^

iη\/g: ΣιSZ/2t V Σ % -> SZ/2β,

respectively. In particular, the spectra NP'r s l and PP'r s l are written as NVr,8+i

and PK,5+i in [13, Proposition 3.1], respectively, and RP'^sΛ = SZ/2r V Σ 2 K + i

and vRP'r s l = Vr V Σ2F5_|_i. By virtue of [6, Propositions 3.2 and 3.3] the spec-

tra vPP^i P'P*,hr, P'PΪ^r a n d pfRs,ι,r ^t quasi KO*-equivalent to Σ 4 ί ί r , s + 1 ,

Σ 2 P r + l s , Σ 4 P s + i ) Γ and Σ2V'Ns+ι,r, respectively. On the other hand, the spectrum

VRP'rsl is quasi KO*-equivalent to R'rs+ι, R'Rr,s+i or Vr V Σ 4 V s + i according as

r > s H- 1, r = s + 1 or r < s, and the spectrum P'R^ r is quasi KO*-equivalent
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to Σ 4 i ? s + i , r , R'Rs+ι,r or V8+i V Σ4Vr according as r > s + 1, r = s + l or r<s.

Here the spectrum i ? ' i ϋ m n has been introduced in [13, Proposition 3.3]. The spectra

PP^t, vPP'τ,B,t> P'Ps,t,r, MPP'rst and P'PMs^r were written as Us^u Va^u

U'str, MUs,r,t and U'Msj,r in [12], respectively, and their ifί/-homology groups

with the conjugation φ^1 and their XO-homology groups have been obtained in [12,

Propositions 2.1, 2.2, 2.3 and 2.4].

Proposition 1.1.

i) "The X = PP'r^t or case

r >t> s

KU0X * Z/2r 0 Z/2* 0 Z/2S

/ I 2 - θ\
Ψc = 0 - 1 0

\0 -1 1

r >t < s

Z/2r Θ Z/2t~1 0 Z/2S+1

0 - 1
0 o

r <t > s r < t < s

KU0X ^ Z/2r~1 0 Z/2t+1 0 Z/2S Z/2r~1 0 Z/2* 0 Z/2£

/ 1 0 0\ / 1 0 0'
, - i - [ _2*-^+2 _ i o 1 I -2t~r+1 - 1 1

l _ 2 t - r + i - i l l V o 0 1

ii) "The X = MPP'rst case"

KUQX ¥

Ψc =

^
ΨC =

r

z e z/2τ

/ - i
[-1

0

V o
r

Z0Z/2r-1

/ -i

I -1

2t-r + l _
\ 0 -

>

0
0
1
0
0

<

t > s

Z/2* 0
0

2r"*
- 1
- 1

ί > 5

0 Z/2t+1

-2{

0
1
-r+2
-r + 1

Z/2S

o\
0 1
0

1 /

0Z/25

0 0\
o o i

-1 0
-1 1/

Z θ Z/2r

/-I 0
[-1 1
1 o o
\ 0 0

Z φ Z/2Γ

/ -i

I ^1

V o

r > ί <

0 Z/2*-
0

2r-t + l
- 1
0

r < t <

-ι®Z/'<
0
1

_ 2t-r + l
0

s

-1 0Z/2 S + 1

0 \
_2r-t \

1
1 /

s

2* 0 Z/2S + 1

0 0\
0 0 1

-1 1
0 1/

iii) Their KO-homology groups KOiX (0 < i < 7) αre tabled as follows:

X\i

ppUt

yppUt

MppUt

Z/2r

Z/2r~

Z/2r

0

0Z/2S

1 0 Z/2S

0Z/2S

1

Z/2

0

0

2

(*)t-l,r

Z/2* 0

Z 0 Z/2*

0Z/2

Z/2

0Z/2

3

Z/2

Z/2

Z/2

Z/2r~

Z/2r

Z/2r

4
1 0 Z/25^1

0 Z/2S+1

0 Z/2S+1

5

0

Z/2

0

6

Z/2*

(*)t-l,r

Z 0 Z/2*

7

0

0

0

where ( * ) M ̂ and Z/2 i/ί > 2.
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For any spectrum X having the same C-type as PP'r s t or MPP'r s t we have

already determined its quasi if O*-type in [12, Theorem 3.3].

Theorem 1.2.

i) If a spectrum X has the same C-type as PP'r s t , then it is quasi KO*-

equivalent to one of the following small spectra PP'r 8 t , Σ4PP'r 8 t , yPP'r 8 t

and Σ4

vPP'r8t.

ii) If a spectrum X has the same C-type as MPP'r s t , then it is quasi KO*-

equivalent to either of the small spectra MPP'r t and Σ4MPP'r 8 t .

Applying Theorem 1.2 we see that

(1.4) the spectra P'PSjt,r, P'PY,t,r a n d P'PMsAr are quasi KO*-equivalent to

Σ 2 P P ; + M _ M , Σ V ? ; + 1 ^ 1 ) S and Σ2MPPr+ht_hs, respectively (see [12,

Corollary 3.4]).

We can also show the following result (see [12, Proposition 3.1]).

Theorem 1.3.

i) If a spectrum X has the same C-type as SZjT V P8t, then it is quasi KO*-

equivalent to one of the following wedge sums SZ/2r V P"t, Σ4SZ/2r V P'8\t,

Vr V P'B\t and Σ4Vr V P'8\t.

ii) If a spectrum X has the same C-type as Mr V P8t, then it is quasi KO*-

equivalent to either of the following wedge sums Mr V P'Jt and Σ4Mr V P8t.

1.2. Since P8t and Σ 2 P / _ 1 > β + 1 have the same C-type a routine computation

shows

Proposition 1.4.

i) The spectra NP'rs^ VRP'rsty RP^t_ls+v vRP^t_h8+v P'Rs,t,r and P'R]7^

have the same C-type as the wedge sum SZjT V P'st.

ii) The spectra MRP'rt_λ s + 1 and P'RMsj,r have the same C-type as the wedge

sum Mr V P8t.

Note that if r > t the spectra RP^S^ vRPr,s,t
 a n d MRpί,s,t a r e Φ * a s i κo*~

equivalent to SZ/2rVΣ2P^t, VrVΣ2Pf

s\t and MrWΣ2P^t, respectively, and if r < s

the spectra P'Rs,t,r, P'RΪ,t[r and.P'i iM e , t , r are quasi KO*-equivalent to Σ 4 5Z/2 r V

P'sV Σ4Vr V P8t and Σ4Mr V P8t, respectively. By use of [13, Propositions 2.2 and

3.1] and (1.2) we can easily calculate

Proposition 1.5. For the small spectra X listed in Proposition 1.4 the KO-

homology groups KO\X (0 < i < 7) are tabled as follows:
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i\X

0

1

2

3

4

5

6

7

NPUt
(t>2)

Z/2r Θ Z/2S

Z/2

Z/2* Θ Z/2 Θ Z/2

Z/2 Θ Z/2

Z/2 r + 1 Θ Z/2-+1

Z/2

Z/2*

0

( r < t )

Z/2r Θ Z/2*

Z/2

Z/2S 0 (*)r

Z/2

Z/2r~1 0Z/2* 0Z/2

Z/2

Z/2S + 1 Θ Z/2

Z/2

( r < 0

Z/2r~1 ®Z/2t

0

Z/2S 0 Z/2

Z/2

Z/2Γ Θ Z/2* Θ Z/2

Z/2 Θ Z/2

Z/2- + 1 Θ (*)r

Z/2

VRPUt
( t>2)

Z/2r 0 Z/2S + 1

Z/2

Z/2* Θ Z/2

Z/2

Z/2Γ + 1 Θ Z/2S

Z/2

Z/21 0 Z/2

Z/2

i\X

0

1

2

3

4

5

6

7

P'Rs^v

( 5 < r , ί > 2 )

Z/2S 0 Z/2r

0

Z/2*-1 0Z/2

Z/2

(*)s-i,t0Z/2r+1

Z/2 0 Z/2

Z/2* 0 Z/2 0 Z/2

Z/2

P'RYtr

{s<r,t>2)

Z/28 0 Z/2r+1

Z/2

Z ^ ' 1 0Z/2 0Z/2

Z/2

{*)s-ι,t®Z/2r

Z/2

Z/21 0 Z/2

Z/2

MRP'rs,

(r<t)

t

Z/2r 0 Z/2*

0

Z 0 Z/2S 0

Z/2

Z/2Γ 0 Z/2S

Z/2

Z 0 Z/25 + 1 ί

Z/2

Z/2

£Z/2

DZ/2

P'RM8^r

(s<r)

Z/2S 0 Z/2r+1

0

Z0Z/2t~1ΘZ/2

Z/2

(*) s-MΘZ/2'+1

Z/2

Z 0 Z/2έ 0 Z/2

Z/2

( * ) M S Z/2 f c + 2 αnJ ( * ) M ^ Z/2 f c + 1 0 Z/2 ifl>2, and (*)Ofί w abbreviated

as (*)iβ

Let iV/, P/ and iϊj denote the small spectra constructed as the cofibers of the

following maps r/2.;, η : Σ1SZ/2t ->• Σ° and r;2^ : Σ 3 5 Z / 2 ί -> Σ°, respectively.

Consider the small spectrum N'P[ constructed as the cofiber of the map (η2j,ή) :

Σ1SZ/2t -> Σ° V Σ°. Then we have two maps i'NP : Σ° -> N'Pj. and p ' N P :

Σ° ->• A^'P/ whose cofibers are TV/ and P/, respectively. These two maps are relat-

ed by the equality ϊNPη = p'NPη
2j : Σ1SZ/2t -> iV'P/. In particular, i ^ = (2,?) :

Σ° -> Σ° V C(ιj) and p'^p = (1,0) : Σ° -> Σ° V C(fj) when t = 1. We denote

by N'P'rt, P'N'st and i ^ n m the spectra constructed as the cofibers of the following

maps 2rp'NP, 2si'NP and / t

n ' m = 2 n ^ P + 2rnϊNP : Σ° -> N'P^ respectively. In par-

ticular, N'P'rl = C(η) V SZ/2r and P'N'sl is quasi KO*-equivalent to Σ 4 f l ' s + 1 . On

the other hand, F?'m = C(η) V SZ/2n if n < m, F^m = C(η) V F m + 1 if n = m + 1,

and it is quasi AΌ*-equivalent to Σ 4 i ? ' m + 1 if n > m + 1. Whenever t > 2 we can

regard that the induced homomorphisms p'NPiti and iJvp* : KU0Σ° -> KUQN'P[ are
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given by p'NPl¥(l) = (1,0,0) and z^ = (0,2,1) in KU0N'Pl S Z Θ Z Θ Z / 2* - 1

because

that

(1.5) i)

p may be replaced by i'NP -f 2qp'NP if necessary. Hence it is easily shown

the spectra N'P'rt and P'N'st have the same C-type as SZ/2r V P[ and

Σ° V P's t, respectively, and

ii) the spectrum F/1'™ has the same C-type as SZ/2n VP/ when n < ra, and

as Σ° V P'm t when n > m.

By use of [8, Proposition 4.2] and [9, Proposition 2.4] we can easily calculate the

i^O-homology groups K0{X (0 < i < 7) of X = N'P'rV P'N'st and F " ' m (t > 2)

as follows:

(1.6)

X\i

Z 0 Z/2r Z/2 Z/2t Θ Z/2 Z/2 Z Θ Z/2 r + 1 Z/2 Z/2t 0

Z0Z/2S Z/2 Z/2tΘZ/2 Z/2 Z φ Z/2S+1 Z/2 Z/2t 0

ZφZ/21 Z/2 Z/2t®Z/2 Z/2 Z Θ Z/21*1 Z/2 Z/21 0

where / = min{n,ra}.

Choose two maps h!N : Σ 2 -» N't and p'N : C(ή) ->•

coincide with C(η2) and V̂ ', respectively, where C(η2) is the cofiber of the map

I2 -» Σ° and V( = P M _ i which is quasi ifO*-equivalent to Σ6Vt (see [13]).

N't whose cofibers

C(^) -> ΛΓ'P/ and p ^ p : C(η) -> ΛΓ'P/ satis-Then there exist two maps

fying j'NPXNP = h'Nηjj and j'NPp
f

NP = p ^ for t n e canonical projection

iV'P/ -» TV/. In particular, we may choose as \'NP = (λ,2) : C(η) -> Σ° V C(η)

and p'NP = (0,1) : C(^) -> Σ° V C(η) when ί = 1. Here the map λ : C(η) -> Σ°

satisfies the equalities λi = 4 and zλ = 4 (see [13, (1.3)]). Whenever £ > 2, we can

regard that the induced homomorphisms p'NP^ and \'NP^ : KUoC(ή) -> KUQN1P[

are given by p ^ P ( l ) = (1,0,0) and λ ^ p ^ l ) = (0,2,1) in KU0N'P[ Ξ Z Θ Z θ

Z/2ι~ι because p^p and λ^ p may be replaced by p^p + ki'PN\ and λ'^p H- li'PN\
if necessary. By virtue of [13, Lemma 1.5] we obtain that the cofiber of p'NP is

quasi ZίO*-equivalent to Σ 4 P/. On the other hand, by use of [13, Lemma 1.2 and

Proposition 4.1] (or [9, Theorem 4.2]) we see that the cofiber of \'NP is quasi KO*-

equivalent to ΣAN[. More generally, the cofibers of the maps 2rp'NP and 2S\'NP

are quasi KO*-equivalent to Σ4N'P'rt and ΣAP'N'S^ respectively, because N'Pl and

Σ4N'Pl have the same quasi AΌ*-type (see [9, Corollary 4.5]).

Using the maps Λn 'm, p'NP and X'NP we introduce new small spectra N'P'F™]"1

constructed as the cofibers of the following mapsand P'N'F™'™

(1.7)
V 2rp'NP : Σ° V C(η)

respectively. In particular, N'P'F"{m is equal to (C(η) Λ SZ/2r) V SZ/2n if n < m,

to (C(/7) Λ 5Z/2 r ) V 5 Z / 2 m + 2 if n = m + 1 > r, and to (C(^) Λ SZ/2r) V 5 Z / 2 m + 1
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if n > ra + 1 > r. Moreover it is quasi KO*-equivalent to Σ 4V r+i VVm +i, Σ 4 i? r ? m +2
o r Σ 4 R ' r m + 1 a c c o r d i n g a s n = m + l < r , n = m + l = r o r n > m + l < r ( u s e
[6, Proposition 3.1]). On the other hand, P'N'F"'™ is just #n,m+i,«+i introduced in
[13]. By a routine computation we can easily show

Proposition 1.6.
i) The spectrum N'P'F^f1 (t > 2) has the same C-type as SZ/2n V P 4 _ n + r ? ί if

m>n<r, and as SZjT V P^t if otherwise.
ii) The spectrum P'N'F^f1 (t > 2) /ια5 r/ie same C-type as SZ/2n~rn+s V P^jt if

n > m < s, and as SZ/2n V P'st if otherwise.

Using (1.6) we can easily calculate

Proposition 1.7. For the spectra X = N'P'F^Γ and P'N'F^f1 {t > 2) the
KO-homology groups K0{X (0 < i < 7) are tabled as follows:

i\X

o

1

2

3

4

5

6

7

J Z/2n 0

\ Z/2-+1

J Z/2n + 1

\ Z/2r 0

Z/2rn~ n + r +i

0Z/2-

Z/2

Z/2* 0 Z/2

Z/2

0 z/2m-n+r

Z/2m+l

Z/2

Z/2t 0 Z/2

Z/2

{m>n<r)

(otherwise)

{m>n<r)

(otherwise)

f Z / 2 n-n,

[ Z/2n 0

Γ n-m
1 Z12
V

P'N'FZΓ

+ s + 1 0 Z/2m

Z/2-+1

Z/2

Z/2* 0 Z/2

Z/2

+S0Z/2™*1

Z/2

Z/2* 0 Z/2

Z/2

(n > m < 5)

(otherwise)

(n > m < 5)

(otherwise)

2. The same quasi KO*-type as SZ/2r V P'st or Mr V P'st

2.1. Let X be a spectrum having the same C-type as SZ/2r\fP'^t. Then its self-
conjugate if-homology group KC{X (0 < i < 3) is given as follows:

KdX ^ Z/2r Θ Z/2S Θ Z/2, Z/2r Θ Z/2S + 1, Z/2 Θ Z/2 θ Z/2ι-\Z/2 θ Z/2*

according as i = 0, 1, 2, 3. In addition,

* Ό i X θ X O 5 X = Z/2ΘZ/2 and K03X θ KO7X ^ Z/2® Z/2.

Hence K0ii+\X (0 < i < 3) are divided into the nine cases (A,D) with A=a, b, c
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and D=d, e, f as follows:

(a) KOχX^KOsX^Z/2 (b) KO5X = 0 (c) KOλX = 0

(d) K03X = K07X Ξ Z/2 (e) if O7X = 0 (f) if O3X = 0.

The induced homomorphisms (-τ,τπc)* : KdX -> KOi+iX Θ if<9i+5X (i = 0,2)
are represented by the following matrices

1 0 0\

0 1 o j : Z/2(BZ/2ΘZ/2t-1-+Z/2θZ/2,

respectively, where φ0, φ2 - Z/2ΘZ/2 -> Z/2®Z/2 is one of the following matrices:

(1) (2) (3) (4) (5) (6)
(2.2) /I 0\ {0 1\ (I 1\ /0 1\ (\ 0\ /I 1\

1,0 lj \l o) \0 l) \1 l) \1 l) \1 θ)

Evidently it is sufficient to take as φo or φ2 only the matrix (1) in case of (b), (c),
(e) or (f). By using a suitable transformation of KUoX similarly to [6, 4.1] we can
verify that in case of (a) the matrix (1) as φo is replaced by (5), and in case of (d)
the matrix (1) as φ2 is replaced by (5) if r < s, and by (3) if r > s. Therefore it
is sufficient to take as φo the matrices (1), (2) and (3) in case of (a), and as φ2 the
matrices (1), (2) and (3) in case of (d) and r < s, and (1), (2) and (6) in case of (d)
and r > s.

Let X be a spectrum having the same C-type as Mr\/P'st. Then its self-conjugate
if-homology group KCiX (0 < i < 3) is given as follows:

KdX Si Zj2r Θ Z/2S Θ Z/2, Z/2 r + 1 Θ Z/2S + 1,

Z Θ Z/2 θ Z/2 θ Z/2*-1, Z θ Z/2*

according as i = 0, 1, 2, 3. In addition,

K0xX®K0hX ^Z/2 and KO3X θ KO7X Ξ Z/2 θ Z/2.

Hence K02i+\X (0 < i < 3) are divided into the six cases (A, D) with A = b, c
and D = d, e, f given in (2.1). The induced homomorphisms (—T, rπc)* : KC{X —>
KOi+ιX θ KOi+^X (* = 0,2) are represented by the following matrices

Φo = (0,0,1) : Z/2r θ Z/2S θ Z/2 -> Z/2

1 0 0\

o l o ) : Z i
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where φ2 : Z/2ΘZ/2 -> Z/2ΘZ/2 is one of the matrices given in (2.2). Evidently it

is sufficient to take as φ2 only the matrix (1) in case of (e) or (f). On the other hand,

it is sufficient to take as φ% the matrices (1), (2) and (3) in case of (d) and r < s, and

(1), (2) and (6) in case of (d) and r > s.

Given a spectrum X having the same C-type as SZ/2r V P'st or Mr V P'st we

define its (^-type (A, D, i, j) where A = a, b, c, D = d, e, f and 1 < i, j < 6, using

the above notations as in [6, §4].

Lemma 2.1.

i) Let X be a spectrum having the same C-type as SZ/2r V P'st. Then its φ-type

is one of the following 25 types: (a, dy i, j), (a, ey i, 1), (a, f i, 1), (b, d, 1, j)y

(c, dy 1, j), (by e, 1, 1), (b, f 1, 1), (c, e, 1, 1) and (c, /, 1, 1) where i = 1, 2,

3, αrcd j = 1, 2, 3 */ r < s and j = 1, 2, 6 */ r > s.

ii) Lei X be a spectrum having the same C-type as Mr V P'st. Then its φ-type is

one of the following 10 types: (b, d, 1, j), (c, dy 1, j), (6, e, 1, 1), (6, / 1, 1),

(c, e, 1, 1) and (c, / 1, 1) where j = 1, 2, 3 */ r < β αnd j = 1, 2, 6 if r > 5.

2.2. Using [6, Lemmas 4.2 and 4.3] we can easily determine the </>types of the

small spectra appearing in Propositions 1.3 and 1.5.

Proposition 2.2.

i) The spectra NP'r^t> VRP^st (t > 2), Λi* t _ 1 | β + 1 , vRPΪ,t-its+i. P'R t.r
and P'RY^r (* > 2) have the following φ-types (a, ey 3, 1), (α, d, 4, 1), (α,
J, 1, 3), (c, dy 1, 3), (c, ί/, 1, 6) and (ay dy 1, 6), respectively.

ii) 77ie spectra MRP'rt_1 s + ι and P'RMstr have the following φ-types (c, ί/, 1,

3) and (c, J, 1, 6), respectively.

iii) 77*e spectrum N'P'F"'™ (t > 2) has the following φ-type (a, dy 4, 1),

(ay d, 4, 3) or (a, dy 4, 2) according asm>n<rym>n = ror other-

wise, and the spectrum P'N'F™'™ (t > 2) has the following φ-type (a, d, 4, 2),

(a, d, 4, 6) or (af dy 4, 1) according as n > m < s, n > m = s or otherwise.

Let X be a spectrum having the same C-type as SZ/2r V P s ' j t or Mr V Pj^. If a

spectrum V has the same C-type as X, then we can choose a quasi KU*-equivalence

f : Y -+ KU ΛX with (φ^1 A 1)/ = /. If there exists a map h : Y -> XO Λ

X satisfying (et/ Λ \)h = f for the complexification map ejj : KO —> KU, then /ι

becomes a quasi ifO* -equivalence (see [8, Proposition 1.1]). After choosing a suitable

small spectrum Y having the same < -̂type as X we can prove the following theorems

by applying the same method developed in [6], [8] or [9].

Theorem 2.3. Let X be a spectrum having the same C-type as SZ/2r\/P'st (t >

2). Then it is quasi KO ^-equivalent to one of the following small spectra (cf. [6, The-
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orem 5.3]):

i) The case ofr<s:YrVYs<t, NP^t, Σ4NP^t, vRPl,t-l>s+1, Σ4

vRP^t_hs+v

4 4

ii) The case ofr>s:YΓ\J Y.tt, NP^t, Σ4NP^s<t, PΊt.,t,τ. Σ4P'RsAr,

VRP'rst, Σ4VRP'τst, P'Rlt>r, Σ4P'Rv

s^r, P'N'F^t

s.

Here Yr' = SZ/2r, Σ4SZ/2r, 'vr or Σ4Vr', and Ys t = P's t, Σ4P'S t, Σ2P(_1 s + 1

or Σ 6 P / _ l i S + 1 .

Theorem 2.4. Let X be a spectrum having the same C-type as Mr V P's t. Then

it is quasi KO^-equivalent to one of the following small spectra:

i) The case ofr<s:YrV Ys,t, MRP'rt_lsJrV Σ4MRP^t_Us+ι.

ii) The case ofr>s:Yr\/ F s > ί , PfRMs^r] Σ4P'RMs^r'

Here Yr = Mr or Σ 4 M r , and Ys,t = P's[t, Σ 4 P ; t , Σ2Pl_hs+λ or Σ 6 P / _ l j 5 + 1 .

Combining Theorem 2.3 with Proposition 2.2 iii) we get

Corollary 2.5.

i) The spectrum N'P'F^f1 (t > 2) is quasi KO^-equivalent to VRPή,m-n+r,t if

m >n < r, and to Σ4VRP^. m t if m > n > r or m < n.

ii) The spectrum P'N'F^f1 (t > 2) is quasi KO*-equivalent to Σ^VRP'^^^^^

if n > m < s, and to VRP'n s t if n > m > s or n < m.

3. Weighted mod 4 lens spaces

3.1. Let 52n+1(<7o, ,ςfn) denote the unit sphere 5 2 n + 1 C C n + 1 with S^action

defined by λ (x0, , xn) = (λ g o x o , •, \qnxn) £ Cn+ι for any λ G S1 C C. Then

we set

Pn(qo, ••-,?„) = S2n+1(q0,---,qn)/S1

Ln(q;q0, --,qn) = S2n+1(q0, • • • ,qn)/(Z/q)

where Z/q is the q-th roots of the unity in S 1 C C. Denote by ^(q qo, ,gn) the

subspace of Ln(q; qo, , qn) defined by

Lo(q;qor-,Qn) = {[xo,-',Xn] 6 Ln(q;q0, ,gn)|ίCn is real > 0}.

Of course, F n ( l , - ,1), Ln(g; 1, , 1) and LQ(<7; 1, * > 1) a r e t n e u s u a l complex

projective space C F n , the usual mod q lens space Ln(q) and its 2n-skeleton L^(q),

respectively. For a weighted mod 4 lens space L n (4;^ 0 , * ,Qn) we may assume that

Qo = -'= Qr-i = 4, qr = = ςv+ s -i = 2 and qr+s = = qn = 1 where 0 < r <

r + 5 < n. For such a tuple (g0, , qn) we simply set P(r, s, t) — Pn(qo, , qn),

L(r, s, ί) = Ln(4; QΌ, *, Qn) and L 0(r, 5, ί) = LJ(4; ςf0, * • , qn) with n = r + s + t.
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Moreover we shall omit the "r" as P(s,t), L(s,t) or L0(s,t) when r = 0. Notice that
L(r,s,t) = Σ2rL(s,f) and L0(r,s,t) = Σ2rLo(s,t).

Denote by 7 the canonical line bundle over CPn and set a=[y]-l e KU°CPn.
Then it is well known that the (reduced) lfί/-cohomology group KU*CP+ =
Z[a]/(an+ι) where CP+ denotes the disjoint union of CPn and a point. Accord-
ing to [1, Theorem 3.1] the map φ : CPn -> P(r,s,t) defined by φ[xo, -,xn] =
[XQ°, , xn

n] with n = r + 5 + £ induces a monomorphism </?* : KU*P{r,s,t) ->
KU*CPn and the free abelian group KU*P(r,s,t) has the following basis {Γi, ,
Tn} such that <̂ *T/ = α(2)z for 1 < / < r, (^*Tr+ife = a{2)ra(l)k for 1 < k < s
and (^*Tr+s+/ι = a(2)ra(l)sah for 1 < Λ < t, where α(l) = (α -f I) 2 - 1 and

In order to calculate the if[/-cohomology group KU*L(s,t) we use the following
coίiber sequence

where θ is the natural surjection and i is the canonical inclusion (cf. [3, Assertion 1]).
Since α(2) = 2α(l) + α(l)2 = 2α(l) + 2α(l)α + α(l)α2 = 4α + 6α2 -f 4α3 + α4,
the induced homomoφhism i* : KU*P(l,s,t) -> KU*P(s,i) is given as follows:
i*Γfc = 2Tk + Tk+1 for 1 < k < s - 1, i*Ts = 2TS + 2TS+1 4- Γ s + 2, i*T s+^ =
4Ts+h + 6Γ s + / ι +i + 4Ts+,ι+2 + T s + Λ + 3 for 1 < h < t and i*T s + ί+i = 0. Using the
(n, n)-matrix £Jfc — (efc) * * ? ^n? 0, , 0) we here introduce the two (n, n)-matrices
An = 2E\ +E2 and ^ n = 4Eχ +6^2+4^3 4-E4, where βj is the unit column vector
entried " 1 " only in the j-th component. Moreover we set

c:t=(Λt o J where ξ = (0, . ,0,2ei+e 2 ) .

Then the induced homomorphism ϊ* : KU°P(l,s,t) -> KU°P{s,t) is expressed
as (Cβft,0) : 0 s + ί + 1 Z -> 0 s + t Z . Therefore KU°L(s,t) ^ CokerCM and
KUιL{s,t) s Z. In particular, KU°Ln(2) S ϋfl/oL(n,0) S CokerAn and
^t/°Ln(4) ^ Coker.Bn.

Recall that the i^i7-cohomology groups KU°Ln(2) ^ Z[σ]/(σn + 1,σ(l)) and
KU°Ln(4) Ξ Z[σ]/(σn+1,σ(2)) are given as follows (see [4, 5]):
i) KU°Ln(2) ^ Z/2n with generator σ,
ii) KU°L2m(4) Ξ Z / 2 2 m + 1 Θ Z / 2 m Θ Z / 2 m - 1 with generators σ, σ(l) and σ(l)σ,

JftΓC/°L2m+1(4) = Z/22rn+2 θ Z/2m θ Z/2m with generators σ, σ(l) + 2 m + 1 σ
and σ(l)σ, where σ = θ*α and σ(i) = θ*α(i).

Therefore the induced homomorphism θ* : KU°CPn -» /ίC/0Ln(2) is given by
the following row:

(3.2) αn = (-1)"- 1 (1, -2, , (-2)"-1) : f f i ^ Z/2".
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On the other hand, the induced homomorphism θ* : KU°CPn -> KU°Ln{4) is rep-
resented by the following (3,n)-matrix βn:

( 1 -2 4 - 2 m + 1 *\ / I - 2 - 2 m + 1 4 + 2m+ 2 * '

0 1 -2 * j , /?2m+i = 0 1 -2 *
0 0 1 * / \0 0 1 *

Notice that KU°L(s, t) is isomorphic to the cokernel of

Since β2rnξ = (0, ,0,e2) and β2rn+ιξ, = (0, , 0 , - 2 m + 1

e i + e 2 ) , we can easily
calculate the If [/-cohomology group KU°L(s;t) for t > 1 as follows:

KU°L(s, 2m) £ Z/2*+m Θ Z/2 2 m + 1 Θ Z/2 m - χ

(3.4) n ί Z / 2 s + m θ Z / 2 2 m + 2 θ Z / 2 m ( s < m )

| Z / 2 s + m + 1 θ Z / 2 2 m + 1 θ Z / 2 m (s>m).

Moreover we see that the quotient morphism 55?t : ( φ β Z) θ CokerBt -> KU°L(s,t)
is represented by the following matrix:

t = 2m t = 2m + l>2s t = 2m + 1 < 2s
fas 0 -2 s 0\ / as 0 -2 5 0\ / α s 2s~rn-1 0 0 '

0 1 0 0 1 2 m - s + 1 α s 1 0 0 0 1 2 m + 1 0 | .
0 0 0 1/ \ 0 0 0 1 / \ 0 0 0

Since the induced homomorphism θ* : KU°P(s,i) -» KU°L(s,t) is expressed as the
composition £s,*(l θ f t ) , we can immediately give a basis of KU°L(s,t) (s,t > 1)
as follows:

(3.5) (σ(l),σ(s,l),σ(s,3))B's>t

where σ(l) = θ*Tι, σ(s,i) = θ*Ts+i and B'st (s,t > 1) is the matrix tabled below:

/ ( - I ) * " 1 0 (-1)*2S + 1\

(3.6) ^ 2m = I 0 1 2 m + 1 - 4 ,

V 0 0 1 /
s <m s > m

/ ( - I ) 8 - 1 0 (-1)S2S + 1\ / ( - I ) 8 " 1 (- l )^ 8 -" 1 - 1 (-1)S2S+1

^,2m+l ~ ~ 2 X ~ 4 II U l ~ 4

V 0 0 1 / V 0 0 1
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3.2. Next we shall investigate the behavior of the conjugation ψ^1 on

KU°L(s,t) (s,t > 1). Note that φ^ιah = (-l)hah{l + a)~h and Φcla(l)k =
(-l)ka(l)k(l + a)~2k in KU°CPn. Since α(2) = (1 + α(l))2 - 1 and α(l)sα(2) =
α(l)β{(α -f I) 4 - 1} it follows immediately that

ΦQ1CL(\) = α(l) mod α(2)

{ α(l) s(α3 + 3α2 -I- 3a) s : even

a(l)s(a2 + α) s : odd
fα(l)5(3α3 H-6α2 + 4α) 5 : even

^ α(l) 'a 3 = \ mod α(l)sα(2)
[ -α(l) s (α 3 + 2α2 -f 4α) s : odd.

Since α(l)*α2 = {-I)s2sa(l)-2a(l)sa mod α(2), the conjugation φ^1 on KU°L(s,t)
behaves as

Φc1 (σ(l), σ(s, 1), σ(s, 3)) = (σ(l), σ(s, 1), σ(s, 3))PS

for the following matrix Ps:

( 1 3 2n 3 2 2 n + 1 \ / I - 2 2 n + 1 2 2 n + 2 >

0 - 3 -8 j , P 2 n + 1 = I 0 - 1 0
0 1 3 / \0 0 - 1

Consider the following matrix C8,t (s,t > 1) representing an automoφhism on
KU°L{s,t):

s = 2n <m s = 2n + l <m
l + 2m 0 - 2 s \ / 1 2 s ~ 1 ( l - 2 m ) -

C s , 2 m + i = ( 0 1 0 2 2 m - + 1 l + 2 2 s(l-2™)
_2ms 0 1 / V 0 0

In order to express the conjugation φc

ι on KU°L(s, t) plainly we here change the
basis of KU°L(s,t) given in (3.5) slightly as follows:

(3.9) (σ(l),σ(«,l),σ(β,3))B, | f where B M - tf^C^.
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Then the conjugation ψc

ι on KU°L(s, t) is represented by the composition Bs ^PsBst'

Therefore a routine computation shows

Proposition 3.1. On the KU-cohomology group KU°L(s,t) with basis (σ(l),

σ(s, 1), σ(s,S))BSit {s,t > 1) the conjugation ψ^1 behaves as follows:

i) On KU°L{s, 2m) Ξ Z/2 s + m Θ Z/2 2 m + 1 Θ Z/2m-\

s — 2n > m s = 2n + 1
1 0 0 \ / I 0 2 S + 1

0 1 _ 2 m + 1 2m+ 2 0 - 1 0

0 1 - 1 / \0 0 - 1

ii) On KU°L{s, 2m + 1) Ξ Z/2 5 + m Θ Z/2 2 m + 2 Θ Z/2m (β < m),

s — 2n <m s — 2n + 1 <m
/I 0 0 \ / 1 0 0 \

Ϊ/,-1 = 0 1 - 2 m + 1 2 m + 2 ί 2 m " 5 + 2 - 1 0 .

\0 1 - 1 / \ 0 0 - 1 /

iii) On KU°L{s, 2m + 1) S Z / 2 s + m + 1 Θ Z/2 2 m + 1 Θ Z/2m (β > m),

1 0

0 1

REMARK. When t = 0, the conjugation φ^1 = 1 on KU°L(s,0) = Z/2S with

basis σ(l).

We shall use the dual of Proposition 3.1 to study the behavior of the conjugation

Φc1 o n KU*L0(s,t) and KU*L(s,t).

Proposition 3.2. The weighted mod 4 lens spaces Σ 1 L 0 (5, ί) and ΣιL(s,t) (s >

1, t > 0) have the same C-types as the small spectra tabled belowy respectively (cf. [12,

Proposition 5.1]):

5 = 2n

5 = 2n

s = 2n + 1

s = 2n + ]

< m

> m

, m > l

,m = 0

Σ1L0(s,2m)

P P 2rn + l β+m-l,m

5 Z / 2 S + m v p ^ ̂

Σ25Z/22m + l v p ^ _ i ^

5'Z/2S

ΣXL(

Σ 2 M 2 m + 1

Σ° V

5,2m)

^ P2m,τn

SZ/2S

Σ1L0(s,2m + 1)

n 5Z/2 s +-V^ ' m + 1 ) m + 1

27n + l,s+7n,771 + 1

SZ/2 V SZ/2a+1
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Moreover Σ 1L(s, 2m-h 1) has the same C-type as the wedge sum Σ 2 s VΣ 1 Lo(s,2m +

i).

Proof. By dualizing Proposition 3.1 we can immediately determine the C-type

of ΣιL0{s,t) because KU-iL0(s,t) = KU°L0{s,t) and KU0L0{s,t) = 0. On the

other hand, Proposition 3.4 below implies that ΣιL(s,2m + l) has the same C-type as

Σ 2 s V Σ1L0(8,2m + 1). We shall now investigate the C-type of ΣιL(s,2m) in case

of s = 2n < m. Note that KU-iL(s,t) Ξ KU-ιΣ2a+2t+1 Θ KU-ιLQ(s,t) and

KUoL(s,t) = 0. According to the dual of Proposition 3.1 the conjugations ψ^1 on

KU-ιL(s,2m) = Z 0 Z / 2 s + m Θ Z / 2 2 m + 1 Θ Z/^™"1 and KC/_iL0(s,2m + 1) =

Z/2s+rn Θ Z / 2 2 m + 2 Θ Z/2 m are represented by the following matrices

0

- 1

for some integers α, b and c, respectively. As is easily verified, we may regard

that a = c = 0 and b = 0 or —1 after changing the direct sum decomposi-

tion of KU-\L(s,2m) suitably if necessary. Consider the canonical inclusion map

%LQ : L(s,t) -> L0(s,t + 1). By virtue of (3.9) the induced homomorphism I*LQ :

KU°L0(s,t + 1) -> KU°L(s,t) is actually represented by the matrix Fs,t =

B~lB8,t+i Since a routine computation shows that

1 + 2 m 0 -2s

s+2/1 I om-l\ -j O7n+1

_ 9 m ~ β-f l Π 1

the induced homomoφhism ii0* : KU-\L{s,2m) —ϊ KU-ιLo(s,2m+l) is expressed

as the following matrix

- 1
a

b

c

0
1

_ 2 m + l

1

0
0

1

0

0
0

2m+

- 1

for some integers x, y and z. Here y must be odd because IL0* is an epimorphism.

Using the equality φ^iLo* — ύ o * ^ 1 w e S e t immediately that 6 = y mod 2 m , thus

b = —1. Therefore Σ 1L(s,2m) has the same C-type as MPP2m+i,β+m-i,m w n e n s —

2n < m. In the other three cases the C-types of Σ 1L(s,2m) are similarly obtained.

D

3.3. Using Proposition 3.2 we can immediately calculate KOiXζ&KOi+±X (i =

0,2) for X = Lo(M) and L(β,ί) (5 > l , ί > 0) as tabled below:
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X - L0(2n,2ra) L(2n,2m) L0(2n,2ra+l) L(2n,2m + 1

KOQX 0 KO4X ~ Z/2 0 Z/2 Z/2 φ Z/2

KO2X Θ /CO6X ^ Z/2 Z/2 Z/2 Z/2

X= L0(2n + l,2ra) L(2n+l,2ra) L0(2n + 1,2m + 1) L(2n+l,2ra + l)

(**)m Z/2ΘZ/2 Z/2&Z/2 Z/2&Z/2

(**)m Z/2 Z/2ΦZ/2 Z/2φZ/2φZ/2

where (**)0 = Z/2 and (**)m Ξ Z/2 Θ Z/2 if m > 1.

Lemma 3.3. For X = L0(s,t) and L(s,t) (s > l , ί > 0) r ^ 5-^ 5(X) =
{2i; ii:O2iX = 0 (0 < i < 3)} are g/ve/ί a^ follows:

(i) X= L0(2n,2m) L(2n,2m) L0(2n,2m + l) L(2n,2m+1)

{4,6} {0,4,6} {0,6} {0,6} n + m : even

{0,6} {0,4,6} {4,6} {4,6} n + m : odd

f 1,2m) L(2n + 1, 2m) L0(2n -f 1,2m -f 1) L(2ra + 1,2m + 1)

{0,6} {0,6} {0} {0} n,m:even

{0} {0,6} {0,6} {0,6} ri, m - h i : even

{4,(6)}m {4,6} {4,6} {4,6} n,m+l:odd

{4,6} {4,6} {4} {4} n, m : odd

where {4,(6)}0 = {4,6} and {4,(6)}m = {4} if m > 1.

Proof. Consider the following (homotopy) commutative diagram

I*

with two coίiber sequences, where the maps i^, i and i are the canonical inclusion-

s, and the map i0 is defined by io[xo> *>#«+*] = [^ί+tj^o? •• * >£*+t] According

to [7, Theorem 2.4] the weighted projective space P(s,t) is quasi ίίO*-equivalent

to the wedge sum Vn + mC(ry), Σ 4"+ 4™+ 4 V (Vn + mC(ry)), Σ 4 n + 2 V (Vn + mC(r/)) or

Σ4n+2 v Σ4n+4m+4 v ( V n + m C ' ( 7 7 ) ) according as (s,t) = (2n, 2m), (2n,2m + 1),

(2n -h 1,2m) or (2n + 1,2m -h 1). In addition, P(l,s,t) is quasi KO*-equivalent to

the wedge sum Σ 2 V Σ2P(s,t). Using the above commutative diagram we can imme-

diately obtain our result. D

Proposition 3.4. The weighted mod 4 lens space L(s,2m + 1) is quasi KO*-

equivalent to the wedge sum Σ 2 H ~ 4 m + 3 V L0(s, 2m + 1).
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Proof. Consider the following commutative diagram

Σ2s+4m+3 J^ i

II I
Σ 2 s + 4 m + 3 _ ^

with two cofiber sequences. Since the quasi iίTO*-type of P ( l , s , £) is given as in the

proof of Lemma 3.3 we see that the map 1 Λ ά : Σ 2 s + 4 m + 3 K O -> KO Λ P ( l , 5,2m)

is trivial. Hence our result is immediate. D

Applying Theorems 1.2 and 1.3 and Proposition 3.4 with the aid of Proposition

3.2 and Lemma 3.3 we can immediately obtain

Theorem 3.5. The weighted mod 4 lens spaces Σ1L0(2n,t) and ΣιL(2n,t) for

n > 1 are quasi KO ^-equivalent to the small spectra tabled below, respectively (cf.

[12, Theorem 3]):

n

n

4- m : even

4- m : odd

4- m : even

4- m : odd

Σ 1L 0(2n,

™*2n>+l,2» +

SZ/22n+m V

V2n+m V P

2m)

P2m,m

Σ1L(2n,

M2n+m V

2m)

P2m,m

P2m,m

Σ 1 L 0 (2n,

V2n+m V P

m SZ/22n+τn V

2m +

\n-\-m,?

i-}-7τι.,m

1)

» + l

i) 2n < m Λ«ί/ ii) 2n > m. Moreover Σ x L(2n, 2m -I- 1) w quasi KO*-

equivalent to Σ 4 n + 4 m + 4 V Σ 1 L 0 (2n, 2m 4-1).

Applying Theorems 2.3 and 2.4 in place of Theorems 1.2 and 1.3 we show

Theorem 3.6. The weighted mod 4 lens spaces Σ 1 L 0 (2n + l, ί) and ΈιL(2n +

l,ί) αr^ quasi KO^-equivalent to the small spectra tabled below, respectively:

i)

ϋ)

iii)

iv)

v)

vi)

Σ I L 0 ( 2 n

V2ri

Σ 2 5 Z / 2 2 m + 1

Σ V 2 m + ] V

5Z/2

Σ 6 5 Z / 2 2 m + 1 V Σ

Σ 6 V 2 m + 1 V Σ 6

+ 1,2m)

+ 1

v P 2 n + m m

P2n+m m
2n + l

J 12 +

P m - l , 2 n + m +

Σ 2

Σ 2

n + l Σ O M 2 .
1 Σ 6 M 2 r

Σ

Λί

Σ

n-t

n 4

lL(2n + 1,2m)

Σ 4 V V 2 n + 1

r 2 m + 1 V F j n + m m

r

2rn + l V ^ 2 n + m m
0 V S Z / 2 2 " + 1

1 V E 6 P m - l , 2 n + m + l

1 V Σ 6 ^ _ i . 2 n + m + i

Σ 1 L 0 (2n + l,2m

Έ4SZ/2 V V2n

Σ2vm v p ; n + m + 1

Έ2SZ/2m V P ^ n + m

5Z/2 V SZ/2 2

Σ 6 V m V Σ 6 P ^ m + 1

ΈβSZ/2m V Σ 6 P ^ m +

+ 1)

+2

2 m + 2

+ 1 2m+2
α+2

2n+m+2

l,2n+m+2

when i) n w ev^π and m — 0, ii) n αn /̂ m > 2 are even, iii) n w even and

m is odd, iv) n is odd and m = 0, v) n w oJί/ αnύf m > 2 is even, and vi) n αn<i

m are odd. Moreover Σ1L(2n + l,2m + 1) is quasi KO ^-equivalent to Σ 4 n + 4 m + 6 V

Σ1L0(2nH-l,2rn + l).
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Proof. By a quite similar argument to the case of the real projective space RPk

(cf. [10, Theorem 5]) we can easily determine the quasi KO*-types of Σ1Lo(2n +

1,0) and Σ1L(2n + 1,0). The quasi KO*-type of Σ1L(2n + 1,2m) for m > 1 is

immediately determined by applying Theorem 2.4 ii) with the aid of Proposition 3.2

and Lemma 3.3. On the other hand, the quasi KO*-types of Σ 1 L 0 (2n + 1,2m) in

cases of ii) and vi) and those of Σ 1 L 0 (2n + 1,2m + 1) in cases of iii), iv) and v) are

also determined by applying Theorem 2.3 and [6, Theorem 5.3] in place of Theorem

2.4 ii).

We shall now investigate the quasi KO*-types of Σ 1 L 0 (2n + 1,2m — 1) and

Σ1Lo(2n + 1,2m) in case when n is even and m is odd. Consider the following

two cofiber sequences

4n+4m ^ Σi L^n + 1,2m - 2) ^ Σ 1 L0(2n + 1,2m - 1)

+ 1 ? 2 m _ i) i ί ^ Σι L0{2n + 1,2m)

where Σ 1 L(2nH-l,2m-l) is quasi KO*-equivalent to Σ 4 n + 4 m + 2 V Σ 1 L 0 ( 2 n + l , 2 m -

1) according to Proposition 3.4. Note that ΣιL{2n + 1,0) is quasi KO*-equivalent to

Σ 4 V V2n+\. Since Σ 1 L 0 (2n + 1,1) has the same C-type as SZ/2 V S Z / 2 2 n + 2 by

Proposition 3.2, [6, Proposition 3.2] asserts that it must be quasi KO*-equivalent to

Σ 4 SZ/2W 2 n+2. Hence it is easily calculated that AΌ 3 Lo(2n+l,2) ^ Z / 2 θ Z / 2 2 n + 3

and KO7L0(2n + 1,2) is isomorphic to the cokernel of α 0 * : Z/2 -> Z/2 θ Z/2 θ

Z / 2 2 n + 1 . From Lemma 3.3 we recall that the set S{X) consists of only 0 for X =

LQ(2Π -h 1,2m — 1) or LQ{2Π + 1,2m) under our assumption on n and m. Apply-

ing Theorem 2.3 i) and ii) combined with Proposition 3.2 we see that ΣιLo(2n +

l,277i — 1) is quasi KO*-equivalent to one of the three spectra Σ2Vm_ι V ^2n+m,2m>

Σ 2 5 Z / 2 m - 1 V Σ 2 / * m _ 1 ) 2 n + m + 1 and Σ 2 Λ Γ i ^ _ 1 > 2 m _ l i 2 n + m + 1 when m > 3, and

Σ1Lo(2n + 1,2m) is quasi KO*-equivalent to one of the three spectra Σ2V2m+ι V

PL+m,m, Σ 2 5 Z / 2 2 - + 1 V Σ 2 P ^ _ l 5 2 n + m + 1 and Σ 2 A ^ m + l 5 m _ 1 > 2 n + m + 1 when m >

1. Since Σ1L(2n + 1,2m - 2) is quasi KO*-equivalent to Σ 2 M 2 m _ i VP^+m-i .m-i

when m > 3, it is immediate that i ί O i L 0 ( 2 n + l , 2 m - l ) = Z / 2 2 m " 1 θ Z / 2 m - 2 θ Z / 2 .

Therefore Σ 1L 0(2n-f-l,2rn-l) must be quasi KO*-equivalent to Σ 2 F m _ i VP2n+m,2m

when m > 3. Hence it is easily calculated that XO 3 L 0 (2n + 1,2m) = Z/2 θ

Z / 2 2 n + m + 1 0 Z/2 and KO7L0(2n + 1,2m) is isomorphic to the cokernel of α 0 * :

Z/2 -> Z/2 θ Z/2 θ Z / 2 2 n + m . Therefore ΣιL0(2n + 1,2m) must be quasi KO*-

equivalent to Σ2V2m+i V P^n+m.m w n e n m > 3 as well as m = 1.

In case when n is odd and m > 2 is even the quasi AΌ*-types of Σ 1 L 0 (2n +

1,2m - 1) and Σ1L0(2n + 1,2m) are determined by a parallel argument. D

REMARK. According to Theorems 3.5 and 3.6, L0(s,0) and L(s,0) are quasi

KO*-equivalent to the real projective spaces RP2s and ϋ P 2 s + 1 , respectively.
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