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1. Introduction

The complex cobordism group MC7*(CP°°) is isomorphic to the ring
of formal power series ΛΓC/*[[Λ;]], where x = eMU(η) is the Euler class of
the tautological line bundle over the infinite complex projective space
CP0 0. Since MlΓiCP™ x CPcc)^MlΓ[[xlix2\]y x ^ W ? ® 1 ) and x2 =
eMυ(\®ή), we can write

The formal power series induces a formal group law over MIT

The complex cobordism ring MIT with the formal group law FMU is
isomorphic to Lazard's ring with the universal formal group law
[8]. Given any formal group law F(xyy) over a commutative ring i?,
there is a ring homomorphism φ:MLΓ-*R which is called a multiplicative
genus. In this paper we study the multiplicative genus φah\ MIT-+Q
associated with the formal group law

which is related to the following formal power series, called the logarithm
for F(x,y),

= ^ =— Ϊ dx,

Jo \-2ax + (a2 + b2)x2

/(*) =

which satisfies l(F(xyy)) = l(x) + l(y). The characteristic power series
Q{z) — z/l~ι{z) (cf. [3]) for the multiplicative genus is given by
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z(b + a tan bz)

£?(*)=

tan bz

The cobordism classes of Milnor manifolds

where i<j\ and the complex projective spaces CP" generate MU*. Let
H(xiy) = Σ[Hij]xίyj

y and

which is the logarithm for FMl7(Λ;,y) = Σ βίj^y. Then relations on
[Hij] and [CP"] are given by the following [2]:

We use the relations to calculate the multiplicative genus φab: MLΓ-+Q
associated with the above formal group law for Milnor manifolds. The
main theorem of this paper is the following.

Theorem 1.1. Let φab: MIΓ-^Q be the multiplicative genus asso-
ciated with the formal group law F(xyy) = (x+y — 2axy)/(l — (a2 + b2)xy).
The values of φah for the Milnor manifolds Hski s<k, are as follows:

where a = a + b^/ — 1 and β = a — by/— 1.

The paper is organized as follows. In Section 2 we study
multiplicative idempotent natural transformations over the cobordism
cohomology MU*( — )®Q which induce multiplicative genera. In Section
3 we investigate the multiplicative genus φay. MU*-*Q and we give a proof
of Theorem 1.1. In Section 4 we discuss multiplicative genus related
to the logarithm given by the integral of l/{a polynomial}.

2. The decomposition of MLΓ® Q and the multiplicative genus

Let pitxj ytn) be a symmetric polynomial, and let
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where σ{ is the ί-th elementary symmetric polynomial. For a complex
vector bundle ξ over X with ά\mcξ = n we have

where c^ξ) is the ί-th complex cobordism Chern class, and

SP(ξ) = ΦςiPic^ξ), • • • ,cn(ξ))) e MIΓ( T(ξ))

where T(ξ) is the Thorn complex of ξ and Φξ is the Thorn
isomorphism. Let

kX+

y MU(n)]0,

h:

where yn-^BU{ri) is the universal complex vector bundle over BU(n). The
complex cobordism cohomology operation SP: MU*(X)-+MU*(X) is given
by

where σk~2n denotes the (k — 2w)-fold suspension isomorphism. For any
set ω = (ί'1, ,ίί) of positive integers, denote Sω(t) the smallest symmetric
function of variable tjy \<j<n, which contains the monomial t\-'tι« and
write

Then we have the Landweber-Novikov operation Sω(a) = SPJjx) (cf. [6]
and [4]).

Given a formal power series

f(x) = xf(x)

where v^MU'21, we have a symmetric polynomial

f(t1)-f(tn)=Pf(σ1,-,σn).

The multiplicative natural operation Sf: MU*(X)^>MU*(X) given by
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satisfies

(1) Sf(j>t(oc))=g*(Sf(ot)), for any map g: Y-+X

(2) Sf(aβ) = Sf(oc)Sf(β)

(3) Sfic^γ1))^^1)).

If VιeMlΓ®Q then we similarly obtain the multiplicative natural operation
Sf\ MlΓ{-)®Q-+Mir{-)®Q. We now define

Since the logarithm logMl/(jc) for the formal group law FMU(x,y) uniquely
exists,

Sf(logMU(x)) = logM(/(Λ:)

and for ΛJ = c1(y1),

{ (χ)) = l°gMi/(*)

MC7t'®Q is the polynomial ring over Q generated by {[CP1], [CP2], -f

[CP"], •}. Given a formal power series

2

in MU*®Q[[x]], bieMU~2i®Qi we can consider the ring homomorphism

φg: MlT®Q^MlΓ®Qy ψg([CPn]) = bn.

The formal power series g(x) is said to be projective if ψg is the projection,
namely ψg\l/g = \l/g.

Proposition 2.1. Suppose that g(x)(eMLΓ® Q[[x]]) is projective. Let

Then the multiplicative operation Sf: MU*( — )®Q->MLΓ( — )®Q satisfies
the following properties.

(1) Sf(Sf(ci(yι)))

(2) Sf(vn) = 0, for any n>\.

Proof. Since g(f(x)) = logMU(x) = mogj^v(f(x)) for Λ = c1(y1), we have
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Sf([CPn~\) = bn. Since the operation Sf on MU*®Q coincides with φg and
g(x) is projective, we get Sf(Sf([CPn])) = Sf([CPn]). Apply Sf to
mogf

MU(Sf(x)) = \ogMU(x), χ = cΐ(γ1), to obtain

Hence (1) follows. Apply Sf to f(x) = x + v1x
2 + v2x

3-\ +vnx
n+1-\ ,

x = Ci(yϊ)> to get

/(*) = Sf(Sf(x)) =f(x) + SfaMx))2 + Sf(v2)(f(x))3 +

and

Suppose that g(x)(€ MU*®Q[[x]]) is projective. Put

and

f(x) = x + v1x
2 + v2x

3 + -+υnx
n + 1 + ' y vieMU~2i

Then we have a natural transformation

εf:

Theorem 2.2. The natural transformation εf satisfies the following:

(1) εf is multiplicative.

(2) εfεf = εf.

(3) εf(MU*( — )®Q) is a generalized cohomology.

Proof. Let

We then have

SR(<xβ)= ζ _ S*'(α)S*"(£)>

which completes the proof of (1). We can see that εf(x)=f(x), for
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x = ci(γi), and so Sf = Sf. Therefore (2) is an immediate result of
Proposition 3.1(2) and βj(MlΓ( — )®Q) is a direct summand of

)®Q. (3) follows from (2). •

EXAMPLE. (1) (Brown-Peterson) The formal power series

n = 0 P

is projective. Since the coefficients of f(x)=g~1(logMU(x)) exist in
MU*®Z(p) (cf. [1] and [10]), we have a natural idempotent operation

and the Brown-Peterson cohomology BP*( — ) = εf(MU*( — )®Z(p)).

(2) (Ochanine) The formal power series

1 dx
- 2[CP2]x2 + (3[CP2]2 -

is projective. The multiplicative idempotent operation εf for /(#) =
1

t 7 ( x ) ) gives rise to a generalized cohomology h*( — ) = 8f(MU*( — )
with Λ*(α point) = Q[[CP2]9 [CP*]] and the multiplicative genus

The Ochanine genus Φ: Mί7*->Q[ε,δ](cf.[7] and [5]) is the multiplicative
genus associated with the formal group law F(xyy) = l~1(l(x) + l(y)) with

Jo χ /l-2^
/(

and Φ([CP2]) = <5 and Φ([H3f2]) = ε (cf. Proposition 3 of [7]). Thus the
Ochanine multiplicative genus is represented as the following composite.

Φ

Q[[CP2],[CP*]]
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Here φ is the ring homomorphism defined by

ψ([CP2]) = δ and

(3) The formal power series

Jo 1-tCP^x

is projective. The multiplicative idempotent operation εf for f(x) =
g~i(logMU(x)) induces the multiplicative genus εf: MLΓ-+QHCP1]]. The
values for complex projective spaces are as follows.

]) = (-l) π [CP 1 ] 3 w , ε/

ε/([CP3π + 2]) = 0.

3. The genus associated with {x+y — 2axy)/{\ — (a2 + b2)xy)

Let φah: MIΓ-+Q be the multiplicative genus associated with the
formal group law F(x,y) = (x+y — 2axy)/(ί — (a2 + b2)xy) for rational
numbers a and b. The logarithm of φab is

Jo

Consider the formal power series

\X) I -

Jo 1 ~
g\X) I Λ r ^ m . / r^r»1i? r^,r»5i\ 9

which is projective. By Theorem 2.2 it induces a multiplicative
idempotent operation β̂  for f(x)=g~1(logMU(x)) which gives a generalized
cohomology h\-) = εf{MlΓ{-)®Q) with Λ*(α point) = Q[[CPιl[CP2]]
and the multiplicative genus

φ = εf: MU*-*Q[[CPιUCP2}}.

The multiplicative genus φab is represented as the following composite.
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Mir >Q

Φ

' QiίCP'UCP2]]'

Here ψ is the ring homomorphism defined by ψ([CP1]) = 2a and

The characteristic power series for the multiplicative genus φab is
given by Q(z) = z/l~i(z). Since

l(x) — - I arctanl (x -) J + arctan - I,

b \ \ b a +b } b)

it follows that

_ v z(b + a tan bz)

Q(z) = .

tan bz

For rational numbers a and b, put

x+y-2axy 1 1
h(xyy)=-——-——— - — ——-Γ-— - — —-—-j—- .

l — ( a + b ) x y ί — 2 a x + ( a + b ) x l — 2 a y + ( a + b ) y

Then

(1 - (a2 + b2)xy){\ - 2ax + (a2 + b2)x2)(ί - 2ay + (a2 + b2)y2)h{x,y)and for k>3

+ k(k-ί)(a2 + b2)(\ +2ax)
dyk~2K ' '

-k(k-l)(k-2)(a2 + b2)2x?-1-^(xi0) = 0.
dyh 3

Proposition 3.1. Let α = α + 6Λ/—1 and β = a — by/—l. Then
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Proof. Put

We then have

and

Thus it follows that

Let <x = a + by/-\, β = a-b^J-\ and Rk = Pk-kaPk^1. Then we get

and

k\ k\ k~2

R —βk~2 —R = —βk ~ 2(p — 2(α + β)Pi + 2aβP0) Y (
2 2 ί = i

Note that

\+aβx2

(l-otx)(ί-βx)

(\-ax)(ί-βx)

Then we get

(1-«*)(!-/?*)



482 M. KAMATA

and

p * !
π

We utilize Proposition 3.1 to obtain Theorem 1.1.

Proof of Theorem 1.1.

The h(x,y) is described as

h(x,y) = h(x9O)+—(xfi)y+- τr^(*>0);y2 + . . + - -rηίx,
dy 2! dy2 k\ dyk

From Proposition 3.1 it follows that

and the coefficient of xsyk is

(«k-Pψ+ί-βs+1) Ώ
*-β

REMARK. When b = 0 in this theorem,

Especially (Pi 0 corresponds to the Euler characteristic and φob is the
Ochanine multiplicative genus of case δ——b2 and ε = 64.

Let ξ be the canonical line bundle over CP2 and let P(ra,w) denote
the projective space bundle associated with ξm@ξn.

Proposition 3.2.

Proof. Put

[P(m,n)]=x[H2a-\ +y[CP2][CP1

We can determine xf y and # by the facts that
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,n)) = 2(m-n)2, S(2Λ)(P(m,n)) = 6, S ( M

1) = 0, S ( 2 f l ) (CP 2 xCP 1 ) = 6, S ( 1 4 4

1)3) = 0, 5 ( l t l f l ) ((CP 1 ) 3 ) = 8. D

To the formal group law F(x,y) ==(* + y — 2axy)/{\ —{a2 + b2)xy) we
apply

a — - and b —
2 2

The logarithm is

Let φ :̂ MLΓ-+Q denote the multiplicative genus associated with the
formal group law F(x,y) = (x+y — δxy)/{\ — δ2xy). Then we have the
following.

Theorem 3.3. The ideal in MU*®Q consisting of α with φδ((x) = O
for any δ is generated by cobordism classes of fibre bundles over CP2.

Proof. Let S(n)(M) denote the characteristic number of M
corresponding to the symmetric polynomial ΣίJ. The characteristic
number of the Milnor manifold (cf.[9]) is

\ 2<n<rn.
J

We take a generating set {[CP1]y[CP2]f[H2J]\j>2} of the ring
MIT®Q. We use Theorem 1.1 to get φ^([CP1]) = 5, φ^([CP2]) = 0 and
φδ([H2j]) = 0J j>2. Therefore the kernel of φδ is generated by {[CP2],
[H2J], j>2}. If ; > 2 , H2J is a fibre bundle over CP2 with the fibre
CPj~x. By using Proposition 3.3 we see that [H22] belongs to the ideal
generated by cobordism classes of fibre bundles over CP2. •

4. Genera cancelling [H2j], j>n

We discuss the multiplicative genus associated with the formal group
law F(x,y) = Γi(l(x) + l(y)) with the logarithm l(x) given by the integral
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of l/{a polynomial} which is a generalization of the logarithm for the
multiplicative genus φδ in Section 3. For rational numbers δ1,δ2j'",δn>
we consider a formal power series

and denote the multiplicative genus associated with the formal group law
\ by

We then have the following

Proposition 4.1.

—δj> 2^j^n

Proof. The logarithm l(x) for F(xyy) is described as

We obtain (1) by the facts that

z2
l(z) = z -z2 + higher terms of degree > 4

and [H2yi\ = [CP1]2. Consider the formal power series

The Buchstaber formula [2]

H(x,y) =

implies

h(x,y) = l'(x)Γ(y)F(x,y)
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( 1 dF 1 ί)^T^ 1 f)nT?
F(O,y) + - —(Oy)x + - ^^(0,y)x2 + ••• + - —

\ 1! ox 2! ox n\ ox"

Comparing the coefficients of x2, we have

2 ox ox 2

where hij = φδι...tδn([Hij]). Since l(F(x,y)) = l(x) + l(y)y it follows that

and

ΠF(x,y))&2 + l'(F(x,y))ζζ= l"(x).
ox ox

From the facts that /'(0) = l, Γ ( 0 ) = - 5 x and /*3)(0) = 0, it follows that

and we complete the proof of (2). •

We can take a generating set {[CP1], [CP2], [H2a]i'-,[H2J,--} for
the polynomial ring MU*®Q. Therefore it follows from Proposition 4.1
that

Theorem 4.2. [M](eMLΓ®Q) belongs to the ideal generated by
{[CP2l[H2J](j>n)}tnMir®Qifandonlyifforanyδly- ,δn-i^dδn(eQ)
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