

Title	On a wave equation corresponding to geodesics
Author(s)	Koiso, Norihito
Citation	Osaka Journal of Mathematics. 1996, 33(1), p. 93-98
Version Type	VoR
URL	https://doi.org/10.18910/7449
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Koiso, N.
Osaka J. Math.
33 (1996), 93-98

ON A WAVE EQUATION CORRESPONDING TO GEODESICS

Dedicated to Professor Hideki Ozeki on his 60th birthday

NORIHITO KOISO

(Received September 5, 1994)

0. Introduction

For a closed curve $\gamma(x)$ in a riemannian manifold M we define its energy $E(\gamma)$ by $\|\partial_x \gamma\|^2$. The first variation $(d/dt)_{t=0} E(\gamma(t, *))$ is given by $-2\langle \partial_t \gamma, \nabla_x^2 \gamma \rangle$. Therefore, its Euler-Lagrange equation is the equation of geodesics. We consider a corresponding hyperbolic equation of $\gamma = \gamma(t, x)$:

$$(H) \quad \nabla_t^2 \gamma + \mu \partial_t \gamma = \nabla_x^2 \gamma,$$

where the coefficient μ represents the resistance and is usually a positive constant. This equation is locally expressed as

$$\partial_t^2 \gamma^i + \Gamma_{j,k}^i(\gamma) \partial_t \gamma^j \partial_t \gamma^k + \mu \partial_t \gamma^i = \partial_x^2 \gamma^i + \Gamma_{j,k}^i(\gamma) \partial_x \gamma^j \partial_x \gamma^k,$$

which is a semi-linear wave equation.

Eells and Sampson [1] introduced a corresponding heat equation

$$(P) \quad \partial_t \gamma = \nabla_x^2 \gamma.$$

We know that if the manifold M is compact and real analytic, then the solution of (P) exists for all time and converges to a geodesic [3].

Physically, equation (H) represents the equation of motion of a rubber band in viscous liquid. Therefore, it is likely that results similar to (P) hold. In fact we will prove the following result.

Theorem. *Let M be a complete riemannian manifold and μ a constant. Then Cauchy problem (H) for closed curves has a unique solution $\gamma(t, x)$ on $\mathbf{R} \times S^1$. If M is compact and $\mu > 0$, then the solution almost converges to geodesics ; that is, $\partial_t \gamma \rightarrow 0$ and $\nabla_x^2 \gamma \rightarrow 0$ when $t \rightarrow \infty$.*

However the convergence of γ itself is still open, even on a manifold with negative sectional curvature.

REMARK. Gu [2, Theorem] proved that equation (H) without resistance (i.e., $\mu=0$) has an all time solution. He essentially used the equality $(\nabla_t - \nabla_x)(\partial_t - \partial_x)\gamma = 0$, which fails when $\mu \neq 0$. We will overcome this difficulty by systematic use of covariant derivation.

1. Preliminaries

Throughout this paper, we use the following notation. Let M be a riemannian manifold. We consider closed curves $\gamma = \gamma(x)$ in M and families $\gamma = \gamma(t, x)$ of closed curves. The partial derivation is denoted by ∂ and the riemannian covariant derivation is denoted by ∇ . The pointwise norm $|\ast|$, the L_2 norm $\|\ast\|$ and the L_2 inner product $\langle \ast, \ast \rangle$ are defined by $|\ast|^2 = g(\ast, \ast)$, $\langle \ast, \ast \rangle = \int_{S^1} g(\ast, \ast) dx$ and $\|\ast\|^2 = \langle \ast, \ast \rangle$.

Let γ be a map: $\mathbf{R}_t \times \mathbf{R}_x \rightarrow M$. A $(p+q)$ -th covariant derivation $\nabla_* \nabla_* \cdots \nabla_*$ with p ∇_t 's and q ∇_x 's is denoted by $P_{p,q}$, regardless of the order of derivations. It is also denoted by P_n ($n=p+q$), when we do not specify the numbers p and q separately.

Lemma 1.1. *If we denote by Q_{p+q-2} the difference $P_{p,q}\gamma - \nabla_t^p \nabla_x^q \gamma$ for $p+q \geq 2$, then Q_n has the following properties :*

a) *Q_n can be expressed as a linear combination*

$$\sum a_i \cdot (\nabla^k R)(P_{j_1}\gamma, \dots, P_{j_k}\gamma)(P_{j_{k+1}}\gamma, P_{j_{k+2}}\gamma)P_{j_{k+3}}\gamma.$$

b) *In the above expression of Q_n , $\sum_{m=1}^{k+3} j_m = n+2$ for each term.*

c) *Q_n is a polynomial with respect to $P_i\gamma$'s ($i \leq n$). Moreover, each term of Q_n can contain at most one $P_n\gamma$.*

Proof. Property c) is a consequence of properties a) and b). Therefore we have to check a) and b). They trivially hold for $p+q=2$. In fact, $Q_0=0$. Suppose that they hold for $p+q \leq n+2$. For induction, assuming $p+q=n+2$, we have to check the forms $P_{p+1,q}\gamma = \nabla_t P_{p,q}\gamma$ and $P_{p,q+1}\gamma = \nabla_x P_{p,q}\gamma$. For the first form, we have

$$\nabla_t P_{p,q}\gamma = \nabla_t (\nabla_t^p \nabla_x^q \gamma + Q_n) = \nabla_t^{p+1} \nabla_x^q \gamma + \nabla_t Q_n,$$

and the term $Q_{n+1} = \nabla_t Q_n$ has the desired properties.

If the second form $\nabla_x P_{p,q}\gamma$ only contains ∇_x , the claim holds. If it contains ∇_t , we have

$$\begin{aligned} \nabla_x P_{p,q}\gamma &= \nabla_x (\nabla_t^p \nabla_x^q \gamma + Q_n) = \nabla_x \nabla_t \nabla_t^{p-1} \nabla_x^q \gamma + \nabla_x Q_n \\ &= \nabla_t \nabla_x \nabla_t^{p-1} \nabla_x^q \gamma + R(\partial_x \gamma, \partial_t \gamma) \nabla_t^{p-1} \nabla_x^q \gamma + \nabla_x Q_n \\ &= \nabla_t (\nabla_t^{p-1} \nabla_x^{q+1} \gamma + Q_n) + \{R(\partial_x \gamma, \partial_t \gamma) \nabla_t^{p-1} \nabla_x^q \gamma + \nabla_x Q_n\} \end{aligned}$$

$$= \nabla_t^2 \nabla_x^{q+1} \gamma + \{R(\partial_x \gamma, \partial_t \gamma) \nabla_t^{p-1} \nabla_x^q \gamma + \nabla_x Q_n + \nabla_t Q_n\}.$$

Q.E.D.

Lemma 1.2. *Let γ be a solution of (H) and φ a $P_n \gamma$. Then we have*

$$\nabla_t^2 \varphi + \mu \nabla_t \varphi - \nabla_x^2 \varphi = Q_n + Q_{n-1},$$

where Q_n has properties a)–c) in Lemma 1.1.

Proof. let φ be a $P_{p,q} \gamma$ ($p+q=n$). Then,

$$\begin{aligned} \nabla_t^2 \varphi &= P_{p+2,q} \gamma = P_{p,q} \nabla_t^2 \gamma + Q_n = P_{p,q} (\mu \partial_t \gamma + \nabla_x^2 \gamma) + Q_n \\ &= -\mu P_{p+1,q} \gamma + P_{p,q+2} \gamma + Q_n \\ &= -(\mu \nabla_t \varphi + Q_{n-1}) + (\nabla_x^2 \varphi + Q_n) + Q_n. \end{aligned}$$

Q.E.D.

2. All time existence

We start from a standard short time existence result in [4].

Theorem 2.1 [4, Theorem 7.5]. *For any closed C^3 curve $\gamma_0(x)$ and any C^2 vector field $\gamma_1(x)$ along γ_0 , there is a positive constant T such that equation (H) with initial data $\gamma(0, x) = \gamma_0(x)$ and $\partial_t \gamma(0, x) = \gamma_1(x)$ has a unique solution $\gamma(t, x)$ on $0 \leq t \leq T$.*

Let T be the largest number such that a solution $\gamma(t, x)$ with C^∞ initial data $\gamma_0(x)$ exists on $0 \leq t < T$. If we can prove that the solution $\gamma(t, x)$ is uniformly bounded on $[0, T] \times S^1$ in C^n -norm for each n , then we can extend the solution beyond the time T . This implies that the maximal existence time is infinite. To consider negative time interval $(-T, 0]$, we change the time variable t to $-\tau$, and get the same equation with resistance $-\mu$. Therefore, the proof of all time existence is reduced to the following

Proposition 2.2. *Let $\gamma_0(x)$ be a C^∞ closed curve on M and $\gamma_1(x)$ a C^∞ vector field along γ_0 . Let $\gamma(t, x)$ be a solution of (H) with initial data $\gamma(0, x) = \gamma_0(x)$ and $\partial_t \gamma(0, x) = \gamma_1(x)$ on $0 \leq t < T$, where T is a finite positive number. Then, any $|P_n \gamma|$ is uniformly bounded on $[0, T] \times S^1$.*

Proof. To prove this, we change the coordinate system $\{t, x\}$ to $\{\xi = t + x, \eta = t - x\}$. Then we have $\partial_t = \partial_\xi + \partial_\eta$ and $\partial_x = \partial_\xi - \partial_\eta$. Therefore, for $\varphi = P_n \gamma$,

$$\begin{aligned} \nabla_t^2 \varphi &= \nabla_{\partial_\xi + \partial_\eta} (\nabla_\xi \varphi + \nabla_\eta \varphi) = \nabla_\xi^2 \varphi + \nabla_\xi \nabla_\eta \varphi + \nabla_\eta \nabla_\xi \varphi + \nabla_\eta^2 \varphi \\ &= \nabla_\xi^2 \varphi + 2 \nabla_\xi \nabla_\eta \varphi + \nabla_\eta^2 \varphi + Q_n, \\ \nabla_x^2 \varphi &= \nabla_\xi^2 \varphi - 2 \nabla_\xi \nabla_\eta \varphi + \nabla_\eta^2 \varphi + Q_n. \end{aligned}$$

Hence, by Lemma 1.2,

$$4\nabla_\varepsilon\nabla_\eta\varphi = \nabla_t^2\varphi - \nabla_x^2\varphi + Q_n = -\mu(\nabla_\varepsilon\varphi + \nabla_\eta\varphi) + Q'_n,$$

where Q'_n denotes a form $Q_n + Q_{n-1}$. Note that $Q'_0 = 0$. From this equation, we have

$$\begin{aligned} 2\partial_\varepsilon|\nabla_\eta\varphi|^2 &= 4(\nabla_\eta\varphi, \nabla_\varepsilon\nabla_\eta\varphi) \\ &= -\mu(\nabla_\eta\varphi, \nabla_\varepsilon\varphi + \nabla_\eta\varphi) + (\nabla_\eta\varphi, Q'_n) \\ &\leq |\mu||\nabla_\eta\varphi|^2 + |\mu||\nabla_\varepsilon\varphi||\nabla_\eta\varphi| + |\nabla_\eta\varphi||Q'_n|. \end{aligned}$$

Fix a time t and take a maximal point (t, x) of $|\nabla_\eta\varphi|^2$. Then, at that point,

$$\begin{aligned} \partial_t|\nabla_\eta\varphi|^2 &= (\partial_t + \partial_x)|\nabla_\eta\varphi|^2 = 2\partial_\varepsilon|\nabla_\eta\varphi|^2 \\ &\leq |\mu||\nabla_\eta\varphi|^2 + |\mu||\nabla_\varepsilon\varphi||\nabla_\eta\varphi| + |\nabla_\eta\varphi||Q'_n|. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{d}{dt} \max |\nabla_\eta\varphi|^2 &\leq |\mu| \max |\nabla_\eta\varphi|^2 + |\mu| \max |\nabla_\varepsilon\varphi| \max |\nabla_\eta\varphi| + \max |\nabla_\eta\varphi| \max |Q'_n|. \end{aligned}$$

Adding a symmetric formula for $|\nabla_\varepsilon\varphi|$ to this, we get

$$\begin{aligned} \frac{d}{dt} \{ \max |\nabla_\varepsilon\varphi|^2 + \max |\nabla_\eta\varphi|^2 \} &\leq |\mu| \{ \max |\nabla_\varepsilon\varphi| + \max |\nabla_\eta\varphi| \}^2 + \max |Q'_n| \{ \max |\nabla_\varepsilon\varphi| + \max |\nabla_\eta\varphi| \} \\ &\leq 2(|\mu| + 1) \{ \max |\nabla_\varepsilon\varphi|^2 + \max |\nabla_\eta\varphi|^2 \} + \max |Q'_n|^2 \end{aligned}$$

Here, the derivation $(d/dt)u(t)$ means

$$\limsup_{h \rightarrow +\infty} \frac{u(t) - u(t-h)}{h}.$$

Now we can prove our claim by induction. Noting that $Q'_0 = 0$ in the above inequality, we see that the C^1 norm of γ is bounded by the initial data. In particular, the norm of any covariant derivatives of curvature tensor of M is bounded on the image of γ . Thus the claim holds for $n=1$. Suppose that the claim holds up to n . Then, φ and Q'_n in the above inequality are uniformly bounded on $[0, T) \times S^1$. Therefore, the above inequality implies that $\max |\nabla_\varepsilon\varphi|^2 + \max |\nabla_\eta\varphi|^2$ is bounded on $[0, T)$, hence $\nabla\varphi = P_{n+1}\gamma$ is uniformly bounded on $[0, T) \times S^1$.

Q.E.D.

3. Convergence

Now, we suppose that $\mu > 0$ and show the convergence. Let γ be the solution of (H) and put $\varphi = P_n\gamma$. We use an energy inequality for wave equations. Using Lemma 1.2, we have

$$\begin{aligned}
& \frac{d}{dt} (\|\nabla_t \varphi\|^2 + \|\nabla_x \varphi\|^2) + 2\mu \|\nabla_t \varphi\|^2 \\
&= 2\langle \nabla_t \varphi, \nabla_t^2 \varphi \rangle + 2\langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2\mu \|\nabla_t \varphi\|^2 \\
&= 2\langle \nabla_t \varphi, \nabla_x^2 \varphi - \mu \nabla_t \varphi + Q'_n \rangle + 2\langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2\mu \|\nabla_t \varphi\|^2 \\
&= -2\langle \nabla_x \nabla_t \varphi, \nabla_x \varphi \rangle + 2\langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2\langle Q'_n, \nabla_t \varphi \rangle \\
&= 2\langle Q_n, \nabla_x \varphi \rangle + 2\langle Q'_n, \nabla_t \varphi \rangle \\
&\leq C \|Q'_n\| (\|\nabla_x \varphi\| + \|\nabla_t \varphi\|),
\end{aligned}$$

where Q'_n denotes a form $Q_n + Q_{n-1}$. Note that $Q'_0 = 0$.

We show the following proposition by induction.

Proposition 3.1.

- 1) Any $\|P_n \gamma\|$ is bounded on $[0, \infty)$.
- 2) Any $\int_0^\infty \|P_n \gamma\|^2 dt$ is finite except $P_n \gamma = \partial_x \gamma$ (and $P_0 \gamma$).

Proof. Nothing that $Q'_0 = 0$ in the above inequality, we have

$$\frac{d}{dt} (\|\partial_t \gamma\|^2 + \|\partial_x \gamma\|^2) = -2\mu \|\partial_t \gamma\|^2 \leq 0.$$

Integrating both hand sides by t , we see that the claim holds for $n=1$. Suppose that the claim holds up to n . In the above inequality, if the factor $\nabla_x \varphi = \nabla_x P_n \gamma$ contains ∇_t , then

$$\nabla_x \varphi = \nabla_t P_n \gamma + Q_{n-1}.$$

And if not,

$$\nabla_x \varphi = \nabla_x^{n+1} \gamma = \nabla_x^{n-1} (\nabla_t^2 \gamma + \mu \partial_t \gamma) = \nabla_t P_n \gamma + Q_{n-1} + \mu P_n \gamma.$$

In both cases, we have

$$\begin{aligned}
& \frac{d}{dt} (\|\nabla_t \varphi\|^2 + \|\nabla_x \varphi\|^2) + 2\mu \|\nabla_t \varphi\|^2 \\
&\leq C \|Q'_n\| (2\|\nabla_t P_n \gamma\| + \|Q_{n-1}\| + \|P_n \gamma\|).
\end{aligned}$$

Summing up this inequality for all $\varphi = P_n \gamma$, we have

$$\begin{aligned}
& \frac{d}{dt} \sum_{P_n} (\|\nabla_t P_n \gamma\|^2 + \|\nabla_x P_n \gamma\|^2) + 2\mu \sum_{P_n} \|\nabla_t P_n \gamma\|^2 \\
&\leq C \{ \sum \|Q'_n\|^2 + \sum \|Q_{n-1}\|^2 + \sum \|P_n \gamma\|^2 \} + \varepsilon \sum \|\nabla_t P_n \gamma\|^2,
\end{aligned}$$

where ε can be taken arbitrarily small. Here, \sum_{P_n} means summation \sum_φ with respect to all φ of form $P_n \gamma$. Take $\varepsilon = \mu$. Then we see that

$$\frac{d}{dt} \sum_{P_n} (\|\nabla_t P_n \gamma\|^2 + \|\nabla_x P_n \gamma\|^2) + \mu \sum_{P_n} \|\nabla_t P_n \gamma\|^2$$

is dominated by a bounded L_1 function, because at least one $P_i \gamma$ is not $\partial_x \gamma$ in each

term of Q'_n . Thus, integrating by t , we see that any $\|P_{n+1}\gamma\|^2$ is uniformly bounded and that any $\|\nabla_t P_n\gamma\|$ is L_2 . Then, also any $\|\nabla_x P_n\gamma\|$ is L_2 , because it can be expressed by a $\|\nabla_t P_n\gamma\|$ and Q'_n 's. Therefore, the claim holds for $n+1$. Q.E.D.

End of the proof of Theorem. Finally, we remark that the derivative $(d/dt)\|P_n\gamma\|^2$ is expressed by $P_{n+1}\gamma$, and hence is uniformly bounded on $[0, \infty)$ by Lemma 3.1. Therefore, any $\|P_n\gamma\|^2$ (except $\partial_x\gamma$) converges to 0 when $t \rightarrow \infty$.

References

- [1] J. Eells, Jr. and J.H. Sampson: *Harmonic mappings of riemannian manifolds*, Amer. J. Math. **86** (1964), 109–160.
- [2] C.H. Gu: *On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space*, Comm. Pure Appl. Math. **33** (1980), 727–737.
- [3] N. Koiso: *Convergence to a geodesic*, Osaka J. Math. **30** (1993), 559–565.
- [4] S. Mizohata: Henbibun-houteisiki-ron (in Japanese), Iwanami-shoten 1965 (English translation: The theory of partial differential equations, Cambridge University Press, 1973).

Department of Mathematics
 Osaka University
 Toyonaka, Osaka 560
 Japan