<table>
<thead>
<tr>
<th>Title</th>
<th>Kolmogoroff ノ 論文紹介, I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>小松，醇郎</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>1937-06-16</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/74511</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/74511</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
586. Kolmogoroff / 論文紹介，Ⅰ

小松醇郎（阪大）

上ベッチ群及ビ環関スキル Kolmogoroff / 論文への最近度々発表スレ。ノノ部7日本数学物理学雑誌11巻第1号＝紹介シマシテ、然ノ紹介シテ Les groupes de Bett des espaces localement bicompacts (C.R.T.202)＝八谷田、角谷昌／御詔、通り Kolmogoroff / 言が談リガアル様デス。

ソレ故此即アソノ点ヲ証明シ且ツ Propriétés des groupes de Betti des espaces localement bicompacts (C.R.T.202)ヲ紹介シ定理ノ証明ヲ試ミテ見マス。尚又数物数検＝紹介シタ Alexander / 第一ノ環＝即テノ結果ヲ紹介シマス。

Ⅰ

① R : espace de Hausdorff localement bicompact
② : groupe abélien bicompact
③ : groupe discret abélien

1） ① 4).

九次元代数体 \(\mathfrak{G}^n \) の定義:

1) \(\mathfrak{G}^n(e_0, \ldots, e_n) \) 中で bi-compact + (ii)

個 / 任意 / 部分集合系 \(\mathfrak{S}_0, \ldots, \mathfrak{S}_n \) = 非 - 一意 = 決定

2) \(\mathfrak{G}^n \) の値 \(\oplus \) 元。

3) \(\mathfrak{G}^n \) の Argumente \(\mathfrak{S}_0 = \) 対 \(\oplus \) alternée.

4) \(\mathfrak{G}^n \) の Argumente \(\mathfrak{S}_0 = \) 等 \(\oplus \) additive, 即 \(\mathfrak{G}^n(e_0, \ldots, e_i + e_i', \ldots, e_n) = \mathfrak{G}^n(e_0, \ldots, e_i, \ldots, e_n) + \mathfrak{G}^n(e_0, \ldots, e_i', \ldots, e_n) \).

以上、旗体 \(\mathfrak{G}^n \) 包含ハーツノアーベル群 \(\mathfrak{G}^n \).

ノ \(\mathfrak{G}^n \) 中で次 / 偈件 \(\oplus \) 充大 \mathfrak{G}^n 包含群 \(\mathfrak{G}^n \) シ作リ。

5) \(\mathfrak{G}^n(e_0, \ldots, e_n) = \emptyset \) \(\oplus \) 0 元。

\[\mathfrak{G}^n(e_0, \ldots, e_n) = \emptyset \] \(\oplus \) 0 元

下境界 (frontier) ポテワノ Operator \(\mathfrak{G}_u \mathfrak{G}^n \subset \mathfrak{G}^{n-1} \).

\(\mathfrak{G}_u \mathfrak{G}^n = \mathfrak{G}^{n-1}(e_0, \ldots, e_{n-1}) = \mathfrak{G}^n(\mathfrak{G}, e_0, \ldots, e_{n-1}) \),

\(\mathfrak{G}_u \mathfrak{G}^n = 0 + \) 順列 (cycle) \(\mathfrak{G}^n \) 包含が作る群 \(\mathfrak{G}^{n-1} \).

\(\mathfrak{G}_u \mathfrak{G}^{n+1} = \mathfrak{G}^n + \) 下境界 \(\mathfrak{G}^n \) 包含が作る群 \(\Gamma^\circ \).

下ベッテリ \(\oplus \) \(\mathfrak{B}_u^\circ(R, \oplus) = \mathfrak{Z}^n - \Gamma^\circ \).

1) \(R \), locally bi-compact, 個々 \(\oplus \) 此知 \(\oplus \) 必要。

2) Topologie, 導入各数等表該 \(\oplus \) 通り。
8) 次元代数体 \mathbf{F}_n の定義:

1) $\mathbf{F}_n (P_0, \ldots, P_n)$ は R の任意の $\ell + 1$ 個の点が存在する定まり。

2) $\mathbf{F}_n (P_0, \ldots, P_n)$ は値の群 J の元。

3) \mathbf{F}_n の arguments $\mathbf{F}_n = \text{対称} \ alternée$.

4) 各 \mathbf{F}_n に対して有限個の bicom pact disjoint + 部分集合。

系 $S \mathbf{F}_n$ が存在する条件をもたれ。

a) $\mathbf{F}_n (P_0, \ldots, P_n) = \mathbf{F}_n (P_0', \ldots, P_n')$, かつ $P_i \neq P_i'$ とし $S_{\mathbf{F}_n}$ 同一の élément を含む集合。

b) $\mathbf{F}_n (P_0, \ldots, P_n) = 0$ (J 10元) かつ P_i 中に少なくとも二つ以上の点が R, $S \mathbf{F}_n$ を含まず

以上、架体 \mathbf{F}_n 全体がアーベル群 \mathbf{F}_n を含まず。

\mathbf{F}_n の基底次元条件 5) 充実する架体 \mathbf{F}_n は \mathbf{Z} に等価変換役として部分群 \mathbf{Z} で作用。

5) R に任意の点 \(P = \text{対称} \{ \text{近傍} \nu (p) \text{が定まり}

\begin{array}{l}
\text{全ての} \ P_i \in \nu (p) \text{ならば} \mathbf{F}_n (P_0, \ldots, P_n) = 0. \\
\end{array}

\text{1) 架体が ouvert であると前、} \text{fortefermure \ bicom pact = ナルモ} 1, \ \forall 1 \text{際 disjoint でナルモルトモ可能。}

\text{2) } \mathbf{F}_n + \mathbf{F}_2 \not\subset S \mathbf{F}_n \cap \mathbf{F}_2 \not\subset S \mathbf{F}_n , \mathbf{F}_2 \not\subset \text{éléments 相互}

\text{Durchschnitt R 並びに作たらル部分集合系。}

---241---
\[F^n = \bar{F}^n \cdots \bar{0}^n + n \] は Operator \(g_0 \).

\[g_0 f^n = f_{n+1}^n (P_0, \cdots, P_{n+1}) \]

\[= \sum_{i=0}^{n+1} (-1)^i f_i^n (P_0, \cdots, P_{i-1}, P_{i+1}, \cdots, P_{n+1}). \]

上项群 \(B_0^n (R, J) = \mathbb{Z}_0^n - H_0^n \)

II

定理 (1) ト \(\mathcal{J} \) ト \(\mathcal{J} \) 互いに = Character group = \(\tau \)

\(\alpha \) = トレバ \(B_0^n (R, J) \) ト \(B_0^n (R, \mathcal{J}) \) ト \(\mathcal{J} \) 互いに = Character group ト \(\tau \).

証明 \(\bar{f}_n \times \bar{g}_n = \sum \bar{f}_i^n (P_i, \cdots, P_{i+n-1}) \times \bar{g}_n (M_i, \cdots, M_{n+k}). \)

\(\bar{f}_n = M_1, \cdots, M_\aleph \) \(\bar{S}_1^n \)

\(\bar{g}_n = \bar{S}_2^n \)

\(\bar{f}_i^n, \bar{f}_n \)

\(\bar{S}_1^n = \{ M_1, \cdots, M_\aleph \} \)

\(\bar{S}_2^n = \{ N_1, \cdots, N_\aleph \} \)

\(\bar{S}_1^n \times \bar{S}_2^n = \{ D_i, C_i, C_{i+j} \} (i = 1, 2, \cdots, n) \)

\(\bar{S}_1^n + \bar{S}_2^n = \{ D_i, D_j, C_{i+j} \} (j = 1, 2, \cdots, k) \)

\(\bar{f}_i^n = M_i, N_i, C_{i+j} \)

1) \(g_0 g_0 f^n = f^{n+2}, g_0 f^n = f^{n+1} + n f^n \) 作レ群 \(\mathbb{Z}_0^n \)

\(g_0 f_n = f_n + n f^n \) 作レ群 \(\mathbb{Z}_0^n \).

24-2
\((\overline{f_1^n} + \overline{f_2^n}) \times \overline{g^n} = \sum_{S} (\overline{f_1^n} + \overline{f_2^n})(\overline{g_i^n}, \ldots, \overline{g_{in}^n})
\times \overline{g^n}(\overline{Q_{i_0}}, \ldots, \overline{Q_{i_n}})\).

上記 \(Q_i \subset S_{\overline{f_1^n} + \overline{f_2^n}}.\)

\[= \sum_{S} \overline{f_1^n}(\overline{g_i^n}, \ldots, \overline{g_{in}^n}) \times \overline{g^n}(\overline{Q_{i_0}}, \ldots, \overline{Q_{i_n}})\]

\[+ \sum_{S} \overline{f_2^n}(\overline{g_i^n}, \ldots, \overline{g_{in}^n}) \times \overline{g^n}(\overline{Q_{i_0}}, \ldots, \overline{Q_{i_n}})\]

\[= \sum_{S_{\overline{f_1^n}}} \overline{f_1^n}(\overline{p_i^n}, \ldots, \overline{p_{in}^n}) \times \overline{g^n}(\overline{M_{i_0}}, \ldots, \overline{M_{i_n}})\]

\[+ \sum_{S_{\overline{f_2^n}}} \overline{f_2^n}(\overline{p_i^n}, \ldots, \overline{p_{in}^n}) \times \overline{g^n}(\overline{N_{i_0}}, \ldots, \overline{N_{i_n}})\]

\[= \overline{f_1^n} \times \overline{g^n} + \overline{f_2^n} \times \overline{g^n}.\]

即ち \(\overline{g^n}\) は群 \(\overline{F^n}\) の real member mod. 1, 群

\(K = \text{homomorph = Abbilden}\) す. \(\overline{F^n}/\overline{K}\) は homomorph は Abildung に留.

任意の \(\overline{F^n}\) の複体 \(\overline{f^n}\) 唯一存在する. 何

テレルア

\(S_{\overline{f_1^n}}\) ト等シイ \(Mengensystem\) ト持ツ複体 \(\overline{f^n}\) ミ考ヘラヘ \(\overline{F^n}\) ノツラ部分群 \(\overline{F^n}(S_{\overline{f_1^n}})\) ヨ作り丁数 \(n-1\) 次元単体ノノ次元複体ノ群ト isomorph.

丁数 \(\overline{F^n}(S_{\overline{f_1^n}}) \rightarrow \overline{K}\) ノ異ヘル双対ノ複体群ガ単体上で考ヘラヘ. 即ち \(\overline{F^n}(n-1)\) ト \((n+1)\) 次元単体ガ Argument トスル函数値が定マリ. ツノ値ヲポムル \(\overline{g^n}\) ヘトルトスレバ

--- 243 ---
良イ、断クテルベテノ複体 \(\overline{f}_i^\infty \) と \(\overline{S}_{f_i}^\infty = \Sigma \overline{g}^\infty (N_0, \ldots, \ldots, N_n) \) 値が定まる。

函数 \(\overline{g}^\infty \) が bicom pact バ集合 \((x_0, \ldots, x_n) = \) 独agesトル値フ強制的=定メタガソレハ條件リ— 4) ヨ充リテ

居ル。Additive ルルコトハ

\(S_{\overline{f}_i^\infty} = \{ M_0 + M'_0, \ldots, M_n \}, S_{\overline{f}_2^\infty} = \{ M'_0, \ldots, M_n \} \)

\(\pi_{\overline{f}_i^\infty} = \overline{f}_j^\infty (P_0, \ldots, P_n) \times \overline{g}^\infty (M_0 + M'_0, \ldots, M_n) = \overline{f}_j^\infty \times \alpha \)

\(\pi_{\overline{f}_2^\infty} = \overline{f}_2^\infty (P_0, \ldots, P_n) \times \overline{g}^\infty (M'_0, \ldots, M_n) = \overline{f}_2^\infty \times \beta \)

\(\pi (\overline{f}_i^\infty - \overline{f}_2^\infty) = (\overline{f}_i^\infty - \overline{f}_2^\infty) (P_0, P_1, \ldots, P_n) \times \overline{g}^\infty (M_0, \ldots, M_n) \)

\(+ (\overline{f}_i^\infty - \overline{f}_2^\infty) (P_0, \ldots, P_n) \times \overline{g}^\infty (M'_0, \ldots, M_n) \)

\(= \overline{f}_i^\infty \times \overline{g}^\infty (M_0, \ldots, M_n) + \{ \overline{f}_i^\infty (P_0, P_1, \ldots, P_n) - \overline{f}_2^\infty (P_0, \ldots, P_n) \}

\times \overline{g}^\infty (M'_0, \ldots, M_n) \)

\(= \overline{f}_i^\infty \times \alpha + \overline{f}_i^\infty \times \beta - \overline{f}_2^\infty \times \beta \)

Homomorphism 1

\(\pi (\overline{f}_i^\infty - \overline{f}_2^\infty) = \overline{f}_i^\infty \times \alpha - \overline{f}_2^\infty \times \beta \).

\(\therefore \overline{f}_i^\infty \times \alpha = \overline{f}_i^\infty \times \alpha - \overline{f}_i^\infty \times \beta = \overline{f}_i^\infty \times (\alpha - \beta) \).

\(\overline{f}_i^\infty = \overline{f}_i^\infty (P_0, \ldots, P_n) \) ハ任意ノ \(\overline{f}_i^\infty \) イトルハ得。

同一フ \(\alpha, \beta \) (11) ノ元）が成立タレルナカラ

\(\alpha = \alpha - \beta \).

\(\therefore \overline{g}^\infty (M_0 + M'_0, \ldots, M_n) = \overline{g}^\infty (M_0, \ldots, M_n) \)

\(+ \overline{g}^\infty (M'_0, \ldots, M_n) \).

\(\overline{f}_i^\infty \rightarrow \emptyset = \) 依\(\overline{g}^\infty \) ハ，皆 \(O \) ノル値トル函数ナルコト明

---244---
ファイル故 =
\(F^n \sqcup \bar{O}^n \sqcup \bar{M} \bar{e} = \text{Charaktergruppe}. \)

部分群 \(\bar{O}^n \sqcup \bar{M} \bar{e} = \text{Annulatoren}. \)

\[\bar{f}_i^n \in \bar{O}^n, \quad S_{\bar{f}_i^n} \]

\[\bar{f}_i^n \times \bar{g}^n = \sum_{S_{\bar{f}_i^n}} \bar{f}_i^n(p_{i_0}, \ldots, p_{i_n}) \times \bar{g}^n(M_{i_0}, \ldots, M_{i_n}) \]

\[\bar{M}_{i_0}, \ldots, \bar{M}_{i_n} = 0 \quad \text{or} \quad \bar{g}^n = 0, \quad \bar{M}_{i_0}, \ldots, \bar{M}_{i_n} \supset p \]

ナラバ

\[\bar{g}^n \neq 0, \quad \text{然に} \quad \bar{f}_i^n(p_{i_0}, \ldots, p_{i_n}) = 0 \]

\[(p_i \in V(p), \quad p_i \in M_i). \]

\[\therefore \quad \bar{f}_i^n \times \bar{g}^n = 0 \]

\[\Rightarrow \quad \bar{g}^n \neq \bar{M} \bar{e} + \bar{M}_0 \cdots \cdots \bar{M}_n = 0 \quad \text{且々} \]

\[\bar{g}^n(M_{i_0}, \ldots, M_{i_n}) \neq 0. \]

故 = \(S_{\bar{f}_i^n} = \{ M_0, \ldots, M_n \}, \quad \bar{f}_i^n \in \bar{O}^n + M \bar{f}_i^n \).

\[\bar{f}_i^n \times \bar{g}^n = 0. \]

\[\therefore \quad \bar{F}^n - \bar{O}^n = F^n \sqcup \bar{M} \bar{e} = \text{Charaktergruppe}. \]

\[\ast = \quad f^n \times g_n \bar{g}^{n+1} = g_n f^n \times \bar{g}^{n+1}. \]

1) \(\bar{M} \bar{e} \rightarrow K \times \text{stetig homomorph} \)

2) A. Kolmogoroff; \(\text{Über die Dualität im Aufbau der kombinatorischen Topologie. Recueil Mathématique t.1. (97-102) } \)

---245---
故 は \(B_n(\mathbb{R}, \mathbb{G}) \) と \(B_n(\mathbb{R}, J) \) と \text{Character-group}。

III

補助定理. 映体 \(x^\Delta \) ハーツ, 上原体 \(E_n(\mathbb{R} \leq n) \) と
0-homology \text{Null} 即 \(x^\Delta \) で \(g_0 f^{n-1} = Z_0^n \) ゆる如
き (n-1) 次元複体が存在す。

証明. \(x^\Delta \) デー点やットリ \(x^\Delta \) と次マニ \(x^{n-1} = \) 飛
り
\[
\begin{align*}
&\begin{cases}
 f^{n-1}(x^\Delta) = Z_0^n(+ p \cdot x^{n-1}), & x^{n-1} \text{が点} P \text{合マストキ} \\
 f^{n-1}(x^\Delta) = 0, & x^{n-1} \text{が点} P \text{合ムトキ}.
\end{cases}
\end{align*}
\]

ト定メル. 任意 \(x^n \) が点 \(P \) 合マナイナラベ
\[
(g_0 f^{n-1})(x^n) = (-1)^i f^{n-1}(x_i^{n-1})
\]
\[
= (-1)^i Z_0^n(+ p \cdot x_i^{n-1})
\]

仮定ヨリ
\[
g_0 Z_0^n(p \cdot x^n) = (-1)^{i+1} Z_0^n(+ p \cdot x_i^{n-1}) + Z_0^n(x^n) = 0
\]
\[
\vdash g_0 f^{n-1} = Z_0^n(x^n) .
\]

Alexander の定理 Homologiering は是, 係数
は trivial = + 1, 即 \(\frac{1}{2} \sum f^2(x^n) f^3(x^\Delta) \)
益 = \(x^n + x^{n+1} \) fremd + 単体 \(x^n \) ト \(x^\Delta \) トが張ル単体;
和ハ \(x^n + x^{n+1} \) 断 様ナリ 次元単体ト次元単体トノ張ル形二分ケテル

1) \(x^n = (a_0, \cdots, a_i, \cdots, a_n) \) テスレバ
\[
x_i^{n-1} = (a_0, \cdots, a_{i-1}, a_{i+1}, \cdots, a_n)
\]

凡例などは併記されぬ。

\[U_{0}^{\Delta+1} = (Z_{0}^{r} \cdot Z_{0}^{S}) = 0. \]

何れにレベ任意,

\[U_{n}^{\Delta+1}(x^{r}+x^{S}) = \frac{1}{2} \sum Z_{0}^{r}(x^{r}) \cdot Z_{0}^{S}(x^{S}) \]

\[= e_{o} f^{r} \cdot e_{o} f^{s} = \]

\[= \pm e_{o} e_{o} f^{r} f^{s} f^{\pm 1} = 0 \]

為 \[x^{r}+x^{s} = \] \[U_{n}^{r+s} \] 値

\[0. \]

1) \[g_{0} f^{r} = e_{o} f^{r}, \quad e_{o} \cdot e_{o} (p) = 1, \quad e_{o} (-p) = -1 \quad \text{for} \quad 0 \] 次元破体。

群ノ元トントナラ存在＝值ノ計算； \[x \cdot x = f^{r} f^{s} f^{\pm 1} \] 持ッタ来タ。