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Abstract

We first show that for each Weyl algebra over a positive chartic field, we
may obtain an affine space with a projectively flat connectianit. We give a set
of differential equations which controls the behavior o tbonnection under endo-
morphism of the Weyl algebra. The key is the theorypof -cumes.

Next we introduce a field){;® of characteristic zero as a limit of fields of pos-
itive characteristics. We need to fix an ultrafilter on the afeprime numbers to do
this. The field is actually isomorphic to the fie@ of complex numbers.

Then we show that we may associate with a Weyl algebra oveffi¢icd Qﬁ"’)
an affine space with a symplectic form in a functorial way. {Theeans, the asso-
ciation is done in such a way that an endomorphism of the Wegghaa induces a
symplectic map of the affine space.

As a result, we show that a solution of the Jacobian conjecursufficient for
an affirmative answer to the Dixmier conjecture.

1. Introduction

A Weyl algebraA, k ) over a field is a non commutative associadigebra with
2n generators which satisfy canonical commutation relation

Al‘l(k) :k(é‘_l’gZ,---’Em ’717 n2v"'7nn>/(njél' _Elr]j _(SIJ! 15 la.] Sn)a

where §;; is the Kronecker's delta. It is common to relate suchgaahtum” object
to a “semi-classical Hamiltonian” (symplectic) object. mi@ly, we may associate the
Weyl algebra with an affine space

AZ" = Speck V‘lv T25 AL ] T;lv Ul’ U2v ey UIZ])

with symplectic structure given by a symplectic form

Q= Xn:dT, AdU;.
i=1
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In this paper we study its functoriality from an arithmetioimt of view. Namely, for
any non-principal ultrafiltei/ of the set Spn¥{) of maximal ideals ofZ, we first de-
fine a fieIdQ(j") as a ultraproduct of fieldﬁp of finite characteristics (Definition 6.1).
The field is large enough to contain arbitrary fiekd  which istéily generated over
Q. In fact, it is (non canonically) isomorphic to the field of complex numbers. Then
we see that when the base fiddld is equal to our f@jﬁ) the associated symplectic
space £%, Q) behaves functorially with endomorphisms of the Weyl atgetPropo-
sition 7.1).

To this end, we first pass to a case where the characteristigkghof & is non
zero. Then the Weyl algebra, k () has a fairly large cerfigrk ( )e Th-th root”
S, (k) of Z,(k) may be regarded as a “ring of eigenvaluesAgfk ( ).” We rdefa sym-
plectic form on an affine spacé? = Specf, k )) by essentially inverting the process
known as “geometric quantization.” (The author proposesmen “geometric antiquan-
tization” for this procedure.) Elements of the Weyl algelar@ related to differential
operators on a vector bundle on the affine spaéevia a connectioriv. . We will give
a set of differential equations which describes how muchdbenection varies under
an algebra endomorphism of the Weyl algebra (Propositi@h 3he equation is quite
interesting by itself and is derived from an argumentgin rvature. (Section 8 is de-
voted for nontrivial examples of the equation.)

Then we go back to the characteristics zero case by takimgit;1i namely by
considering an ultrafilter (Proposition 7.1).

As an upshot, we show that a solution of the Jacobian comgetould imply the
(generalized) Dixmier conjecture (Corollary 7.3).

2. Preliminaries

In this section we summarize some definitions and facts onl \Alggbras needed
for the rest of our arguments. Proofs are fairly easy and aued in [8].

DeriniTion 2.1, A Weyl algebrad,, K ) over a field is a non commutative asso-
ciative algebra defined as follows:

An(k) :k<gla EZa "‘75!17 771, ’727 e ’711)/(’7/5! _%_1771 _8”1 15 lv.] S n)7

(whered;; is the Kronecker’s delta).

When the characteristic af is 0, a study /of -algebra endohisnp of A, k) is
deeply related to Jacobian conjecture [3].

It is also important to studg -algebra endomorphismsAgfk  ( Emvicharacteris-
tic p of k is non zero. In that case, the Weyl algebtak () has thievidhg proper-
ties [8].
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Proposition 2.2 ([8, Lemma 3]). Let & be a field of characteristip > 0.
(1) The centerZz,(k) of the Weyl algebraA, (k) is a polynomial ring generated by
P &-1’ )4 )4 V4 p
1:625+++38n-N1, N2 -5 Mn-
(2) A k-algebra endomorphism aofi, (k) induces ak -algebra endomorphism of the
center Z,, (k).

The following easy lemma plays an important role in our study

Lemma 2.3 ([8, Lemma 1]). Let k be a field of characteristipp. Then ak -
algebra 9t which is generated by, o, ..., ty, v1, Vo ..., v, With the relations

[vjv:u'l']:&jiv Vj-):O, :u'[{):o (lv.]:l27n)
(whereé;; is the Kronecker's deltds isomorphic to the full matrix algebra/ (k).

Proof. We have a representation of the algebrakon, i, ..., x,1/(x], x5, ...,
x?) wherey; is identified with multiplication by; v; is identified thid/dx;. O

From now on, we fix such an isomorphism all the way and regaedeflements
U1, 2, ..., in, V1, V2...,V, as matrices. The next lemma tells us that each of the
standard generators, &z, ...,&,, 11, N2 ...70, IS expressed as a sum of its (unique)
eigen value and a constant matrix.

We first add some notation. We assume is a perfect field of ctaistic p > 0.

DeriNTioN 2.4, We putS, k ) =Z, k ¥? =k[T1, T>,...,T,, Uy, Us ..., U,] (T; =
NP, U = (n")¥P). (Where o'/7 denotes p -th root in the sense of commutative
algebra.)

We may regardl;, U; respectively as the “eigen value” of operajars;.

Lemma 2.5 ([8, Lemma 5]). Let us putM = S,[x1, x2, ..., x,]/(x1, x5 ..., x0).
Then there is a representation df,(k) on M defined in the following way

0
) =x +T;, D(n;) =

+U;.
ax,-

In other words there exists a -algebra homomorphisin A, (k) — M ,-(S,(k)) de-
fined by the above representation
The k -algebra homomorphisd®  may be extended to the folloveimignarphism

d: A” (k) ®Z,,(/<) Sn(k) = Mpn (S” (k))

In terms of the “trivialization” of the Weyl algebrai, k() as atp endomor-
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phisms of A, k) is expressed as follows:

Lemma 2.6 ([8, Lemma 7]). Letk be an algebraically closed field with charac-
teristic p > 0. Let ¢: A, (k) — A,(k) be ak-homomorphismy: Z,(k) — Z,(k) its
restriction to the centerThen we have the following
(1) ¢ extends uniquely to & -algebra homomorphism

i Su(k) = Su(k)
(2) ¢ extends uniquely to & -algebra homomorphism
b An(k) ®2,4) Suk) = A, (k) ®2,x) Su(k)
(3) Under the isomorphisn® dfemma 2.5,&5 may be identified with a map
M(Su(k)) 3 m(T, U) = G(T, U)m(f(T, U)G(T, U)™*

where G(T, U) is an element of GI(S,(k)) and f = “fﬁ: A% — A% is a polynomial
map associated to the algebra homomorphigmin other words we have

P(p(x)) = Gf(@(x))G .

In short, we may decompose the algebra endomorphism  of thg sligebra
into two pieces. One is an endomorphis?mof a polynomial algebra, and the other is
a conjugation by a matrix valued functioi . It is naturallyjated to the theory of
fiber bundles and connections, and that is what we do in thé seption.

Corollary 2.7. ¢ is invertible if and only ifyr is invertible

3. Symplectic structure defined by a connection

In this section we fix a fielk of characteristie> 0 and wrke  frk), (A,
for A, (k), and so on.

Now we introduce a symplectic form on the space Spec of “eigglnes of
generatorsty, &z, ..., &, 11, N2 ..., N, fOr A, This is done by inverting the process
known as “geometric quantization.” (See [9] for a descoiptof geometric quantiza-
tion.) Namely, we create a connection on a vector bundle @tSpby using the non-
commutative algebr#, #A,®z S, ove¥, and then consider its curvatma.f(\We
may call this procedure “geometric anti-quantization.’pt&l thatB, is isomorphic to
the full matrix algebraM,. §, ) ovesS, (Lemma 2.5).

Lemma 3.1. Let B, be the sheaf of modules depec(, ) associated to the
-moduleB, (= A,®z, S,). Then there exists an unique connect@f) on the sheaf

Sll
E,l such that the following conditions hold
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(1) vO@ is flat (that meangsit has zero curvaturge

(2) Every sectiory o8, which corresponds to an element pf is palralith re-
spect tov©,

The V@ above further satisfies the following Leibniz rule

VO(xy) = (VOx)y +x(VQy)  (Vx,Vy € B,)

Proof. The unigueness of such a connection is a direct coeseg of the fact
that B, is generated by, as$% -module.

To see the existence, we may identify, as we have alreadyisdegmma 2.5, the
algebraB, withM,. §, ), element,, ..., &,, n1,..., n, corresponding respectively to
Tv+pg, ..., Ty+pw, U+, ..., U, +v,. Then the connectioW© may be defined by
the following formulae.

d
0
Vil = — +ad@; )

aT; .
(3.1) o _ (i=12....n)
Vasou, = U ad(u; )

We see immediately that the connecti®®® surely satisfies the required conditions.
O

We would like to get rid of “Ad” in the equation (3.1). In otherords, we “lift”
the connectionv(©@ and introduce a connectio  on the trivial shédf  (associated
to the freeS, -moduleM £P’_; S,) on Spes, by the following formula.

n
V=d+dF, F=Y Tv—U.
i=1

It is not as canonical as the connecti®). Our task is therefore to find how it
varies under an algebra endomorphismAgf
The connectioriv  satisfies the following compatibility cdiati with V©.

(3.2) Vav)=(VQ)v+a(Vv) (a € B, veM).

Let ¢: A, — A, be ak -algebra endomorphism. Lt : Spee> Spec be the
associated morphism.

Note that any connection o  may be written as a sum of the iextderiva-
tive d and a matrix valued 1-forp . We may define pull back of tbernection with
respect tof as follows:

frfd+e)=d+frp.
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We would like to know how our connectioW varies when pulle¢lbavith re-
spect tof . The answer is given by the following proposition.

Proposition 3.2. Let k¥ be a field of characteristip > 0. Let ¢: A, — A,
be a k-algebra endomorphisniet f: Sped, — Spe§, be the associated mor-
phism Let G be a matrix valued function o8pec, which satisfies the propert{3)
of Lemma 2.6.Then we have the following identity

(3.3) G(f*VGl=V+w

wherew = Y "I (wr.dT; + wy,dU;) is a unique solution of the following set of differen-
tial equations.

(3.4) (i=1,2...,n)

9\t ' 8U;
w5’+<aU-) (wu"_ & BU{) =0

whereT; = ¥(T;) = f*(T;), U; = ¥(U;) = f*(U;) (seeLemma 2.6for notation).
Note that above proposition immediately implies the foliogy

Corollary 3.3. If the total degree of¢ is less thap/2, (that is elements

(1), ¢(82), ..., @(6n), d(m1), d(m2). ..., é(n,) are all expressed as gnon commuta-
tive) polynomial of the standard generatof$i, &, ...,&,, 11, n2 ..., n,} Of degree
less thanp/2) then the connectiofv  iSinvariant” To be more preciseve have

G(f*V)Gl=vV

in that case In particular, the associated may  preserves the curvat{sgmplectic
form) @ =3""_,dT; AdU;. Thus the Jacobian of is equal th

To prove Proposition 3.2, we use the theoryof -curvaturg (Bl).
In particular, the following lemma is needed for our arguinen

Lemma 3.4 ([6, §10.6.3]). Let D be a derivation on a commutative algebfa

Assume that there exists a noncommutative algebra  whictaiosnC as a subalge-
bra and an element € A such that

(&, f1(= &f — &) = D(/)
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holds for all f € C. Then for any elemenf af we have
(E+F)P =EP+DPHf) + [P,

Proof of Proposition 3.2.  Since the equation (3.4) is adeliin «, the unique-
ness of its solution is equivalent to saying that there is oo trivial solution to the
following equation.

; 9 p—1
an V=0
o7, < T, ) (or,)

9 p—1
@ * <8U~> (o) =0

By considering the highest degree of both hand sides, wehsgdhe above equations
surely have no nontrivial solution.

Let us now proceed to obtain the differential equations.ddmhately, p -curvature
is only significant for a flat connection, which our connecti¥ fails to be. So we
modify the connectionv —and introduce another connectih on the sheafVl by
the following formula.

(3.5) (=12....n)

(3.6) vO=v -3 "1dy; <:d+dF—ZT,-dU,->

i=1 i=1

In other words,

d d

1 1

VES/?’)T,- = —' +v;, V('(i/zll’,- - —' — Ui — 1,‘.
811 aLl

From the above formula we may check immediately that the ection VY certainly
is a flat connection. Let us compute its -curvature go¥{H. For any vector fieldD
on Speé, , the following relation holds.

n p
(3.7) (cury, VYD) = (V) — v = — <Z T; dU;, D> .
i=1

(The symbol{(p, D) denotes the pairing of a 1-fogn  with a derivat{on tangent
vector field) D .) Indeed, the above formula is clearly valid 0 = 3/07; or D =
d/0U;. Using p -semi-linearity (the terminology is borrowed froi)

(curv, VOY(fiD1+ f2D5) = f7 - (curv, VO)(Dy) + £F - (curv, V) (D)

of the p -curvature, we see that the formula is valid in general
Now, suppose we have an endomorphism Af . We have an assbcizp
f:Sped, — Spe§, . Both the connectior?) and the conjugate&s fEVO)G—1 of
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the pull back are connections e which satisfy the same ctiiligt condition as
V in equation (3.2).

Thus we see that there exists an scalar valued 1-fofthsuch that the following
equation holds.

G(f*v(l))Gfl =v® +,®
If Dis a derivation onA,, which satisfie®? =0, then we use Lemma 8dt @btain
G((f VD)) G = (V)P + D", D) + (), D)”.

Applying equation (3.7) to this equation, we obtain the daling equation.

n p n p
- <Z T,;dU;, D> =— <Z T; dU, D> + D" Yo, D) + (0, D)?
i=1 i=1

Putting D =3/dT; orD =3/dU; , we obtain differential equations fefY). It is now
easy to go back and derive the differential equations (d#)f = G(f*V)G™1 -V
using the equation (3.6). U

4. Estimate for degree of inverse

We cite here the following proposition.

Proposition 4.1 ([1]). Letk be a field with any characteristic. L&t: k[ X1, ...,
X,] — k[ X1, ..., X,] be an algebra automorphism of polynomials over a fieldhen
we have

deg(F ™) < deg(F y .

We have the similar bound for Dixmier case.

Proposition 4.2. Letk be a field of characteristip > 0. Let ¢: A, (k) — A, (k)
be ak -algebra automorphism of a Weyl algebra over a fieldhen we have

degp ) < degp Y L.

Proof. ¢ induces a -algebra automorphigm of the cemtgrk ( JApfk . ()
Then we notice that the algebrd, k () is isomorphic to polynéraigebra of 2 -
variables and that the degree @of is the same as that of . [l

Corollary 4.3. ¢ is surjective if and only if its restriction to a finite dimensal
vector space

Ay (k)<on—1 = {x € An(k); total degree ofx is less than or equal 8a — 1}
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is surjective on standard generators

Thus the question of surjectivity reduces to a question omeal map between
finite dimensional vector spaces. Thus we see that the foigpéemma holds.

Lemma 4.4 (A stronger form of [8, Lemma 2]). Let 8 be an algebraic nhumber
field with the ring of integersD. Assume we are given 8-algebra endomorphismgp
of the Weyl algebraA,(K). Then
(1) For almost all(that is all except finite number dforime idealsp of O, ¢ induces
an algebra endomorphism, of an algebraA, (k(p)) over k(p) wherek(p) =O/p is a
field of a positive characteristip.

(2) ¢ is invertible if and only if homomorphismg, are invertible for infinitely many
primesp € Specp).

5. Limit using ultrafilter

In this section we use ultrafilter-limit to show how we obtalve results for fields
of characteristics 0 from the results for fields of positiieacteristics. To avoid un-
necessary confusion, we recall some elementary facts ifolf@ving. Those readers
who are not familiar with the arguments are invited to read deample [7] or the
book of Bourbaki [2].

Lemma 5.1. LetU be a filter on a setX. The following statements are equiva-
lent
(1) U is an ultrafilter. That meansa maximal filter
(2) for any subsetS C X, we have eitheiS e &/ or CS e U

Derinmion 5.2, A principal filter on a sefX is an ultra filter of the for, =
{SC X |ae S} wherea is an element ok . A ultrafilter which is not principatefil
is called non-principal.

Lemma 5.3. For any ultrafilter ¢/, the following statements are equivalent
(1) U is principal.
(2) U is not free That means(), o, U # 9.
(3) There exists a membat  of which is a finite se{#E < oco).
(4) There exists a co-finite subs&t  &f (that means#(X \ Y) < oo,) such that
Yé¢u.
In particular, if &/ is a non-principal ultrafilter on a sefX, then any co-finite subset
Y of X of is a member of/.

An ultrafilter &/ on a setX may be identified with a point of StoGeeh compact-
ification of (X with discrete topology). A non principal ulfiéer is identified with a
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boundary point. In particular, any infinite sets have nomgpgal ultrafilters.

6. A field Q”

In this section we define a fiel@gj") as a ultraproduct of fields of positive char-
acteristics. It is isomorphic to the fiel@ of complex numbers and therefore plays a
role of ‘universal field’ in the sense of Weil.

We denote byF, = Z/pZ a finite field with p -elements, and bF,,
injlim,_, . F,» its algebraic closure.

DeriniTioN 6.1.  Letl/ be an ultrafilter on Spri#). We put

1(,?0) = l_[ F[;/SZ/{
pESPME)

where Jy, is an ideal of] | F,, defined as follows

Ju=1{(fodpesomey €[] Fp|3U el such thatf, =0 fovpeU
peSpm{Z)

We also define the following.

Ql/{ = l_[ Fp l_[ Fp N jZ/l

peSpm{) peSpm{)
We denote bymy,: [], F, - (@Z(jc) the canonical projection.

Lemma 6.2. Q}j") is an algebraically closed field of characteristicwhich con-
tains Q,; as a subfield

Proof. Let us first show tha@l(jc) is a field. Let f =my,((fy)) be a non zero
element inQS"). Let E1 = {p € SpmE); f, 7 0}. Then for anyE € U, intersection
E N E; is non empty. Maximality of/ now implies thatE; itself is a member ol/.
The inverseg =4,) of f in Ql(f) is given by the following formula.

l flifpekE
8p = .
0 otherwise

Next let us prove that the characteristic @ﬁ’o) is zero. Ifn =0 in Q}jo) for a
positive integem , then there exisp € U such thatn € Nyeg,p. On the other hand,

as we have mentioned in Lemma 5.3 above, being a member of -privaripal filter
U, Eo cannot be a finite set. Thus the characteristic@éjp) is zero.
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That Q is a field is proved in a similar way@(;,’") clearly containsQ,, as a sub-
field.
Finally let us proveQ(j") is algebraically closed. Let

a(X) = X" +a,_1 X"t + - +ar X +ag

be a monic element of the polynomial aIgeh@@C)[X]. Then each coefficient; may
be written as a limit

a;i = mu((ai,p)) ai,p € Fp'
SinceF,, is algebraically closed, we may find an solutign  of the poiyred
ap(X)=Xx" +a,z,1_,,X"*1 t---+ay ,X tag.
Then we may see easily that
r=mu((ry))
is a root ofa inQ{Y. O

Lemma 6.3. The cardinality ong’o) is equal to that ofR. Hence(@l(jc) has in-
finite transcendence degree ov@r

Proof. Since(@(f) is a quotient space of countable product of countable Bgts
we have @go) < #R. To prove the converse inequality, we would like to define a
surjective mapQy, — S = R/Z. First we define;, ¥, — S by

tp:F,=2/pZ>@mmodZ) = (n/p modZ) € R/Z.
It is an well-defined map. Then we defime as follows.

(@) = lim i(a)

Where the limit in the right hand side is the one in the usuakseeof filter. It is easy
to verify that the limit always converges and is well-defin¢8ee the Lemma be-
low) Furthermore, for any € S* and for any primep , we may choosg € F, such
that ¢, @, ) is the nearest ta . Then the distance dist(, .(@ ) ) betwgen) and«
should be smaller than/& . We see immediately from this tha&,)XE «. Thus our
map r is surjective. O

For those of readers who is not used to the arguments in littrafive record here
the proof of the fact used in the proof above.
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Lemma 6.4. n defined in the proof above is well-defined
Proof. ForU € U we put
Ju ={y(a,); p e U}.
Then a collection
F={y:Uel}

is a filter. We need to show that is Cauchy. That means, for ary> 0, there exists
a memberU € U such that diameter of, is less than . To do this we divile
into several pieces. LeV  be an integer such that /e 1 . We put

j 1
Sty = [l—, i+ —) modZ
’ N N

and set
Tin = {p € SPME); 1,(a,) € Sty ).
Then we clearly have
SpMEZ) =Ton UTinUTon U« UTy_1n (disjoint union)

Sincel{ is an ultrafilter, using Lemma 5.1 (2) several times, we moticat we have
one and only oné such thdiy is a memberlbfJy,, is a member ofF and is
contained inS},. It follows that the diameter ofi, v is less than . O

7. Main proposition

Proposition 7.1. For each non-principal ultrafilter/ on Spm(), we have the
following statements
(1) (@S") is isomorphic toC as a field
(2) There exists a monoid homomorphism

Luy: Enq@y_alg(A,,(Q(f))) N Ende)_alg(@g@m, Tp ..., T, Uy Us ..., Uy])

such that the following properties hold
(38) Ly(¢) preserves the symplectic form

Q=dT1 NdU1+dTo ANdUy+---+dT, ANdU,.

(4) The Jacobian ofL;(¢) is constant and is equal ta.
(5) Ly(¢) is invertible if and only if¢ is invertible



ENDOMORPHISMS OFWEYL ALGEBRA 447

Proof. (1) is already proved in Lemmas 6.2 and 6.3. For the sdksimplicity,
we denote

VL V2o Y =818, . En,muna . na,
and for any multi-indext iy, io, ..., 2}, we put

Q. in+l i2n

I — i
Vo=V Y Y Yo

Then for any fieldk , any element of, k() is uniquely written ag d@ne&r combina-
tion of y/ 's. Now, suppose we have @g’o)-algebra endomorphismp A, Qéjo)) —
A,,((@(J")). In terms of the standard generatgr s, we may write

¢(ri) = aiy'.
i

Regarded as elements Qé,‘”), a;; may be written as a limit

ai = nu((ai,l.p)) (ai.l,p € F[1)-

Since condition ofp being algebra endomorphism is given byniefiset of equations
in terms of coefficientdq; ;} ofp,, we see immediately that there exigtse ¢/ such
that for eachp € U , we may define el_?},—algebra homomorphism

¢p: Au(Fp) — Au(F))
by the formula

¢p(yi) = Zai.l,pyl-
il

The total degree ofp, is less than or equal to the total degree ¢.oApplying
Corollary 3.3 tog, forp > 2 , we see that the map

v, A?(F,) — A*'(F,)

associated t@, < U,p> & ) induces a polynomial map which presehesym-
plectic form. So we put

W = ﬂu((lﬁp))-

It is an well-defined polynomial map which preserves the dgetic form. This proves
(2) and (3). (4) easily from (3). Let us prove (5). “If” part @ear. Supposd.i(¢) is
invertible. Lety = {y,} be the inverse. There exists an elemén& U/ such thaty , o
¥, = id holds for any elemenp € E . Then for sugh , we see from Corollaiy 2
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that ¢, : A, F,) — A.(F,) is invertible. Let¢, be the inverse. There is a bound for
the total degrees oE,, by virtue of Proposition 4.2. Thus we may gather the_‘g,e

together and define a@l(jc)-algebra homomorphism
V= mu((@,): AQY) — AQ)
V¥ clearly gives an inverse ap . [l
Let K be a field of characteristic zero. Then the following eatjres are known.

Conjecture. (generalized) Dixmier conjecture (Dixmiern ( )) Any endompbism
of A,(K) is invertible.

Conjecture. Jacobian conjecture (Jacobian ( )) Any morphigq(K) — A, (K)
with the constant Jacobian is invertible.

The following two facts are known.

Proposition 7.2. (1) Jacobian conjecture may be reduced to the case where
K =Q.

(2) Dixmier (n) implies Jacobian(n).

(See [3] for details of these two facts.)
The Proposition 7.1 immediately yields the following.

Corollary 7.3. Jacobian(2n) implies Dixmier(n).

Proof. Suppose we have & -algebra endomorphismi, K & A, K ( ) for a
field K. In terms of the standard generagr 's, we may write

¢(yi) = Z airy’.
i

We may concentrate ourselves to the subfieldkof generatedI ihea coefficients
{a; ;} of ¢ and assume thak s finitely generated o@r Then we may embe&
into our field ©2;; and apply Proposition 7.1. By the assumption Jacobian (Be)map
Ly(¢) is invertible. This impliesp is invertible. O

So if we leave the numbet  of variables out of count, we havevehthat the
Jacobian conjecture and the Dixmier conjecture are ecgrital
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8. Examples

In this section we give some examples of endomorphism  of tlegl \&lgebra
A, (k) over a fieldk of characteristip > O.

ExavpLE 8.1. For any non-negative integers, ¢ such that ¢ + +1)= , we
define an algebra endomorphispfi*) of A1(k) as follows.

¢ I(Er) = ()&, ¢" (1) = ma(5uma)'.

It induces the endomorphisri)(”f) of the polynomial algebrsy(k) = k[T1, U4] given
by the following formula.

vONm) =13y, Iy = Tt

The differential equation in Proposition 3.2 tells us tHa tl-formw in the equa-
tion (3.3) is given in the following formula.

r=1 r—1
! ! ! !
_ pp—1 p -1
w==Y w0l Ty T+ Y st Ul o,
=0 1=0

The Jacobian of} is 0 unlesss = = = 0. Note also that the set of all the endo-
morphisms given in this examples are closed under composif endomorphisms.

(r2,52) (ris1) = p(ritra,s1+p'ts2)
¢ °¢ ¢ .

ExavpLE 8.2. Leta be a polynomial in two variables. Then we may corsttle
following endomorphismyp  ofd; (k).

(&) =& +a(g], m), é(n1) = n1.
It induces an endomorphism of the center
Y(11) = Tu+a(Tf, Un) +b(T1,Ur),  ¥(U1) = Us

whereb (1, U1) is a polynomial determined by the following equation.
d \""*t .
b(T1, U)? = — 7, Uy).
(T1, U) <dU1) a(Ty, Ur)

We may easily compute the 1-form  and the Jacobianydaof .

® = b(Ty, Uy)dUs,
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. (d
Jacfy) =1+ (d_T1> b(T1, Uy).

Let us describe them in terms of coefficientsan ,

oo
a(Ty, Uy) = Y a;;T{U].
i,j=0

The functionsb, Jatﬁ() are written in the following manner.

b(Tlv Ul) = - Z (ai,lpfl)l/l) T]l_' U:{__l
i>0,/>1
oo

Jac(r) =1 (aip-)"PiT{ U !
i,l=1

Note that Jae}) =1 if the total degree ofi is smaller thgn
A little more computation shows the following. If the totaégtee ofa is less than
p —1, thenG is given by the following formula.

G= ex(— [K;Oa(s+Ul)—a(U1)ds] ] ) .

Where ex is a polynomial obtained by cutting exponentialcfiom off the tail afterp

(I8, §2.2)]).
[771 1 .
ex(L)=)_ l_—lL’.
i=0 "’

ExampLe 8.3. Letai,ay,...,a, be n polynomials inn -variables, xo, ..., x,
with the Jacobian 1.

Jac@i, az, ..., ay; X1, %2, ..., X)) = L.
Then we may obtain an algebra endomorphism Agfk () as follows.

oE)=ai(t1, 82, ..., &),

- i=1,2...,
o(mi) = Zb;j(él, &2, .. E)Nj. (i 2 n)

j=1
Whereb is the matrix elements of inverse of the Jacobian rafria.

n 8 ;
Zblji:&i G,1=1,2...,n)
j=1 aéj
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The endomorphism} of the polynomial algebraS, k() =k 1p, 1>, ..., T, Uy,
U,, ..., U,] induced by¢ is given by the following formula.

IZ(YVI) = ai (Tlv T25 M) T;l)a

~ . i=12...,

v (Ui) = Zbij(Tl, T, ..., T,)U;. g 2 ")
Jj=1

Indeed, the formula forg}(T,-) is clear. The formula fonZ(U,-) is obtained in the fol-
lowing steps.

Step 1. The degrees 0{7} in U-variables should be one. In other words. There
exists polynomials;;,d; such that

¢ = ey (1)UL +di(T)

holds.

STepP 2. We consider their principal symbols @f U( ) and determine tanc-
tions ¢;; .

STeEP 3. We consider the left action @f n{ ) on

k[Ela ‘i:Za ERRX) En] = Aﬂ(k)/(An(k)nl + An(k)n2 +.-- Ay (k)nn—l + An(k)nn)

and conclude that the ternas 7 ( ) are all zero.
We may easily see that the 1-forsm is equal to zero and thatabebian Jaak)
is equal to 1 in this case.

Note that Example 8.2 and Example 8.3 give rise to examplesalgulation for
Ly. The choice of ultrafiltei/ is irrelevant for these examples.
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