<table>
<thead>
<tr>
<th>Title</th>
<th>Homologiegruppe ト isomorph ナ Homotopiegruppe ヽ持ツKomplexニ就イテ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>小松, 醇郎</td>
</tr>
<tr>
<td>Citation</td>
<td>全国紙上数学談話会．186 P.461-P.466</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1939-09-30</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/74740</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/74740</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
809. Homologiegruppe と isomorph な
Homotopiegruppe が持つ Komplex
= 竜テ

小松 醇郎 (昭大)

Komplex K^n, Zyklus が H Sphäre 又は Sphärisch 1) デフレクトア何かで Characterise されナイモノか？ ト云々問題が出発デアル。斯様ナ問題ヲ 提出シタ理由八、Zyklus が H Sphäre デザる Komplex ハーツイ等シイ性質ヲ持ッカラデアル。ミレハ断様ナ K^n, 任意ト Teilkomplex K', S^r ヘノ normale
Abbildung ハ嘴= K^n コデ erweitern 出来ル。

コノ逆が成立スルラバ此ノ性質ヲ Characterise 出来ル理デアルがソラハ行カナイラインノ。

1) Sphäre ト差シイ Homotopie Tygus が持ッKomplex
ノ意味が使ツ。
数価数 1 Homologiegruppe と Homotopie-
gruppe ト isomorph ト Zylus ハスベテ
Sphäre 1 Bild ト考へ ネ レルカラ上 1 性質ハ成立ス
ルノアハハナイクト想像サレル、コレハ以下証明スル如ク肯定
サレテ 1 デアルが今度ハ Homologiegruppe ト Homotopiegruppe ト isomorph + Komplex 1 Zyklus
ハ足ベテ Sphärisch デアルカ？ト云フ問題モ生チル。
此ノ問題が肯定サレルラバ以下ノ証明ハ trivial カナ
ル理ガアル。

Homotopiegruppe 1 Homologiegruppe
ノ中ヘ、対應 θ。

Homotopiegruppe ト (K^n) トツノ元モハ
S^n (Sphäre) 1 Bild テ ネ テイ次元 Homologiegruppe ト ツノ Zylus トト考へテレル。
コノ対應モ → Z^n θ 伽表 Hars. θ 仏 homomorph
in デアル。

定理 1 Komplex K^n ハ対應 θ 仏常 = isomorph
auf デアル。仏次元 Teilkomplex K^n 仏 S^n 仏
normal Abbildung 仏 f 仏常 = K^n 还しenumerate
出来ム。

2) 何等カノ対應デ isomorph トト云フノデハテフオル定マ
ツキ対應デ isomorph トト云フノデアル。

3) ハ次頁ヘ
証明. \(f: K^r \rightarrow S^r \) が normal で、従って各 \((y+1)\) 次元単体で \((y+1)\) マッチ erweitern 出来ぬ。従って \((y+2)\) 次元 \(0 - Zyklen (\text{Hindernis}) f^{r+2} \) 出来ぬ。即ち
\[
\frac{T^{r+2}}{t^r} \rightarrow S^r: \alpha_i \in \pi_{r+1} (S^r)
\]
ヨリ
\[f^{r+2} (T^{r+2}) = \alpha_i.
\]
今 \(B_{u+2} (K^r, Q_i) \) へ \(b \) 次 \(T \) と \(b \) と。別 \(b + j \) と \((y+2) \) で \(S\) は \(\text{Zusammenhängend} \) で \(S \) 内 \(j \) で \(S\) は \(\text{Sphären} \) で \(S\) は \(\text{Kern} \) で \(S\) は \(\text{Polyeder} \) で \(S\) 作る。此 \(K \) は \(K^{r+3} \) トスレバ
\[B_{u+2} (K^r, Q_i) \approx B_{u+2} (K^{r+3}, Q_i).
\]
よって \(B_{u+2} (K^r, Q_i) \) へ \(b \) 次 \(T \) と \(b + j \) と \(Zyklen \) で \(K^r \) で \(S\) は \(\text{Sphärenbild} \) トスレバ。従って \(K^{r+3} \) は \(b + j \) と \(S\) で \(\text{Urhild} \\ \text{トシント} \) で \(S\) は \(\text{Urhild} \) で \(S\) 作る。\(j \) と \((y+2) \) で \(\text{Torsionszahl} \) \(p_i \) で \(Zyklen Z_j \) で \(\text{Urhild} \) で \(\text{Torsionszahl} \) \(p_j \)

3) \(K^r \) は \(\text{beradenen} \) で \(Zyklen Z \) と \(f = \text{ヨッシ} \) で
\(\text{Abbildungsgrad} \) で \(O = \text{移} \) \(\text{テ} \) で \(O \) 係数群間

4) \(\text{長さ} \) で \(\text{可能} \)。\((y+3) \) で \(\text{Vollteuegel} \) \(\text{Pj} \) で \(\text{回回} \) で \(\text{シ} \)
\(\text{表面} \) で \(\text{デグ} \) \(\text{移} \) \(\text{点} \) \(\text{identifizieren} \) で \(\text{スレタ良} \)。

463
よりSphere クラスルマツを作ル。コノ変換へ K^{r+3} 含意 = erweitern 出来ず。Z^r のホモトピーグループ
1元トシテ P 倍スレバ 0 即もホモトピ 0 + 1 でクラ
ヲ足ハ出来ル。

此ノ K^{r+3} 元マノ次元 Y をツキツキ作り加へ K Komplex デ K^n トス。n

K^n ズ Zylhe ハ丸 Sphäre デあり、且ツ整数
ベッチ群 T isomorph = 舞振スルマツナ連続変
換

$\Psi (\overline{K^n}) \subset K^n$
が作れる。操作カラクルマツ = ベッテ群又は任意 O_f m
ト係数トシテモ isomorph あうデアル。

$B_n^{r+2}(K^n, O_f m) \cong B_n^{r+2}(\overline{K^n}, O_f m)$

従ツッテ任意ハマーベル群 T 係数トシテモ isomorph
auf デアル。

$P_i \mod. 1$ が reduzieren シタ実数群トシノ一
開ス $\pi^H (S^r)$, Charakterengruppe が $\pi^H (S^r)^*$
ト表サ。

$B_n^{r+2}(K^n, \pi^H (S^r)^*) \cong B_n^{r+2}(\overline{K^n}, \pi^H (S^r)^*)$
従ツッテ S^r-Betti デ群 = 開ス

$B_0^{r+2}(K^n, \pi^H (S^r)) \cong B_0^{r+2}(K^n, \pi^H (S^r))$

今 $\overline{K^n} \implies K^n$ ヒ simpliciale Abbildung
トシ $\overline{K^n}$ 中K^n ハ次元 Simplex シヲ成
テイルコンプレックス と $\overline{K^n} (K^n$ トハ異ル) トスレバ

=464=
\(\mathcal{F}(\overline{K^n}) \subset K^n \)

\(f : K^n \to S^r \) が normal プラバ

\(f \mathcal{F} : \overline{K^n} \to \overline{S^r} \) ハ normal トナル。従って又

\(\overline{K^n} = \tau (r+2) \) 次元 0-Zyklus (Kinderndis)

\(f^{n+2} \) が生ずる。

此ノ \(f^{n+2} \) ハ Simpliziale Abbildung \(\mathcal{F} : \overline{K^{r+2}} \to K^{r+2} = \) ヨッケ、\(K^{r+2} \) 0-Zyklus \(f^{n+2} = \)

対応 \(\xi \) マノデアル。

\(\mathcal{F} : f^{n+2} \to f \)

然ノ \(= \overline{K^n} \) オーベル Zyklus (Kinderndis)

\(f^{n+2} \mapsto 0 \) ダラノ。\(\overline{K^n} \) Zyklus 凡テ Sphäre デ

フルカラ。

従ッテ \(\mathcal{F} = \) コル 0-Betti 頻ノ対応が isomorphic デントク。

\(B^n_{n+2}(K^n, \pi^r_1(S^r)) = B^n_{n+2}(\overline{K^n}, \pi^r_1(S^r)) \)

故ノ \(f^{n+2} \mapsto 0 \) プラバ \(f^{n+2} \mapsto 0 \)

即 \(K^n \to K^{r+1} \) が正常 Abbildung プラバ Kinderndis \(f^{n+2} \mapsto 0 \)

\(f : K^{r+1} \) 近 \(\) Erweiterung フ適當＝トテバ

\(f^{n+2} = 0 \)

従ッテ \(f \) 之 \(K^{n+2} \) 近 \(\) Erweiterung 出来ル。

以上

此ノ定理ノ特別ノ場合、例ハ \(K^n \) Poincaré ノ

集合体、或ハモーリー一般ニシテ \(S^n \) ドモジイ Homotopie-
球面 S^n と同型 π_1 が同型になることが成立する。定理。球面 S^n と同型 π_1 が同型になることが成立する。K^n とそれと同様次元の K^r と特徴任意の $normale$ Abbildung $f = K^r \rightarrow S^r$ の K^n 体は $Erweiterung$ が成立する。