<table>
<thead>
<tr>
<th>Title</th>
<th>Markoff 過程ニ関スルニ三ノ結果, Ⅱ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>角谷, 靜夫</td>
</tr>
<tr>
<td>Citation</td>
<td>全国紙上数学談話会. 187 P.467–P.481</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1939-10-16</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/74741</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/74741</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
810. Markoff 過程を関スルニヲイ結果，II

角谷 静夫 (阪)

前回＝ヲハ 前 7 ergodic kernel (ergodic part) 及び dissipative part カワ テムルコトヲ証明エタ。今回ハ各々ノ ergodic kernel (ergodic part) 7 更＝分割スルコトヲ考ヘル。勿論條件 (K) ハ常＝假定スルモノトスル。

以下ノ議論＝於テハ、條件 (K)、下デ T 1 絶対張 λ 1 固有值 λ がスペクトル N = 1 ナル方程式ヲ満足スルトモノ事实ガ essential + 役割ヲ演じル。コノコトハ既＝前号ノ解説 807 = テ 証明レタカラ以下証明ナシ＝用ヒルコト＝スル。

條件 (K)、下デ T 1 絶対張 λ 1 固有值 λ = ハ有限個ノカナク、コレラハスペクトル N = 1 ナル正方スルカラ (N ハスペクトル = 共通) 前号ノ定理 1 コ分解式 (10) = 於テ
モノ N ドオケベ

\[P^{(N)}(t, E) = \sum_{i=1}^{k} P_{\lambda_i}(t, \omega) + S^{(N)}(t, E) \]

トガル。ヨッテ \[\sum_{i=1}^{k} P_{\lambda_i}(t, E) = P^*_j(t, E) \]

トオケバ

\[P^{(N)}(t, E) = P^*_j(t, E) + S^{(N)}(t, E) \]

- 467 -
(36) \[
\int_{\Omega} P^{(N)}(t, ds) P_i^*(S, E) = \int_{\Omega} P_i^*(t, ds) P^{(N)}(S, E)
\]
\[
= \int_{\Omega} P_i^*(t, ds) P_i^*(S, E) = P_i^*(t, E)
\]
(37) \[
\int_{\Omega} P_i^*(t, ds) S(S, E) = \int_{\Omega} S(t, ds) P_i^*(S, E) = 0
\]
トナリ ヨッテ (35) 両辺を iterate するコト＝ヨリ
(38) \[
P^{(*)N}(t, E) = P_i^*(t, E) + S^{(*)N}(t, E),
\]
\[n = 1, 2, \ldots\]

トナリ 且々
(39) \[
l.u.b. \quad S^{(*)N}(t, E) \leq \frac{M}{(1 + \varepsilon)^{*N}}, \quad n = 1, 2, \ldots
\]
又は
(40) \[
l.u.b. \quad P^{(*)N}(t, E) - P_i^*(t, E) \leq \frac{M}{(1 + \varepsilon)^{*N}},
\]
\[n = 1, 2, \ldots\]

とル知り常数 M, \varepsilon > 0 が存在スル。
次＝我々へ kernel P_i^*(t, E) フ考へン。然レトキヒ
我々が前回＝行ツキノン全コノ同ラ議論＝ヨッテ次ノLemma
が成立スル。

Lemma 5 条件 (K) / 下ダ \(T\) / 絶對値 / 固有値 \(\lambda\) ハスペク \(\lambda^N = 1\) 満足スル (N ハスペク \(\lambda = \)
共通)。

シベルチャフ、コノ N = 対デテ \[\lim_{n \to \infty} P^{(*)N}(t, E) = P_i^*(t, E)\]

\text{uniformly} = \text{存在} \mathcal{T} \text{且} \mathcal{P}_i^* (t, E) \text{八次} \mathcal{P} = \text{合解}

\text{サレル}:

(41) \quad \mathcal{P}_i^* (t, E) = \sum_{i=1}^{L} \mathcal{Y}_i^* (t) \cdot \mathcal{X}_i^* (E)

\text{コ} = \{ \mathcal{X}_i^* (E) \} \quad (i = 1, 2, \ldots, L) \text{八} (M^*) \text{八 element} \text{ system} \neq

(42) \quad \mathcal{T}^N (\mathcal{X}_i^*) = \mathcal{X}_i^*, \quad \mathcal{X}_i^* \geq 0, \quad \mathcal{X}_i^* (S_0) = 1,
\quad \mathcal{X}_i^* \land \mathcal{X}_j^* = 0 \quad (i \neq j)

\text{満足シ}, \text{且} \mathcal{Y}

(43) \quad \mathcal{T}^N (\mathcal{X}^*) = \mathcal{X}^*, \quad \mathcal{X}^* \geq 0, \quad \mathcal{X}^* (S_0) = 1

\text{満足スリ}, \text{任意} / \mathcal{X}^* \in (M^*) \text{八}

(44) \quad \mathcal{X}^*(E) = \sum_{i=1}^{L} \mathcal{C}_i^* \cdot \mathcal{X}_i^* (E), \quad \mathcal{C}_i^* \geq 0, \quad \sum_{i=1}^{L} \mathcal{C}_i^* = 1

\text{ソル形} = \text{un} \text{que} = \text{表ハサレル}. \text{更} = \{ \mathcal{Y}_i^* (t) \} \quad (i = 1, 2, \ldots, L) \text{八} (M^*) \text{八 element} \text{ system} \neq

(45) \quad \mathcal{T}^N (\mathcal{Y}_i^*) = \mathcal{Y}_i^*, \quad \mathcal{Y}_i^* \geq 0, \quad \sum_{i=1}^{L} \mathcal{Y}_i^* (t) = 1

\text{満足シ}, \text{且} \mathcal{Y}

(46) \quad \mathcal{T}^N (\mathcal{Y}^*) = \mathcal{Y}^* (\mathcal{Y}^* \geq 0)

\text{満足スリ}, \text{任意} / \mathcal{Y}^* \in (M^*) \text{八}

(49) \quad \mathcal{Y}_i^*(t) = \sum_{i=1}^{L} \mathcal{D}_i^* \cdot \mathcal{Y}_i^* (t) \quad (\mathcal{D}_i^* \geq 0)

\text{ソル形} = \text{un} \text{que} = \text{表ハサレル}.

\text{次} = \text{コン} \mathcal{X}_i^* (E), \mathcal{Y}_i^* (t) \text{ハ} \text{ergodic
kernel (ergodic part) の実現は全時刻スルヒト
若ヘル。

先へ $y_i^x(t) = 1 + v_i t, t \in \Omega$ 全体ノ集合ノ E_i^xが表ヘル。コレヘ subergodic part ノ名ニケル。

明白へ \overline{E}_i^x 仮何レモ Borel 集合ガ且ツ互＝共通点ラモメ
ナイ。且つ首回ト全ク同様＝セテ (50) 式ノ右辺ハ前回
、(30)、右辺ト実ナルノト＝注意

(48) $x_i^x(\overline{E}_j^x) = 1 \ (i = j), = 0 \ (i \neq j)$

(49) $P_n(t, \overline{E}_i^x) = 1, \ t \in \overline{E}_i^x$

(50) \[
\lim_{n \to \infty} \left| P_n(t, E) - x_i^x(E) \right| \leq \frac{M}{(1 + \varepsilon)^n},
\]

$n = 1, 2, \ldots, M, (M, \varepsilon > 0 \ 極数) トナールコトガワカル。シカシ我々へ更
＝精密＝、次ノ定理2証明スルコトガ出来ルル。

定理 5 \[\overline{E}_1^x, \overline{E}_2^x, \ldots, \overline{E}_n^x \] 全体八1個ノ
class = 分レル。(1、定理2及ヒ Lemma 3 = テ現
ハレタト同一ノ デアル) コレガ

\[C_\alpha \equiv (\overline{E}_{\alpha_1}^x, \overline{E}_{\alpha_2}^x, \ldots, \overline{E}_{\alpha_k}^x) \ (\alpha = 1, 2, \ldots, L) \]

トヘヨ。コ2 = $d_\alpha \times N$ ト数＝セ \[\sum_{\alpha=1}^{L} d_\alpha = L \ デアル。\]

且ツコレラ八 (\alpha_1, \alpha_2, \ldots, \alpha_k) ノ順序ナ適当ニテケ
レル

(51) $P(t, \overline{E}_{d_\alpha+1}^x) = 1, \ t \in \overline{E}_{d_\alpha}^x, \ i = 1, 2, \ldots, d_\alpha$
(52) \[l, u, b, \quad \left| P^{(n \alpha_+)}(t, E) - \alpha_+^*(E) \right| \leq \frac{M}{(1+\varepsilon)^n} \]

\(n = 1, 2, \ldots \)

\(\alpha_+ \) に満たす。更に, \(\text{class} \, C_\alpha (\alpha = 1, 2, \ldots, l) \) と等長 \(\text{ergodic part} \, E_\alpha (\alpha = 1, 2, \ldots, l) \) と一致する。

対應 \(\pi \) と \(\text{suffix} = \text{suffix of} \, E_\alpha \) と \(\alpha \) は \(\alpha \) と \(E_\alpha \) を含める。

\[(53) \quad \overline{\chi}_{\alpha_i}^* = \chi_{\alpha_{i+1}}^*, \quad i = 1, 2, \ldots, \alpha \quad \text{when} \quad \alpha_{i+1} = \alpha_i \]

\[(54) \quad \overline{\gamma}_{\alpha_i}^* = \gamma_{\alpha_{i+1}}^*, \quad i = 1, 2, \ldots, \alpha \quad \text{when} \quad \alpha_{i+1} = \alpha_i \]

\[(55) \quad \chi_{\alpha}^*(E) = \frac{1}{\alpha} \sum_{i=1}^{\alpha} \chi_{\alpha_i}^*(E) \]

\[(56) \quad \gamma_{\alpha}^*(t) = \sum_{i=1}^{\alpha} \gamma_{\alpha_i}^*(t) \]

証明：

（注）（5）に

各々, \(\alpha = \text{対} \) \(\overline{E}_\alpha^* + \overline{E}_{\alpha_2}^* + \cdots + \overline{E}_{\alpha_{l+1}}^* \) 内1点 \(t \) が \(\overline{E}_\alpha^*, \overline{E}_{\alpha_2}^*, \cdots, \overline{E}_{\alpha_{l+1}}^* \) 内 \(\text{cyclically} \) = 遷移スルコト卡拉意味従う。

\(\text{suffix} \) (52) は \(\text{カラ} \) 点 \(\text{対} \) \(\pi \)

\(P^{(\alpha_+)}(t, E) \) と \(\text{markoff} \) 過程ラ有ヘレバ, \(\alpha \)

\(n - \text{th iterate} \) \(P^{(n \alpha_+)}(t, E) \) が \(n \to \infty \) チルト

\(\pi \) と等軸スルコト意味スキル。
各々 \(\overline{E}_{x_i} \) ～ \(\overline{E}_{x} \) は合計レナルチュール \(E^*_{x} \) と \(E^*_{x_2} \) と
\[\cdots + \overline{E}_{x_{d_x}} \] が \(E_{x} \) 一部集合トナルコトト明かデアルガ \(\overline{E}_{x} \)
トヘレガデハモ一数シナリ。実際 \(D_x = \overline{E}_{x} - \sum_{i=1}^{d_x} \overline{E}_{x_i} \) 作レバ
\(D_x \times i = 1, 2, \ldots, d_x = \text{数リテ} \ y_{x_i}^{\overline{E}_{x_i}}(t) < 1 \) トナル
如 \(: t \in E_{x} \) 全体ノ集合ガ、コレヘ必ずレモ空集合トハナ
ラナイコダルフ。シカニ、以下ノ証明フ見レバワル知ク。
我々ハ (52) ニ証明シノト全体同フテガダ

\[
(59) \quad l, u, b, P^{(\alpha_{x_l})}(t, e) \sum_{i=1}^{\alpha_{x_l}} y_{x_i}^{\overline{E}_{x_i}}(t) x_{x_i}^{\overline{E}_{x_i}}(e)
\]

\[
\leq \frac{M}{(1+\varepsilon)^n}, \quad n=1, 2, \ldots
\]

(\(M, E > 0 \) ハ常数) ナ証明スルコトガ出来ル。

定理5/証明

\[T^N \tau(x^*_i) = T \tau^N(x^*_i) = \tau(x^*_i) \]

ナルコトヨリ \(x^*_i \) ハ条件 (42) ナ満足スル。レタガッテ

\[
(58) \quad T^N(x^*_i) = \sum_{j=1}^{L} c_{ij} x^*_j,
\]

ナル如 \(c_{ij} \geq 0, \sum_{j=1}^{L} c_{ij} = 1 \) ナリ常数 \(\{ c_{ij} \} \) (i, j
\(= 1, 2, \ldots, N \) ハ存在スル。コレモ \(\tau(x^*_1, x^*_2, \ldots
\ldots, x^*_L) \) ンシステム = 各々 \(\tau \) linear Transformation (又 \(\text{finite case} \) markoff process) ハ
考ヘルコトガ出来ル。シナリハ \(\tau^N(x^*_i) = x^*_i, i = 1, 2,
\ldots, N \) デアルカナ、コノ linear transformation
ハ \(\tau \) ン相係ヘルテ施セバ identical transformation
トナレ。即ち matrix $C = (c_{ij})$ ($i, j = 1, 2, \ldots, N$) クールレベ, コールレ

(4) $C^N = \text{unit matrix}$

ナル関係 P 満たす。我々は先ずコノ matrix C がトナレ
1 ミヨリ成立 matrix $A (x_1^*, x_2^*, \ldots, x_L^*)$ 1 間
1 permutation パールミロ (即ち各行及び各列 = ハーヴス、且つ ベタマツ成立、全部トナレ matrix) アルコトア示サ。

実際 ($c^{(N-1)}_{ij} = \text{よツク} C^{N-1}$, i, j - element
表ハセベ

$$\sum_{R=1}^{L} C^{(N-1)}_{iR} = 1, \quad \sum_{R=1}^{L} C^{(N-1)}_{iR} C_{Ri} = 1$$

$i = 1, 2, \ldots, L$ が満たスル。然レ = $0 \leq C_{Ri} \leq 1$ ガ倍
= 成立スルノデアルカラ、コノニガ同時 = 成立スルノデアルカラ、
各々、C_{Ri} = 設シフタクトモーツノモ C_{Ri} (例へば C_{Ri} と)
が 1 = ヒトシッタナナレベナナナナ。換言セルツベ matrix
$C - (c_{ij})$ 各 column ハサクトモーツノ 1 デアルカラ
ベナラス。然レ = $\sum_{i=1}^{L} C_{Ri} = 1$ デアルカラ $i \neq j$ ハルトキ
$R_i \neq R_j$ デナナレベナナナナス。

シタガット (R_1, R_2, \ldots, R_L) ハ (1, 2, \ldots, L) ボーット permutation トナレ、$C_{Ri} i = 0$ for
$K + R_i$ トナレ。

此ノ知クシテ C が index 1, 2, \ldots, L, 間, per-
繊維コードェトが、ヨウテイ，1，2，……，l
とl'個（l'≤l）をclass Kα (α=1，2，……，l')
で互換を持たせ、ソノ各々がmatrix C = ヨウテイ cyclic
をpermute す。l = l' トナルコードトヘマダワサラス
Kα = 含マレル index N が
dα = N 1 頂点デアル。更 class Kα = 属スル
index N が、適当ナラベテ Χα，Σα，……，σα トスレバ
Cαi，αi+1 = 1 スハ Σα (χαi) = χαi+1 (i = 1，2，……，dα;
σαi+1 = σi) ノトナル。

我々次 = l = l' トナリ、且ッclass Kα トergo-
dic part Kα トノ間 = one-to-one correspondence リ絡コトヲ証明シヨリ。

先々前々々Lemma 3，(20) ヨリ各々，χα
が Σα (χα) = χα が成立スルトカラ TN (χα) = χα ヨリ
成立スル。且ッχα ≥ 0，χα (Σα) = 1 ハ勿論成立スルカ
ラナヘ（43）が成立シ，レタガツテ Lemma 5 =
ヨリ

\[I_α (E) = \sum_{i=1}^{L} C_α^* \chi_α^* (E) \]

ト表ハスコトが出来ル。今 \[\sum_{i=1}^{L} \] 各々１class Kα = 於
ケル和スコードケルト

(60) \[C_α (E) = \sum_{d=1}^{l'} \sum_{i=\alpha}^{d\alpha} C_α^* \chi_α^* (E) \]

トナル。コノトキ，アレ class Kα が定マッテ \[l' \xi Kα \]
ナルトキ \(C_{d_i}^* = \frac{1}{d_i}, \quad d_i \in \mathbb{K} \) ナルトキ \(C_{d_i}^* = 0 \) トナルコトナ七ナトク。先々 \(C_{d_i}^* \) かな \(K_\alpha = \text{常数} \) は関係デアル。何トナレバ (60) 両辺 = トナルコトナハ \(\Gamma(x_\alpha) = x_\alpha \) トナルコトヨリ

\[
X_{\alpha}^k(E) = \sum_{d_i = 1}^{d} \sum_{i=-}^{d_i} C_{d_i}^* \chi_{d_i}^*(E)
\]

トアル (60) 両辺が unique トナルコトヨリ \(C_{d_{i+1}} = C_{d_i} (i = 1, 2, \ldots, d_\alpha) (d_{d_{i+1}} = d_\alpha) \) ト得ルトナラデアル。

\[
C_{d_i}^* > 0 \text{ トアルトキ } d_i \text{ トハスベテ同じ } \text{class=専スル。} \text{何トナレバ、モシャル class がククトミニョサ在スルベ } \chi_\alpha \text{ラニプ } \text{部分=ワケテ}
\]

\[
\chi_{\alpha}^k = \chi_{\alpha}^1 + \chi_{\alpha}^2, \quad \chi_{\alpha}^1 \geq 0, \quad \chi_{\alpha}^2 \geq 0, \quad \chi_{\alpha}^1 \land \chi_{\alpha}^2 = 0
\]

\[
\Gamma(\chi_{\alpha}^1) = \chi_{\alpha}^1, \quad \Gamma(\chi_{\alpha}^2) = \chi_{\alpha}^2
\]

トアルトキクスレコトが出来ル。

ヨツテ今 \(\chi_{\alpha} = \chi_{\alpha}^1 / \| \chi_{\alpha}^1 \|, \quad \chi_{\alpha} = \chi_{\alpha}^2 / \| \chi_{\alpha}^2 \| \) トオケベ \((l+1) \) 個 element \(\chi_{\tau_1}, \chi_{\tau_2}, \ldots, \chi_{\tau_{l+1}}, \chi_{\tau_{\alpha}}, \chi_{\tau_{\alpha+1}}, \chi_{\tau_{\alpha+2}}, \chi_{\tau_{\alpha+3}}, \ldots, \chi_{\tau_{l+2}} \) (20) ト満足スル。コレハ \(l \) ガラル element / なぞ / maximum デアルトヨナ

定義ニょントスル。ヨツテ \(C_{d_i}^* > 0 \) トアルトキ \(d_i \) ハスベテ同じ class = トクスル。フン class で \(K_\alpha \) トスヨ。

此ノ \(K_\alpha \) テテ (60) が

\[
X_{\alpha}^k(E) = C_{d_\alpha}^* \sum_{i=1}^{d_\alpha} \chi_{d_i}^*(E)
\]
トーンが 被 ハ サ レ ル ト コ フ オ ワ カ ッ タ ス。 コ = 0， i = 1， 2， 3， 代 答 = x_{a} (\Omega) = 1， x_{a} (\Omega_i) = 1 (i = 1， 2，------， l_{a}) デ フ ィ ィ ル カ ル C_{a} = \frac{1}{d_{a}} テ ル ル レ ベ ナ ラ ナ イ ュ 即 ち (55) が 証 明 サ タ ク。

以上 1 知 ク テ テ ル， 各々 n_{a} (E) (a = 1， 2，------， l_{a}) が シ テ ク た ク a が 定 マ ッ テ コ レ = 対 テ テ (55) が 成 立 ス ル ボ ッ ト が ワ カ ッ タ ス。 ト ル テ ル l \leq l' ト ル ル コ ト モ ワ カ ッ タ ス。

通 = 任意 / class K_{a} = 対 テ テ ル x (E) = \frac{1}{d_{a}} \sum \frac{1}{i_{i}} x_{a_{i}}^{*} (E)

ト な ケ ベ ッ ク x (E) よ る Lemma 3 1 條 件 (2l)

(E (x) = x， x \geq 0， x (\Omega) = 1)

ヨ ッ テ

x (E) = \frac{1}{d_{a}} \sum \frac{1}{i_{i}} x_{a_{i}}^{*} (E) = \sum_{i} c_{i} x_{i}^{*} (E)

ツ ル 如 ヶ c_{i} (i = 1， 2，------， l_{a}) が 存 在 ス ル。 コ ム 框 = 更 = 既 = 証 明 次 関 係 (55) ユ 使 ヘ バ

\frac{1}{d_{a}} \sum \frac{1}{i_{i}} x_{a_{i}}^{*} (E) = \sum_{i} c_{i} \frac{1}{d_{a}} \sum_{i_{i}} x_{a_{i}}^{*} (E)

ツ ル ル， 然 る = x_{a_{i}}^{*} (E) \in linear by independent デ フ ィ ィ ル カ ル， コ レ サ 成 立 ス ル コ メ ハ = \ C_{a} = 1， c_{i} = 0 (i = 1， 2，------， l_{a}) デ ナ チ ル レ ベ ナ ラ ナ ヤ イ ュ。 即 ち 任意 / class K_{a} = 対 テ テ ル

x (E) = \frac{1}{d_{a}} \sum \frac{1}{i_{i}} x_{a_{i}}^{*} (E) \作 ル ル コ レ や Lemma 3

-476-
ゲンノントラットシステム \(\{ x_\alpha(E) \} (\alpha = 1, 2, \ldots, l) \) とナーツートラックハキル。 (コーデ \(l' \leq l \) 得ル)。

以上1コトヨリ \(l = l' = \) テ且ツ Lemma 3 = ヌルシステム \(\{ x_\alpha(E) \} (\alpha = 1, 2, \ldots, l) \) ト
クラス \(K_\alpha (\alpha = 1, 2, \ldots, l) \) トノ関 = 一様一数値ガツカ

\[x_\alpha(E) = \frac{1}{d_\alpha} \sum_{i=1}^{d_\alpha} z_\alpha^i(E) \]

トナルエトガグオッタ。コクハス ergodic part (kernel) トクラス \(K_\alpha \) トノ間ノ数値トモ考ヘテルル。

サテ、我々ノ目的ハ定理 5ノ証明デアルが、コノナキ既 = (53), (55) ト証明ホレタ。ヨッテ後＝残ルヘ (51), (52),
(54), (56) ト証明デアル。

先ツ (56) ワ証明スル。コノネメ = 関係

\[\frac{1}{N} \sum_{m=1}^{N} \int p_1^*(t, ds) p_{(m)}^*(s, E) = p_1(t, E) \]

ヨリ 出発スル。前号定理 2ノ関係 (23) 及び (41) ワ使ヘ

\[\frac{1}{N} \sum_{m=1}^{N} \sum_{d=1}^{l} \sum_{i=1}^{d_\alpha} y_\alpha^i(t) \left(\int x_\alpha^i(ds) p_{(m)}^*(s, E) \right) \]

トナル、(53) ワ使ヘヘ

- 477 -
\[\frac{1}{N} \sum_{d=1}^{l} \sum_{i=1}^{d} \sum_{k=1}^{d} y_{d,i}^*(t) x_{d,i+m}^*(E) \]

\[= \sum_{d=1}^{l} y_{d,i}^*(t) x_{d,i}^*(E) \]

トナル。更に \(d \) と \(N \) の数ホールドアカ使へば、コレヘ

\[\sum_{d=1}^{l} \left(\sum_{i=1}^{d} y_{d,i}^*(t) \right) \left(\frac{1}{d} \sum_{i=1}^{d} x_{d,i}^*(E) \right) \]

\[= \sum_{d=1}^{l} y_{d,i}^*(t) x_{d,i}^*(E) \]

トナル。ヨリ \((53) \) ヨリ

\[\sum_{d=1}^{l} \left(\sum_{i=1}^{d} y_{d,i}^*(t) \right) x_{d,i}^*(E) = \sum_{d=1}^{l} y_{d,i}^*(t) x_{d,i}^*(E) \]

コレヨリ、\(E = E_d \) トオケベ \((56) \) が得ラレル。

次 \((54) \) デ証明スルスメ = trivial relation

\[\int_{\Omega} P(t, ds) P^*(s, E) = \int_{\Omega} P^*(t, ds) P(s, E) \]

ヨリ発スル \((41) \) 及び \((53) \) ヨリコレヘ

\[\sum_{d=1}^{l} \sum_{i=1}^{d} \left(\int_{\Omega} P(t, ds) y_{d,i}^*(s) \right) x_{d,i}^*(E) \]

\[= \sum_{d=1}^{l} \sum_{i=1}^{d} y_{d,i}^*(t) \left(\int_{\Omega} x_{d,i}^*(ds) P(s, E) \right) \]

\[= \sum_{d=1}^{l} \sum_{i=1}^{d} y_{d,i}^*(t) x_{d,i+1}^*(E) \]

トリ。\(E = \bar{E}_{d,1} \) トオケベ \((54) \) デ得ル。
(51) お (54) より直ちに得られるカナ、後は残す
(52) 7 証明スルハ反応 / 証明八実験スル (E^* を含む) こ より
(56) 8 証明ハアマログ)
最後 (52) 7 証明スル。コンタメエガ任意，integer
n，k が問題テ

\[P^{(nN + R \alpha)}(t, E) = \int_0^t P^{(nN)}(t, ds) P^{(R \alpha)}(s, \bar{E}) \]

\[= \int_0^t P^{(R \alpha)}(t, ds) P^{(nN)}(s, \bar{E}) + \int_0^t S^{(R \alpha)}(t, ds) P^{(nN)}(s, \bar{E}) \]

トトリコトヨリ出発スル。\(t \in E_{\alpha_i} \) セトキ八右辺第二項へ

\[\int_0^t P^{(R \alpha)}(t, s) P^{(R \alpha)}(s, \bar{E}) = \int_0^t (ds) P^{(R \alpha)}(s, \bar{E}) = \chi^*_{\alpha_i}(E) \]

トトリ右辺第二項へ任意，\(t \in 0^t \)，E が問題テ

\[\left| \int_0^t S^{(nN)}(t, ds) P^{(R \alpha)}(s, \bar{E}) \right| \]

\[\leq l, u, b, \quad t \in 0^t, E \in \mathcal{E} \]

トト。ヨッテ \(t \in E_{\alpha_i} \) セトキ

\[\left| P^{(nN + R \alpha)}(t, E) - \chi^*_{\alpha_i}(E) \right| \leq \frac{M}{(1+\varepsilon)^{nN}} \]

右辺八k が定義倍ルカ。コロヨリ \(R = 1, 2, \ldots \), \(\frac{N}{\alpha} \)
トオコトニヨリ (M, E が適当カヘレベ) (52) が成立
スルコトガワル。
以上で定理5の証明が終了。

更に定理4のトナーによるそれとは、

\[E_{d, i}^* \] の中

\[\text{subergodic kernel } E_{d, i}^* \] をトータルに

\[P(\xi, E_{d, i+1}^*) = 1, \quad \xi \in E_{d, i}^* \]

が満たすとき、\[E_{d, i}^* \] と \[E_{d, i}^* \] が

\[\text{measure zero} \] の集合

\[\text{除イテルマークノアイルカ} \] と、通常 \[E_{d, i}^* \] と \[E_{d, i}^* \] が

\[\text{Doeblin の定義ノensemble final 及ビソノensemble cyclique} \] となる。

最後に定理4ノ後、注意デ約束リク定理4証明シヨ。

定理6

\[
\ell \text{ u. b. } P(n)(t, \Delta) \leq \frac{M}{(1 + \varepsilon)^n}, \quad n = 1, 2, \ldots
\]

正の数 \(M, \varepsilon > 0 \) が存在する。

証明。

\[(40) = \text{付ラエデトオケベ} \]

\[
P_\lambda^*(t, \Delta) = \sum_{d=1}^{\lambda} \sum_{i=1}^{d} y_\lambda^*(t) P_\lambda^*(\Delta) = 0
\]

正コトヨリ。
\[l. u. b. \ P^{(mN)}(t, \Delta) \leq \frac{M}{(1+\varepsilon)^{mN}}, \ n = 1, 2, \ldots \]

トナル。然 \(\Delta = \P^{(m)}(t, \Delta) \) へ \(\Delta = \) 為シテ monotone decreasing デアルガテ、（コレハ一度 \(\Delta \) より外へ出出息ハ決シテ \(\Delta = \) カヘラナイトヨリガル） \(M, \varepsilon \) 適當カヘレバ

\[l. u. b. \ P^{(m)}(t, \Delta) \leq \frac{M}{(1+\varepsilon)^{m}}, \ n = 1, 2, \ldots \]

トナル。