



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | Structure preserving group actions on stably almost complex manifolds     |
| Author(s)    | Stong, Robert E.                                                          |
| Citation     | Osaka Journal of Mathematics. 1973, 10(1), p. 43-50                       |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/7475">https://doi.org/10.18910/7475</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Stong, R. E.  
Osaka J. Math.  
10 (1973), 43-50

## STRUCTURE PRESERVING GROUP ACTIONS ON STABLY ALMOST COMPLEX MANIFOLDS

ROBERT E. STONG

(Received June 2, 1972)

### 1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserving a complex structure, applying bordism methods quite successfully. In a discussion with Gary Hamrick it became apparent that a somewhat weaker notion was also quite plausible, and the object of this note is to analyze this weaker structure.

Being given a manifold with boundary  $V$  and a differentiable action  $\phi: G \times V \rightarrow V$ , with  $G$  a finite group, the differential  $d\phi: G \times \tau(V) \rightarrow \tau(V)$  induces a  $G$  action on the tangent bundle to  $V$ . Being given a real representation  $\theta: G \times W \rightarrow W$  of  $G$  on a vector space  $W$ , one may form a  $G$ -bundle  $W \times V \xrightarrow{\pi} V$ , where  $G$  acts by  $\theta \times \phi$  on  $W \times V$ . Then the Whitney sum of  $\tau(V)$  and the bundle  $\pi$  has a  $G$ -action given by  $d\phi$  and  $\theta$ . Thinking of  $E(\tau(V) \oplus \pi)$  as identified with  $E(\tau(V)) \times W$ , the action is  $d\phi \times \theta$ .

A bundle map  $J: \tau(V) \oplus \pi \rightarrow \tau(V) \oplus \pi$  which covers the identity map on  $V$  and such that  $J^2 = -1$  in the fibers gives  $\tau(V) \oplus \pi$  a complex structure and if  $J$  commutes with the  $G$  action  $d\phi \times \theta$ ,  $\tau(V) \oplus \pi$  becomes a complex  $G$ -bundle over  $V$ .

If  $\psi: G \times T \rightarrow T$  is a complex representation of  $G$  one may form the bundle  $\bar{\pi}: T \times V \rightarrow V$  with  $G$  action given by  $\psi \times \phi$ , and if  $i: T \rightarrow T$  is the function with  $i^2 = -1$  giving the complex structure,  $\tau(V) \oplus \pi \oplus \bar{\pi}$  is a complex  $G$  bundle if  $G$  acts by  $d\phi \times \theta \times \psi$  and the complex structure is  $J \times i$ .

A stably almost complex structure on  $(V, \phi)$  preserved by  $G$  would then be an equivalence class of systems  $(W, \theta, J)$ , where two such  $(W, \theta, J)$  and  $(W', \theta', J')$  are equivalent if there are complex representations  $(T, \psi, i)$  and  $(T', \psi', i')$  so that  $\tau(V) \oplus \pi \oplus \bar{\pi}$  and  $\tau(V) \oplus \pi' \oplus \bar{\pi}'$  are equivalent complex  $G$ -bundles.

The boundary of  $V$  inherits a stably almost complex structure preserved by  $G$  for  $\tau(\partial V) \cong \tau(V)|_{\partial V} \oplus 1$  as  $G$ -bundles, where  $1$  is the trivial line bundle coming from the trivial representation of  $G$ .

It is clear that this differs from the Conner-Floyd approach in which  $(W, \theta)$  and  $(T, \psi)$  are restricted to be trivial representations.

One may form bordism groups using the new structure preserving actions, which will be denoted  $\omega_*^U(G, \mathcal{F}, \mathcal{F}')$  given by  $G$  actions preserving a complex structure which are  $\mathcal{F}$ -free and such that the boundary action is  $\mathcal{F}'$ -free, where,  $\mathcal{F}, \mathcal{F}'$  are families in  $G$  as in Conner-Floyd [3]. The corresponding groups using the Conner-Floyd definition of “structure preserving” will be denoted  $\Omega_*^U(G, \mathcal{F}, \mathcal{F}')$ , and the forgetful homomorphism will be denoted by

$$\rho: \Omega_*^U(G, \mathcal{F}, \mathcal{F}') \rightarrow \omega_*^U(G, \mathcal{F}, \mathcal{F}').$$

The remainder of this paper will be devoted to analyzing  $\omega_*^U(G, \mathcal{F}, \mathcal{F}')$  and  $\rho$  in the case when  $G$  is cyclic of prime order. Surprisingly, the cases  $G=Z_2$  and  $G=Z_p$ , with  $p$  odd are considerably different, which is not the case for the Conner-Floyd groups.

## 2. Structure preserving involutions

Now consider the special case  $G=Z_2$ , writing  $(V, \phi)$  as  $(V, t)$  where  $t$  is the involution generating the  $Z_2$  action. There are three families for  $Z_2$ , the empty family  $\phi$ , the family  $\text{Free}=\{\{1\}\}$ , and the family  $\text{All}$  of all subgroups. Letting  $\omega_*^U(Z_2, \mathcal{F})=\omega_*^U(Z_2, \mathcal{F}, \phi)$ , the groups of interest are related by an exact sequence

$$\begin{array}{ccc} \omega_*^U(Z_2, \text{Free}) & \xrightarrow{i} & \omega_*^U(Z_2, \text{All}) \\ \partial \swarrow & & \searrow j \\ \omega_*^U(Z_2, \text{All, Free}) & & \end{array}$$

where  $i, j$  are induced by inclusion of families and  $\partial$  by taking the boundary.

First, to analyze  $\omega_*^U(Z_2, \text{All, Free})$ , consider an involution  $(V, t)$  on an  $n$ -dimensional manifold, with  $t$  acting freely on  $\partial V$  with  $J$  the complex operator on  $\tau(V) \oplus k \oplus l$  with involution  $dt \oplus 1 \oplus (-1)$ , where  $k, l$  denote trivial bundles of dimensions  $k$  and  $l$  respectively.

The fixed point set of  $t$  in  $V$  is a disjoint union of closed submanifolds  $F^{n-q}$  of dimension  $n-q$ , with normal bundles  $\nu_q$ . A neighborhood of the fixed set of  $t$  may be identified with the disjoint union of the disc bundles  $D(\nu_q)$ , and since  $t$  acts freely on the complement of this neighborhood, one may cut the remainder away up to cobordism.

Along  $F^{n-q}$ , the bundle  $\tau(V) \oplus k \oplus l$  decomposes into the eigen-bundles of  $dt \oplus 1 \oplus (-1)$  which are preserved by  $J$ , so that  $\tau(F^{n-q}) \oplus k$ , the  $+1$  eigen-bundle, and  $\nu_q \oplus l$ , the  $(-1)$  eigen-bundle are complex bundles. Thus  $F^{n-q}$  is a stably almost complex manifold and  $\nu_q$  is a  $q$ -plane bundle with a stable complex structure.

Letting  $B_q$  be the bundle over  $BO_q$  induced from the fibration  $BU \rightarrow BO$ , the bundle  $\nu_q$  is induced by a map into  $B_q$ . Thus one has:

**Proposition 2.1.**  $\omega_n^U(Z_2, \text{All, Free}) \cong \bigoplus_{q=0}^{\lfloor n/2 \rfloor} \Omega_{n-q}^U(B_q)$ .

The group  $\Omega_n^U(Z_2, \text{All, Free}) \cong \bigoplus_{q=0}^{\lfloor n/2 \rfloor} \Omega_{n-2q}^U(BU_q)$  and the restriction homomorphism  $\rho$  is induced by the obvious maps  $BU_j \rightarrow B_{2j}$ .

The homology of the space  $B_q$  was computed in [4], and is torsion free, so  $\Omega_*^U(B_q)$  is computable explicitly. Since the homomorphism  $\Omega_*^U(BU_j) \rightarrow \Omega_*^U(BU)$  is a monomorphism onto a direct summand, and factors through  $\rho$ , one has:

**Proposition 2.2.**  $\omega_*^U(Z_2, \text{All, Free})$  is a free  $\Omega_*^U$  module and the restriction

$$\rho: \Omega_*^U(Z_2, \text{All, Free}) \rightarrow \omega_*^U(Z_2, \text{All, Free})$$

is a monomorphism onto a direct summand.

Turning to  $\omega_*^U(Z_2, \text{Free})$ , consider an involution  $(V, t)$  on an  $n$ -dimensional manifold, with  $t$  acting freely and with  $J$  the complex operator on  $\tau(V) \oplus k \oplus l$  with involution  $dt \oplus 1 \oplus (-1)$ . By identifying  $x$  and  $t(x)$  in  $V$ , one obtains the orbit space  $V/t$  and a quotient map  $\pi: V \rightarrow V/t$ , with  $V/t$  also being an  $n$ -dimensional manifold. Since  $dt \oplus 1 \oplus (-1)$  covers  $t$  which is free,  $dt \oplus 1 \oplus (-1)$  is free and the orbit space  $E(\tau(V) \oplus k \oplus l) / (dt \oplus 1 \oplus (-1))$  may be identified with the total space of the bundle  $\tau(V/t) \oplus k \oplus l\xi$  where  $\xi$  is the line bundle associated with the double cover  $\pi: V \rightarrow V/t$ . Since  $J$  commutes with  $dt \oplus 1 \oplus (-1)$ , one has induced a complex structure on  $\tau(V/t) \oplus k \oplus l\xi$  and a complex structure on  $\tau(V) \oplus k \oplus l\xi$  induces a complex structure on  $\tau(V) \oplus k \oplus l$ , which is the bundle induced by  $\pi$ , commuting with the action.

Now  $2\xi \cong \xi \otimes_R C$  has a complex structure, so a complex structure on  $\tau(V/t) \oplus k \oplus l\xi$  is equivalent to a stable complex structure on  $\tau(V/t)$  if  $l$  is even, or to a stable complex structure on  $\tau(V/t) \oplus \xi$  if  $l$  is odd. Since the parity of  $l$  for  $V$  and  $\partial V$  is the same,  $\omega_*^U(Z_2, \text{Free})$  decomposes into two direct summands,  $\omega_*^U(Z_2, \text{Free})^+$  and  $\omega_*^U(Z_2, \text{Free})^-$  for  $l$  even and odd respectively.

First considering  $\omega_*^U(Z_2, \text{Free})^+$ , the class of  $V$ , if  $\partial V$  is empty, is completely determined by the stably almost complex manifold  $V/t$  with its double cover  $V$ . Hence  $\omega_*^U(Z_2, \text{Free})^+ \cong \Omega_*^U(RP(\infty))$ , by assigning to the class of  $V$  the class of the map  $V/t \rightarrow RP(\infty)$  classifying the double cover. The homomorphism  $\rho$  sends  $\Omega_*^U(Z_2, \text{Free})$  into  $\omega_*^U(Z_2, \text{Free})^+$  and composing to  $\Omega_*^U(RP(\infty))$  is the usual isomorphism for computing  $\Omega_*^U(Z_2, \text{Free})$ .

For  $\omega_*^U(Z_2, \text{Free})^-$ , one has a classifying map  $V/t \xrightarrow{f} RP(\infty)$  with  $\xi$  induced from the canonical bundle  $\lambda$  over  $RP(\infty)$ . The tangent bundle of  $D(\xi)$ , the disc bundle, is the pullback of  $\tau(V/t) \oplus \xi$ , so that  $D(\xi)$  is a stably almost complex manifold. One then has the map  $(D\xi, S\xi) \rightarrow (D\lambda, S\lambda) \rightarrow (T\lambda, *) \simeq (RP(\infty), *)$  where  $S$  is the sphere bundle and  $T$  is the Thom space, which defines a homomorphism from  $\omega_*^U(Z_2, \text{Free})^-$  into the reduced bordism group  $\tilde{\Omega}_{*+1}^U(RP(\infty))$ . By

applying transverse regularity arguments with  $RP(\infty)$  considered as the Thom space of  $\lambda$ , one may reverse this process to recover  $V$ , so  $\omega_*^U(Z_2, \text{Free})^- \cong \tilde{\Omega}_{*+1}^U(RP(\infty))$ .

Combining these results gives:

**Proposition 2.3.**  $\omega_*^U(Z_2, \text{Free}) \cong \Omega_*^U(RP(\infty)) \oplus \tilde{\Omega}_{*+1}^U(RP(\infty))$  and  $\rho$  sends  $\Omega_*^U(Z_2, \text{Free})$  isomorphically onto the first summand.

Note. The Smith homomorphism is much more reasonably defined in  $\omega_*^U(Z, \text{Free})$  than in Conner-Floyd's groups. Specifically, if  $(M, t)$  is a structure preserving involution, then splitting  $M$  gives a submanifold  $M'$  invariant under  $t$  whose normal bundle in  $M$  is the trivial line bundle of the non-trivial representation. Thus the Smith homomorphism maps the summands  $\omega_*^U(Z_2, \text{Free})^+$  and  $\omega_*^U(Z_2, \text{Free})^-$  into each other. In particular

$$\Delta: \omega_n^U(Z_2, \text{Free})^+ = \Omega_n^U(RP(\infty)) \rightarrow \omega_{n-1}^U(Z_2, \text{Free})^- = \tilde{\Omega}_n^U(RP(\infty))$$

is the reduction homomorphism, and

$$\Delta: \omega_n^U(Z_2, \text{Free})^- = \tilde{\Omega}_{n+1}^U(RP(\infty)) \rightarrow \omega_{n-1}^U(Z_2, \text{Free})^+ = \Omega_{n-1}^U(RP(\infty))$$

is obtained by dualizing  $\xi \oplus \xi$ .

To compute  $\omega_*^U(Z_2, \text{All})$ , one makes use of the exact sequence of the families. Being given a map  $F^{n-q} \rightarrow B_q$  representing an element of  $\omega_n^U(Z_2, \text{All}, \text{Free})$ , the bundle  $\nu_q \oplus l$  is complex over  $F^{n-q}$  and hence  $q+l$  is even. Thus along the boundary of  $D(\nu_q)$ ,  $q+l$  must also be even, and the homomorphism

$$\partial: \omega_n^U(Z_2, \text{All}, \text{Free}) \rightarrow \omega_{n-1}^U(Z_2, \text{Free})$$

sends  $\bigoplus_{q \text{ odd}} \Omega_{n-q}^U(B_q)$  into  $\omega_{n-1}^U(Z_2, \text{Free})^-$  and  $\bigoplus_{q \text{ even}} \Omega_{n-q}^U(B_q)$  into  $\omega_{n-1}^U(Z_2, \text{Free})^+$ .

The diagram

$$\begin{array}{ccc} \Omega_n^U(Z_2, \text{All}, \text{Free}) & \xrightarrow{\partial} & \Omega_{n-1}^U(Z_2, \text{Free}) \\ \downarrow & & \cong \downarrow \rho \\ \bigoplus_{q \text{ even}} \Omega_{n-q}^U(BU_{q/2}) & \xrightarrow{\partial} & \omega_{n-1}^U(Z_2, \text{Free})^+ = \Omega_{n-1}^U(RP(\infty)) \\ \downarrow & & \swarrow \partial \\ \bigoplus_{q \text{ even}} \Omega_{n-q}^U(B_q) & & \end{array}$$

commutes, and  $\rho\partial$  is known to map onto  $\tilde{\Omega}_{n-1}^U(RP(\infty))$ . The summand  $\Omega_{n-1}^U$  complementary to  $\tilde{\Omega}_{n-1}^U(RP(\infty))$  is realized as the manifolds  $M \times Z_2$  with  $M$  stably almost complex and  $t$  interchanging the two copies of  $M$ . Applying  $i$  and the augmentation  $\varepsilon: \omega_{n-1}^U(Z_2, \text{All}) \rightarrow \Omega_{n-1}^U$  which takes the cobordism class of the underlying manifold, one obtains  $2[M]$ . Thus  $i$  is monic on this summand and

the image of  $\partial$  in  $\omega_{n-1}^U(Z_2, \text{Free})^+$  is precisely  $\tilde{\Omega}_{n-1}^U(RP(\infty))$ .

Now considering  $\omega_*^U(Z_2, \text{Free})^- \cong \tilde{\Omega}_{*+1}^U(RP(\infty))$ , one notes that  $\tilde{\Omega}_*^U(RP(\infty))$  is generated as  $\Omega_*^U$  module by the inclusion maps  $RP(2i+1) \rightarrow RP(\infty)$  which are obtained by Thomifying the inclusion  $RP(2i) \rightarrow RP(\infty)$ , for which the induced double cover is the antipodal involution on  $S^{2i}$ . The complex structure imparted may be considered as that given by considering  $S^{2i} \subset C^{i+1}$ , where  $C^{i+1}$  has the involution given by multiplication by  $-1$ , and the complex structure given by multiplication by  $\sqrt{-1}$ , imparting the appropriate structure to  $\tau(S^{2i}) \oplus 1 \oplus 1$ . The same construction gives an involution on  $D^{2i+1} \subset C^{i+1}$  with appropriate structure on  $\tau(D^{2i+1}) \oplus 0 \oplus 1$ . Thus these classes are in the image of  $\partial$ , and since  $\partial$  is a  $\Omega_*^U$  module homomorphism,  $\omega_*^U(Z_2, \text{Free})^-$  is contained in the image of  $\partial$ .

Thus one has compatible splittings for the sequences to obtain a commutative diagram

$$\begin{array}{ccccccc} 0 \rightarrow \Omega_n^U \rightarrow \Omega_n^U(Z_2, \text{All}) \rightarrow \bigoplus_{q \text{ even}} \Omega_{n-q}^U(BU_{q/2}) \rightarrow \tilde{\Omega}_{n-1}^U(RP(\infty)) \rightarrow 0 \\ 1 \downarrow \quad \rho \downarrow \quad \downarrow \rho' \quad \downarrow \rho'' \\ 0 \rightarrow \Omega_n^U \rightarrow \omega_n^U(Z_2, \text{All}) \rightarrow \bigoplus_q \Omega_{n-q}^U(B_q) \rightarrow \tilde{\Omega}_{n-1}^U(RP(\infty)) \oplus \tilde{\Omega}_n^U(RP(\infty)) \rightarrow 0 \end{array}$$

in which both  $\rho'$  and  $\rho''$  are monomorphisms onto direct summands, and  $1$  is the identity.

Rather than belabor the point further, one has:

**Proposition 2.4.**  $\rho: \Omega_n^U(Z_2, \text{All}) \rightarrow \omega_n^U(Z_2, \text{All})$  is a monomorphism.

### 3. Maps of odd prime period

Now consider the case  $G = Z_p$ , with  $p$  an odd prime, again writing  $(V, \phi)$  as  $(V, t)$  where  $t$  is a diffeomorphism of period  $p$ . Again there are three families:  $\phi$ , Free, and All and one has an exact sequence

$$\begin{array}{ccc} \omega_*^U(Z_p, \text{Free}) & \xrightarrow{i} & \omega_*^U(Z_p, \text{All}) \\ & \swarrow \quad \searrow & \\ & \omega_*^U(Z_p, \text{All, Free}) & \end{array}$$

To begin, consider  $\omega_*^U(Z_p, \text{Free})$ . If  $(V, t)$  is a free action of  $Z_p$  on an  $n$ -manifold with  $dt \times s$  acting on  $\tau(V) \oplus \pi$ , where  $\pi$  is given by the representation  $(W, \theta)$ , then one may form the orbit space  $V/Z_p$ , which is an  $n$ -manifold with  $pr: V \rightarrow V/Z_p$ , the projection. Since  $dt \times s$  acts freely on  $E(\tau(V) \oplus \pi)$ ,  $E(\tau(V) \oplus \pi)/Z_p \rightarrow V/Z_p$  is a vector bundle and complex structures preserved by  $dt \times s$  are given by complex structures on the quotient bundle.

Now  $(W, \theta)$  may be decomposed by means of the irreducible representations

into a direct sum of subrepresentations  $W_0$ , which is trivial, and  $W_k$  for  $1 \leq k \leq (p-1)/2$  where  $W_k$  is a complex vector space in which  $s$  acts as multiplication by  $\exp\left(\frac{2\pi ik}{p}\right)$ . In particular,  $E(\pi)/Z_p \rightarrow V/Z_p$  is then the Whitney sum of a trivial bundle  $\xi_0$  with fiber  $W_0$  and the complex vector bundles  $\xi_k$  with fiber  $W_k$  associated with the  $p$ -fold cover  $V \rightarrow V/Z_p$ . Thus  $E(\pi)/Z_p$  is the total space of the bundle  $\tau(V/Z_p) \oplus \xi_0 \oplus (\bigoplus \xi_k)$ . Since  $(\bigoplus \xi_k)$  has been given a complex structure, the complex structures on  $\tau(V)$  preserved under the action are given precisely by stably almost complex structures on  $V/Z_p$ . Thus a structure preserving  $Z_p$  action is just a principal  $Z_p$  bundle over a stably almost complex manifold. Assigning to  $(V, t)$  the map  $V/Z_p \rightarrow BZ_p$  classifying the cover then defines an isomorphism of  $\omega_*^U(Z_p, \text{Free})$  with  $\Omega_*^U(BZ_p)$ . When applied to structure preserving actions of  $Z_p$  in the sense of Conner and Floyd, one also obtains an isomorphism and so one obtains:

**Proposition 3.1** *The restriction homomorphism  $\rho: \Omega_*^U(Z_p, \text{Free}) \rightarrow \omega_*^U(Z_p, \text{Free})$  is an isomorphism.*

In the commutative diagram

$$\begin{array}{ccc} \Omega_*^U(Z_p, \text{All, Free}) & \xrightarrow{\partial'} & \Omega_*^U(Z_p, \text{Free}) \\ \rho \downarrow & & \cong \downarrow \rho \\ \omega_*^U(Z_p, \text{All, Free}) & \xrightarrow{\partial} & \omega_*^U(Z_p, \text{Free}) \end{array}$$

it is known that the image of  $\partial'$  is  $\tilde{\Omega}_*^U(BZ_p)$ , and the composite

$$\Omega_*^U \rightarrow \omega_*^U(Z_p, \text{Free}) \xrightarrow{i} \omega_*^U(Z_p, \text{All}) \xrightarrow{\varepsilon} \Omega_*^U$$

is multiplication by  $p$  on the complementary summand, so the image of  $\partial$  is precisely  $\tilde{\Omega}_*^U(BZ_p)$ .

Thus one has a splitting, giving the diagram

$$\begin{array}{ccccccc} 0 \rightarrow \Omega_*^U & \rightarrow \Omega_*^U(Z_p, \text{All}) & \rightarrow & \Omega_*^U(Z_p, \text{All, Free}) & \rightarrow & \tilde{\Omega}_*^U(BZ_p) & \rightarrow 0 \\ & \downarrow 1 & \rho \downarrow & & \rho \downarrow & & \downarrow 1 \\ 0 \rightarrow \Omega_*^U & \rightarrow \omega_*^U(Z_p, \text{All}) & \rightarrow & \omega_*^U(Z_p, \text{All, Free}) & \rightarrow & \tilde{\Omega}_*^U(BZ_p) & \rightarrow 0. \end{array}$$

Now consider the group  $\omega_*^U(Z_p, \text{All, Free})$ . Letting  $(V, t)$  be an action which is free on  $\partial V$ , the fixed point set of  $V$  is a disjoint union of closed submanifolds  $F^{n-q}$  with normal bundles  $\nu_q$  and  $V$  may be replaced by the disc bundles of the  $\nu_q$ . At points of  $F^{n-q}$ , the bundle  $\tau \oplus \pi$  decomposes into  $\tau(F^{n-q}) \oplus \xi_0$ , where  $\xi_0$  is the trivial bundle of  $W_0$ , which is the trivial eigen-bundle, and bundles  $(\nu_q)_k \oplus \xi_k$ , where  $\xi_k$  is the trivial bundle with fiber  $W_k$  and  $(\nu_q)_k$  is a sub-bundle

of  $\nu_q|F^{n-q}$ , giving the eigen-bundle corresponding to multiplication by  $\exp\left(\frac{2\pi ik}{p}\right)$  for  $1 \leq k \leq (p-1)/2$ . Considered as a complex  $Z_p$  bundle, the bundle  $\tau \oplus \pi$  decomposes into complex sub-bundles  $\eta_0$ , the trivial eigen-bundle, and  $\eta_j$ ,  $1 \leq j \leq p-1$  on which  $dt \times s$  acts as multiplication by  $\exp\left(\frac{2\pi ij}{p}\right)$ . Taking the parts of the complex decomposition which give the real decomposition, one has  $\eta_0 \cong \tau(F^{n-q}) \oplus \xi_0$ , so  $F^{n+q}$  is stably almost complex, and  $(\nu_q)_k \oplus \xi_k \cong \eta_k \oplus \eta_j$ , where  $(p-1)/2 \leq j \leq p-1$  and  $\exp\left(\frac{2\pi ij}{p}\right)$  is the complex conjugate of  $\exp\left(\frac{2\pi ik}{p}\right)$ , or  $j=p-k$ .

After stabilization, the bundles  $\eta_k$  and  $\eta_{p-k}$  are stable complex bundles subject only to the condition that  $\eta_k \oplus \eta_{p-k}$  should be stably isomorphic as complex bundle with  $(\nu_q)_k$ . Thus, the class of  $(V, t)$  is completely determined by the bordism classes  $F_{(r)}^{n-q} \rightarrow BU_{r_1} \times BU \times \cdots \times BU_{r_{(p-1/2)}} \times BU$  where  $r_1 + \cdots + r_{(p-1/2)} = q/2$ , where  $F_{(r)}^{n-q}$  are the portions of  $F^{n-q}$  over which  $(\nu_q)_k$  has real dimension  $2r_k$ , the map into  $BU_{r_k}$  classifying  $(\nu_q)_k$ , and that into the  $k$ -th  $BU$  factor classifying  $\eta_k$ . Thus, one has

**Proposition 3.2**  $\omega_n^U(Z_p, \text{All, Free})$  is isomorphic to

$$\bigoplus_{(s, t)} \Omega_{n-2r}^U(BU_{r_1} \times BU \times \cdots \times BU_{r_{(p-1/2)}} \times BU),$$

the sum being over all sequences  $(r) = (r_1, \dots, r_{(p-1/2)})$  of non-negative integers, and with  $r = r_1 + \cdots + r_{(p-1/2)}$ .

In order to analyze  $\rho: \Omega_n^U(Z_p, \text{All, Free}) \rightarrow \omega_n^U(Z_p, \text{All, Free})$ , one may simply note that analogously  $\Omega_n^U(Z_p, \text{All, Free})$  is isomorphic to

$$\bigoplus_{(s, t)} \Omega_{n-2r}^U(BU_{s_1} \times BU_{t_1} \times \cdots \times BU_{s_{(p-1/2)}} \times BU_{t_{(p-1/2)}})$$

where  $\frac{q}{2} = r = s_1 + \cdots + s_{(p-1/2)} + t_1 + \cdots + t_{(p-1/2)}$  and the map of  $F_{(s, t)}^{n-q}$  into  $BU_{s_k}$  classifies  $\eta_k$  and into  $BU_{t_k}$  classifies  $\eta_{p-k}$ , with  $(\nu_q)_k \cong \eta_k \oplus \eta_{p-k}$  in this case. The map  $\rho$  is then induced by the maps  $\cup_{s_k + t_k = r_k} BU_{s_k} \times BU_{t_k} \rightarrow BU_{r_k} \times BU$  given by the Whitney sum map  $BU_{s_k} \times BU_{t_k} \rightarrow BU_{r_k}$  and by  $BU_{s_k} \times BU_{t_k} \xrightarrow{pr} BU_{s_k} \xrightarrow{\sigma} BU$  where  $pr$  is the projection and  $\sigma$  is stabilization.

One may then observe that  $\rho$  is anything but monic, for many summands in  $\Omega_n^U(Z_p, \text{All, Free})$  map to the same summand in  $\omega_n^U(Z_p, \text{All, Free})$ . (One need only look at the terms with  $n=2r$  in which many copies of  $Z$  map to a single copy of  $Z$ .) Since, by the commutative diagram, the kernels of the homomorphisms  $\rho: \Omega_n^U(Z_p, \text{All, Free}) \rightarrow \omega_n^U(Z_p, \text{All, Free})$  and  $\rho: \Omega_n^U(Z_p, \text{All}) \rightarrow \omega_n^U(Z_p, \text{All})$  are isomorphic, one sees that  $\rho: \Omega_n^U(Z_p, \text{All}) \rightarrow \omega_n^U(Z_p, \text{All})$  is also not monic.

The homomorphism  $\rho$  is also not epic, for the map

$$\begin{matrix} U \\ s_k + t_k = r_k \end{matrix} BU_{s_k} \times BU_{t_k} \rightarrow BU_{r_k} \times BU_{r_k}$$
 factors through  $BU_{r_k} \times BU_{r_k}$ . One can, of course, compute  $\rho: \Omega_n^U(Z_p, \text{All, Free}) \rightarrow \omega_n^U(Z_p, \text{All, Free})$  explicitly since the groups and map are completely known, but it hardly seems worthwhile.

As a final note, one should consider the reason why the  $Z_2$  and  $Z_p$  cases,  $p$  odd, are so different. Clearly the problem is the dissimilarity between the nature of real representations in the two cases. In studying  $\Omega_*^U(G, *, *)$  only the complex representations really play a role, while in  $\omega_*^U(G, *, *)$  both types enter.

UNIVERSITY OF VIRGINIA

---

#### References

- [1] P.E. Conner and E.E. Floyd: Cobordism theories, (mimeographed), A.M.S. Seattle Conference, 1963.
- [2] P.E. Conner and E.E. Floyd: *Periodic maps which preserve a complex structure*, Bull. Amer. Math. Soc. **70** (1964), 574–579.
- [3] P.E. Conner and E.E. Floyd: *Maps of odd period*, Ann. of Math. **84** (1966), 132–156.
- [4] R.E. Stong: *On the cobordism of pairs*, Pacific J. Math. **38** (1971), 803–816.