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1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserv-
ing a complex structure, applying bordism methods quite successfully. In a
discussion with Gary Hamrick it became apparent that a somewhat weaker notion
was also quite plausible, and the object of this note is to analyze this weaker
structure.

Being given a manifold with boundary V and a differentiable action
φ: Gx V-+V, with G a finite group, the differential dφ: Gχτ(V}-*τ(V) induces
a G action on the tangent bundle to V. Being given a real representation

θ: Gx W-> W of G on a vector space W, one may form a G-bundle Wx V —> V,
where G acts by θxφ on Wx V. Then the Whitney sum of τ(F) and the

bundle π has a G-action given by dφ and θ. Thinking of E(r(V)@π) as identi-
fied with E(τ(V))χW, the action is dφxθ.

A bundle map /: τ(J7)0τr-^τ(J7)07r which covers the identity map on V
and such that/2= — 1 in the fibers gives τ(F)0τr a complex structure and if /
commutes with the G action dφxθ,τ(V)ζ&π becomes a complex G-bundle

over V.
If ι/r: Gx Γ-^Γ is a complex representation of G one may form the bundle

Tt'.Tx V-+V with G action given by ^X φ, and if i: T-*T is the function with
i2= — Igiving the complex structure, τ(F)07rφτr is a complex G bundle if G
acts by dφ X θ X ψ and the complex structure is / X i.

A stably almost complex structure on (V\ φ) preserved by G would then be

an equivalence class of systems (W, #,/), where two such (W, Θ,J) and (W, #',/')
are equivalent if there are complex representations (Γ, τ|r, ί) and (T", \K, i') so
that τ(F)0τr07? and τ(F)0τr/0τf/ are equivalent complex G-bundles.

The boundary of V inherits a stably almost complex structure preserved
by G for τ(QV)^τ(V)\wξ&l as G-bundles, where 1 is the trivial line bundle
coming from the trivial representation of G.

It is clear that this differs from the Conner-Floyd approach in which (W7, θ)

and (T, ψ) are restricted to be trivial representations.
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One may form bordism groups using the new structure preserving actions,
which will be denoted ω#(G, 3, 3') given by G actions preserving a complex

structure which are £F-free and such that the boundary action is £F'-free, where,

3, 3' are families in G as in Conner-Floyd [3]. The corresponding groups
using the Conner-Floyd definition of "structure preserving" will be denoted

Ω#(G, 3, 3'), and the forgetful homomorphism will be denoted by

The remainder of this paper will be devoted to analyzing ω#(G, 3, 3'} and p
in the case when G is cyclic of prime order. Surprisingly, the cases G— Z2 and

G=Zp with p odd are considerably different, which is not the case for the
Conner-Floyd groups.

2. Structure preserving involutions

Now consider the special case G=Z2y writing (V, φ) as (V, t) where t is the
involution generating the Z2 action. There are three families for Z2, the empty

family φ, the family Free= {{!}}, and the family All of all subgroups. Letting

ω#(Z2, £?)=ω#(Z2, £?, φ), the groups of interest are related by an exact sequence

ω£(Z2, Free)— ω£(Z2, All)

\ /i
ω£(Z2, All, Free)

where i,j are induced by inclusion of families and 3 by taking the boundary.
First, to analyze ω#(Z2, All, Free), consider an involution (V, t) on an n-

dimensional manifold, with t acting freely on 3 V with /the complex operator on

τ(V)@k@l with involution Λ010(— 1), where kj denote trivial bundles of
dimensions k and / respectively.

The fixed point set of t in V is a disjoint union of closed submanifolds F*~q

of dimension n — q, with normal bundles vq. A neighborhood of the fixed set of t
may be identified with the disjoint union of the disc bundles D(vq], and since
t acts freely on the complement of this neighborhood, one may cut the
remainder away up to cobordism.

Along Fn~9, the bundle τ(F)0&0/ decomposes into the eigen-bundles of
έft010(--l) which are preserved by J, so that τ(F*~*)φk, the +1 eigen-bundle,
and z>*0/, the (—1) eigen-bundle are complex bundles. Thus Fn~q is a stably
almost complex manifold and vq is a <?-plane bundle with a stable complex
structure.

Letting Eq be the bundle over BOq induced from the fibration BU-+BO, the

bundle vq is induced by a map into Bq. Thus one has:
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Proposition 2.1. ω^(Z2, All, Free)^ 0 Clu

n,q(Bq}.

Cβ/2]

The group Ω^(Z2, All, Free)^ 0 £lu

n-zq(BU q) and the restriction homomor-
ί=0

phism p is induced by the obvious maps BUj->B2j.

The homology of the space Bq was computed in [4], and is torsion free, so

Ω*(Bq) is computable explicitly. Since the homomorphism Ω%(BU j)-+Ω%(BU)

is a monomorphism onto a direct summand, and factors through p, one has:

Proposition 2.2. ω#(Z2, All, Free) is a free Ω# module and the restriction

p: Ω£(Z2, All, Free) -> ω$(Z29 All, Free)

is a monomorphism onto a direct summand.

Turning to ω^(Z2, Free), consider an involution (V, t) on an n-dimensional

manifold, with t acting freely and with / the complex operator on τ(V)(£)k®l

with involution ώ010(— 1). By identifying x and t(x) in V, one obtains the

orbit space V/t and a quotient map π: V-*V/t, with V/t also being an w-dimen

-sional manifold. Since έft010(— 1) covers t which is free, ώ010(— 1) is
free and the orbit space E(τ(V}®k@ΐ)l(dt®\®(— 1)) may be indentified with

the total space of the bundle r(Vjί)@k@lξ where ξ is the line bundle associated

with the double cover π: V-*V/t. Since J commutes with ώ010(— - 1), one

has induced a complex structure on τ(F"/£)0£0/f and a complex structure on
Ύ(V)®k®lξ induces a complex structure on τ(F)0&0/, which is the bundle

induced by πy commuting with the action.

Now 2ξ^ξ®RC has a complex structure, so a complex structure on τ(V/t)
®k@lξ is equivalent to a stable complex structure on τ(V/t) if / is even, or to a

stable complex structure on τ(Vlt)@ξ if / is odd. Since the parity of / for V

and dV is the same, ω#(Z2, Free) decomposes into two direct summands,

ω*(Z2, Free)+ and ω*(Z2, Free)" for / even and odd respectively.

First considering ω£(Z2, Free)+, the class of V, if 9 V is empty, is completely

determined by the stably almost complex manifold V/t with its double cover V.
Hence ω£(Z2, Free)+^Ω£(ΛP(oo)), by assigning to the class of Fthe class of the

map Vft-^RP(oo) classifying the double cover. The homomorphism p sends

Ω£(Z2, Free) into ω£(Z2, Free)4" and composing to Ω£(jRP(°o)) is the usual iso-

morphism for computing Ω^(Z2, Free).

For ω^(Z2, Free)", one has a classifying map V\t -* RP(°°) with ξ induced

from the canonical bundle λ over RP(°°). The tangent bundle of D(£), the disc
bundle, is the pullback of τ(F/f)0f, so that D(ξ) is a stably almost complex

manifold. One then has the map (Dξ, Sξ)-*(D\, S\)-^(T\, *)— (RP(°°)> *)
where S is the sphere bundle and T is the Thorn space, which defines a homomor-
phism from ω£(Z2, Free)" into the reduced bordism group Ω£+1(ΛP(oo)). By
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applying transverse regularity arguments with ΛP(°o) considered as the Thorn

space of λ, one may reverse this process to recover F, so ω#(Z2, Free)'

Combining these results gives:

Proposition 2.3. ω£(Z2. Free)^Ω%(RP(<χ>))®&%+l(RP(°°)) and p sends

Ω#(Z2, Free) isomorphίcally onto the first summand.

Note. The Smith homomorphism is much more reasonably defined in

ω#(Z, Free) than in Conner-Floyd's groups. Specifically, if (M, t) is a structure

preserving involution, then splitting M gives a submanifold M' invariant under t

whose normal bundle in M is the trivial line bundle of the non-trivial repre-
sentation. Thus the Smith homomorphism maps the summands ω#(Z2, Free)+

and ω#(Z2, Free)" into each other. In particular

Δ: ω^Z,, Free)* = Ω?(ΛP(oo)) -» ̂ (Z,, Free)- = ΩS(RP(°°))

is the reduction homomorphism, and

Δ: ω%(Z2, Free)- = β?+I(ΛP(oo)) -* ̂ (Z,, Free)* =

is obtained by dualizing ξ(&ξ.

To compute ω^(Z2, All), one makes use of the exact sequence of the families.

Being given a map Fn~g->Bg representing an element of ω^(Z2, All, Free), the

bundle vqQ)l is complex over Fn~9 and hence q-\-l is even. Thus along the

boundary of D(vq), q + l must also be even, and the homomorphism

9: 6#(Z2, All, Free) -> ω^^Z,, Free)

sends 0 Ωu

n_q(Bq) into ω^(Z2y Free)" and 0 ^_g(Bq) into ω .̂̂ Z,, Free)+.
ί odd Q even

The diagram

, All, Free) - > Ω^(Z2( Free)

commutes, and p9 is known to map onto ί2^_1(/?P(oo)). The summand Ω^_j

complementary to Ω^_1(/?P(°°)) is realized as the manifolds MχZ2 with M

stably almost complex and t interchanging the two copies of M. Applying / and

the augmentation 6: ω^_1(Z2, All)—>Ω^_! which takes the cobordism class of the

underlying manifold, one obtains 2[Λf], Thus / i$ monic on this summand and
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the image of 3 in u>u

n_^Z2, Free)+ is precisely
Now considering ω£(Z2, Free)~^O^+1(.RP(oo))) one notes that

is generated as Ω% module by the inclusion maps RP(2i-\-l)-*RP(o°) which are
obtained by Thomifying the inclusion RP(2i)-+RP(oo)9 for which the induced
double cover is the antipodal involution on S2/. The complex structure
imparted may be considered as that given by considering S2ίcCί+1, where Cz+1

has the involution given by multiplication by —1, and the complex stucture
given by multiplication by \/ — 1, imparting the appropriate structure to
τ(*S2')®101. The same construction gives an involution on Z)2t+1cC'+1 with
appropriate structure on τ(D2z'+1)00® 1. Thus these classes are in the image of
3, and since 3 is a Ω* module homomorphism, ω#(Z2, Free)~ is contained in
the image of 3.

Thus one has compatible splittings for the sequences to obtain a commutative
diagram

0 ̂  Ω? -» W(ZZ, All) - θ ίln

0 -* Ω? -» a>v(Z2, All) - φ Ω 9̂(5?) - ΩίUtfP(oo))φί^(#P(c*)) - 0
q

in which both p' and p" are monomorphisms onto direct summands, and 1 is the
identity.

Rather than belabor the point further, one has :

Proposition 2.4. p: Ω^(Z2, All)->ω%(Z2, All) is a monomorphism.

3. Maps of odd prime period

Now consider the case G=*Zp with p an odd prime, again writing (V, φ) as
(V9 1) where t is a diffeomorphism of period p. Again there are three families:

φ, Free, and All and one has an exact sequence

ω%(Zp, Free) -^ωftZ,, All)

ωϊ(Z,, All, Free) .

To begin, consider ω*(Zp, Free). If (V, t) is a free action of Zp on an
w-manifold with dtxs acting on τ(F)φτr, where π is given by the representation
(W, θ), then one may form the orbit space VfZp which is an w-manifold with
pr: V-*V\Zp the projection. Since dtxs acts freely on E(τ(V)®π),
E(τ(V)ξ&π)/Zp-+V/Zp is a vector bundle and complex structures preserved by

dtxs are given by complex structures on the quotient bundle.
Now (Wy θ) may be decomposed by means of the irreducible representations
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into a direct sum of subrepresentations W0, which is trivial, and Wk for 1 <k<
(p—l)/2 where Wk is a complex vector space in which s acts as multiplication by

expί-^-j. In particular, E(π)/Zp->V/Zp is then the Whitney sum of a trivial

bundle ξ0 with fiber W0 and the complex vector bundles ξk with fiber Wk

associated with the p-folά cover V^V\Zp. Thus E(τ(V)®π)/Zp is the total

space of the bundle τ(F/Zj)0f00(0| A). Since (0^) has been given a com-
plex structure, the complex structures on τ(V) preserved under the action are
given precisely by stably almost complex structures on V/Zp. Thus a structure
preserving Zp action is just a principal Zp bundle over a stably almost complex
manifold. Assigning to (V, t) the map V/Zp-*BZp classifying the cover then
defines an isomorphism of ω%(Zp, Free) with Ω*(BZp). When applied to
structure preserving actions of Zp in the sense of Conner and Floyd, one also
obtains an isomorphism and so one obtains:

Proposition 3.1 The restriction homomorphism p: Ω*(Zp, Free)-*

ω%(Zp, Free) is an isomorphism.

In the commutative diagram

Ωg(Z,, All, Free) > Ω%(Zp, Free)

PJ g ~JP

ωg(Z,, All, Free) > ω$(Zp, Free)

it is known that the image of 9r is Ω (̂5Z )̂, and the composite

Ω£ -> ωg(Z^, Free) -U ωg(Z^, All) -̂ > Ω^

is multiplication by p on the complementary summand, so the image of 9 is

precisely Ω%(BZp).
Thus one has a splitting, giving the diagram

0 -> Ω£ -> Ω%(ZP, All) -Ω l(Zp, All, Free) - Ω£(5Z,) - 0

I1 ^1 ^J I1

0 - Ω£ - ωg(Z^, All) -> ω£(Z,, All, Free) -> O^(5Z^) -> 0 .

Now consider the group ω%(Zp, All, Free). Letting (V, t) be an action
which is free on 9F, the fixed point set of V is a disjoint union of closed submani-
folds Fn~q with normal bundles vq and V may be replaced by the disc bundles of
the vq. At points of Fn~q, the bundle τ0τr decomposes into τ(Fn~q)Q)ξoy where
£0 is the trivial bundle of W0, which is the trivial eigen-bundle, and bundles

k, where ξk is the trivial bundle with fiber Wk and (vq)^ is a sub-bundle
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of vq I Fn~g, giving the eigen-bundle corresponding to multiplication by expf -^— }

for l<k<(p—l)/2. Considered as a complex Zp bundle, the bundle τφ?r
decomposes into complex sub-bundles η0, the trivial eigen-bundle, and

Vj, l<j</>— 1 on which dtxs acts as multpilication by expf-^Π. Taking the

parts of the complex decomposition which give the real decomposition, one has

v so Fn+q is stably almost complex, and (vq}k®ξk^Ύίk®Ύίj where

j<p—ϊ and expί-^M is the complex conjugate of expί-^- j, or

j=p-k.
After stabilization, the bundles ηk and ηp_k are stable complex bundles sub-

ject only to the condition that ηkΦVp-k should be stably isomorphic as complex
bundle with (vq)k. Thus, the class of (V, t) is completerly determined by the
bordism classes Ffc9^BUrιxBUx ~χBUrcp_ί/2)xBU where r1+. H-r(/,_1/2)

= ?/2, where Ffc9 are the portions of Fn~q over which (vq)k has real dimension
2rkJ the map into BUrk classifying (vg)k, and that into the &-th BU factor classify-

ing ηk. Thus, one has

Proposition 3.2 ω%(Zp, All, Free) is isomorphic to

0 nu

n_2,(BUrιxBUx ...χBUrtP_MxBU) ,
CO

the sum being over all sequences (r)=(r19 •• ,rc^_1/2)) of non-negative integers, and

In order to analyze p: ^(Zpj All Free)->ω^(Z/>, All, Freefone may simply

note that analogously Ω%(Zp, All, Free) is isomorphic to

where -ί-=r=sl-\ ----- h^-i^+^iH ----- h^-ι/2)
 and the map of F?~$ into BUsfg

classifies ηk and into BUtk classifies ηp_k, with (^^)^=^0^_feinthis case. The
map p is then induced by the maps U BUskχBUtk-^BUrkxBU given by the

sk+<k=
rk pr σ

Whitney sum map BUskxBUtk-*BUrk and by BUskχBUtk ±-> BUsk -* BU
where pr is the projection and σ is stabilization.

One may then observe that p is anything but monic, for many summands in

Ω%(Zp, All, Free) map to the same summand in ω%(Zp, All, Free). (One need
only look at the terms with n=2r in which many copies of Z map to a single copy

of Z). Since, by the commutative diagram, the kernels of the homomorphisms

p: Ωg(Zt, All, FreeHω^Z,, All, Free) and p: ΩS(Zt, All)-»ωίf(Z,, All) are iso-
morphic, one sees that p : Ώ%(Zp, All)->ω^(Z#, All) is also not monic.
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The homomorphism p is also not epic, for the map

U BUskχB Utk->B UrkχBU factors through BUrkχB Urk. One can,

of course, compute p: Ω%(Zp, All, FreeJ-^ω^Z^, All, Free) explicitly since the

groups and map are completely known, but it hardly seems worthwhile,.
As a final note, one should consider the reason why the Z2 and Zp cases, p

odd, are so different. Clearly the problem is the dissimilarity between the nature
of real representations in the two cases. In studying Ω*(G, *, *) only the
complex representations really play a role, while in ω#(G, *, *) both types enter.
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