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1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserv-
ing a complex structure, applying bordism methods quite successfully. In a
discussion with Gary Hamrick it became apparent thata somewhat weaker notion
was also quite plausible, and the object of this note is to analyze this weaker
structure.

Being given a manifold with boundary V' and a differentiable action
¢: Gx V-V, with G a finite group, the differential d¢p: G X 7(V)—7(V) induces
a G action on the tangent bundle to V. Being given a real representation

0: GX W—W of G on a vector space W, one may form a G-bundle Wx V Lt v,
where G acts by §X¢ on Wx V. Then the Whitney sum of 7(V) and the
bundle  has a G-action given by d¢ and . Thinking of E(7(V)Pr) as identi-
fied with E(7(V))x W, the action is d¢ X 6.

A bundle map J: 7(V)Pr—7(V)Pr which covers the identity map on V
and such that J?=—1 in the fibers gives (V)@= a complex structure and if J
commutes with the G action d¢x 8, 7(V)Dx becomes a complex G-bundle
over V.

If ¥: GX T—T is a complex representation of G one may form the bundle
7: Tx V—V with G action given by VX ¢, and if z: T—T is the function with
i*=—1giving the complex structure, 7(V)P»P= is a complex G bundle if G
acts by d¢ X X and the complex structure is J X 7.

A stably almost complex structure on (V) ¢) preserved by G would then be
an equivalence class of systems (W, 4, J), where two such (W, 8, J)and (W', 6', ')
are equivalent if there are complex representations (7, v, 7) and (7", V', ') so
that 7(V)Pr Pz and 7(V)Pr' Pz’ are equivalent complex G-bundles.

The boundary of V inherits a stably almost complex structure preserved
by G for 7(0V)=7(V)|,y@P1 as G-bundles, where 1 is the trivial line bundle
coming from the trivial representation of G.

It is clear that this differs from the Conner-Floyd approach in which (W7, 6)
and (7, V) are restricted to be trivial representations.
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One may form bordism groups using the new structure preserving actions,
which will be denoted w¥(G, F, &’) given by G actions preserving a complex
structure which are F-free and such that the boundary action is &’-free, where,
S, S’ are families in G as in Conner-Floyd [3]. The corresponding groups
using the Conner-Floyd definition of “structure preserving” will be denoted
QY(G, F, F’), and the forgetful homomorphism will be denoted by

p: QYUG, F, F') — oY(G, F, F).

The remainder of this paper will be devoted to analyzing ¥(G, &, &) and p
in the case when G is cyclic of prime order. Surprisingly, the cases G=Z, and
G=Z, with p odd are considerably different, which is not the case for the
Conner-Floyd groups.

2. Structure preserving involutions

Now consider the special case G=Z2,, writing (V, ¢) as (V, t) where t is the
involution generating the Z, action. There are three families for Z,, the empty
family ¢, the family Free={{1}}, and the family All of all subgroups. Letting
wi(Z, F)=wi(Z,, F, ¢), the groups of interest are related by an exact sequence

©Y(Z,, Free) — wl(Z, Al

N

wY(Z,, All, Free)

where 7, j are induced by inclusion of families and 9 by taking the boundary.

First, to analyze w{(Z,, All, Free), consider an involution (V, t) on an n-
dimensional manifold, with ¢ acting freely on 0V with J the complex operator on
T(V)PkP! with involution dtP1(—1), where &, I denote trivial bundles of
dimensions k and / respectively.

The fixed point set of # in V is a disjoint union of closed submanifolds " ¢
of dimension 7 — g, with normal bundles v,. A neighborhood of the fixed set of ¢
may be identified with the disjoint union of the disc bundles D(»,), and since
t acts freely on the complement of this neighborhood, one may cut the
remainder away up to cobordism.

Along F™ 4, the bundle 7(V)@kD! decomposes into the eigen-bundles of
dtd1d(—1) which are preserved by J, so that 7(F"~?)@Pk, the +1 eigen-bundle,
and »?@/, the (—1) eigen-bundle are complex bundles. Thus F"7 is a stably
almost complex manifold and », is a ¢-plane bundle with a stable complex
structure.

Letting B, be the bundle over BO, induced from the fibration BU—BO, the
bundle v, is induced by a map into B,. Thus one has:
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Proposition 2.1. J(Z,, All, Free)= qé QY_«(By).

"
The group QY(Z,, All, Free)g[ 629) QY_,«(BU,) and the restriction homomor-
=0

phism p is induced by the obvious maps BU ;—B, .

The homology of the space B, was computed in [4], and is torsion free, so
QY(B,) is computable explicitly. Since the homomorphism Q¥(BU ;)—Q¥(BU)
is a monomorphism onto a direct summand, and factors through p, one has:

Proposition 2.2. o¥(Z,, All, Free) is a free QY module and the restriction
p: QY(Z,, All, Free) — w¥(Z,, All, Free)
is a monomorphism onto a direct summand.

Turning to w¥(Z,, Free), consider an involution (¥, ¢) on an n#-dimensional
manifold, with ¢ acting freely and with J the complex operator on 7(V)PkP!
with involution dt1@P(—1). By identifying x and #(x) in V, one obtains the
orbit space V/t and a quotient map z: V—V/t, with V|t also being an n-dimen
-sional manifold. Since dt@1@(—1) covers ¢ which is free, dtP1P(—1) is
free and the orbit space E(T(V)PkPI)/(dtP1P(—1)) may be indentified with
the total space of the bundle 7(V/t)PkPIE where £ is the line bundle associated
with the double cover z: V—V/t. Since J commutes with dtp1H(—1), one
has induced a complex structure on 7(V/t)PkPIE and a complex structure on
T(V)DEkDIE induces a complex structure on 7(V)PkP!, which is the bundle
induced by 7, commuting with the action.

Now 2£=E(®fC has a complex structure, so a complex structure on 7(V/t)
DEDIE is equivalent to a stable complex structure on 7(V/t) if [ is even, or to a
stable complex structure on 7(V/[t)PE if [ is odd. Since the parity of / for V
and 0V is the same, w¥(Z,, Free) decomposes into two direct summands,
w{(Z,, Free)™ and w¥(Z,, Free)™ for [ even and odd respectively.

First considering w¥(Z,, Free)*, the class of V, if 91 is empty, is completely
determined by the stably almost complex manifold V¢ with its double cover V.
Hence w¥(Z,, Free)*=QY(RP(0)), by assigning to the class of 7 the class of the
map V[t—>RP(o0) classifying the double cover. The homomorphism p sends
QYZ,, Free) into w¥(Z,, Free)* and composing to QF(RP(0)) is the usual iso-
morphism for computing Q¥(Z,, Free).

For w¥(Z,, Free)™, one has a classifying map V¢ l; RP(cc) with & induced
from the canonical bundle A over RP(oc). The tangent bundle of D(£), the disc
bundle, is the pullback of 7(V/tf)PE, so that D(E) is a stably almost complex
manifold. One then has the map (DE, SE)—(D\, SN)—(T\, x) =(RP(0), *)
where S is the sphere bundle and T is the Thom space, which defines a homomor-
phism from »¥(Z,, Free)™ into the reduced bordism group O, ,(RP(c)). By
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applying transverse regularity arguments with RP(oo) considered as the Thom
space of A, one may reverse this process to recover V, so w¥(Z, Free)”

~0Y,(RP(>)).
Combining these results gives:

Proposition 2.3. wY¥(Z,. Free)=QY(RP(0))PNY.,(RP(<)) and p sends
QY(Z,, Free) isomorphically onto the first summand.

Note. The Smith homomorphism is much more reasonably defined in
w¥(Z, Free) than in Conner-Floyd’s groups. Specifically, if (M, t) is a structure
preserving involution, then splitting M gives a submanifold M’ invariant under ¢
whose normal bundle in M is the trivial line bundle of the non-trivial repre-
sentation. Thus the Smith homomorphism maps the summands w¥(Z,, Free)*
and wJ(Z,, Free)™ into each other. In particular

A: 0J(Z,, Free)™ = QU(RP(0)) = oY_,(Z,, Free)” = QY(RP(=))
is the reduction homomorphism, and
A: 0Y(Z,, Free)™ = OY, (RP()) = 0Y_,(Z,, Free)" = QY_,(RP(°))

is obtained by dualizing £PE.

To compute w¥(Z,, All), one makes use of the exact sequence of the families.
Being given a map F" ?—B, representing an element of wZ(Z,, All, Free), the
bundle v,! is complex over F*"? and hence ¢+ is even. Thus along the
boundary of D(v,), ¢+ must also be even, and the homomorphism

0: wl(Z,, All, Free) = 0Y_(Z,, Free)
sends @ QY_,(B,) into wY_,(Z,, Free)” and @ QY_,(B,) into vY_,(Z,, Free)".
9 odd

g9 even

The diagram

0
O(Z,, All, Free) —> QY_(Z,, Free)

=P
S5 Qly{-q(BUqlz) w(){—l(ZZ! Free)+ = QIZ-I(RP(OO))

9 even

D QF_o(B,)

9 even

commutes, and p0 is known to map onto OY_,(RP(c0)). The summand QY_,
complementary to QY_,(RP(c0)) is realized as the manifolds Mx Z, with M
stably almost complex and ¢ interchanging the two copies of M. Applying 7 and
the augmentation &: w%_,(Z,, All)->QY_, which takes the cobordism class of the
underlying manifold, one obtains 2[M]. Thus 7 is monic on this summand and
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the image of 0 in wY_,(Z,, Free)" is precisely OY_,(RP(<0)).

Now considering w¥(Z,, Free) ==Y, ,(RP(0)), one notes that QY(RP(c0))
is generated as Q¥ module by the inclusion maps RP(2{+1)-—>RP(co) which are
obtained by Thomifying the inclusion RP(2{)—RP(o0), for which the induced
double cover is the antipodal involution on S%*. The complex structure
imparted may be considered as that given by considering S*  C#*!, where Ci"™*
has the involution given by multiplication by —1, and the complex stucture
given by multiplication by /1, imparting the appropriate structure to
7(S*)P1p1l. The same construction gives an involution on D**'c Ci** with
appropriate structure on 7(D***)0&p1l. Thus these classes are in the image of
0, and since 9 is a QY module homomorphism, w¥(Z,, Free)~ is contained in
the image of 0.

Thus one has compatible splittings for the sequences to obtain a commutative
diagram

0> QY - QUZ, All) > g QY_(BU,,) — OY_(RP(x0)) — 0
1 Jv pl 49 even p,l p”
0> O > o¥(Z, All) > & QU_«(B,) = OY_(RP(c0)) BAY(RP(c0)) — 0

in which both p’ and p”’ are monomorphisms onto direct summands, and 1 is the
identity.
Rather than belabor the point further, one has:

Proposition 2.4. p: QY(Z,, All)»w{(Z,, All) is a monomorphism.

3. Maps of odd prime period

Now consider the case G=Z, with p an odd prime, again writing (V, ¢) as
(V, t) where ¢ is a diffeomorphism of period p. Again there are three families:
¢, Free, and All and one has an exact sequence

w¥(Z,, Free) — oY(Z,, Al

i

o¥(Z,, All, Free).

To begin, consider »%(Z,, Free). If (V,t) is a free action of Z, on an
n-manifold with d¢ X s acting on 7(V)@=, where = is given by the representation
(W, 6), then one may form the orbit space V/Z, which is an n-manifold with
pr: V=V|Z, the projection. Since dtXs acts freely on E(7(V)Dn),
E(r(V)®n)/Z,~V|Z, is a vector bundle and complex structures preserved by
dt x s are given by complex structures on the quotient bundle.

Now (W, 6) may be decomposed by means of the irreducible representations
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into a direct sum of subrepresentations W, which is trivial, and W, for 1<k<

(p—1)/2 where W, is a complex vector space in which s acts as multiplication by
exp(z—;%lf) In particular, E(z)/Z ,—~V|Z , is then the Whitney sum of a trivial
bundle &, with fiber W, and the complex vector bundles £, with fiber W,
associated with the p-fold cover V—V/Z,. Thus E(7(V)P=)/Z, is the total
space of the bundle 7(V/Z ,)PE,PD(DE:). Since (PE,) has been given a com-
plex structure, the complex structures on 7(V) preserved under the action are
given precisely by stably almost complex structures on V/Z,. Thus a structure
preserving Z, action is just a principal Z, bundle over a stably almost complex
manifold. Assigning to (V, ) the map V/Z ,—BZ, classifying the cover then
defines an isomorphism of w%(Z,, Free) with QY(BZ,). When applied to
structure preserving actions of Z, in the sense of Conner and Floyd, one also
obtains an isomorphism and so one obtains:

Proposition 3.1 The restriction homomorphism  p: QY(Z ,, Free)—
w$(Z ,, Free) is an isomorphism.

In the commutative diagram

a/
QY(Z,, All, Free) —> QY(Z,, Free)
p s =lP
wY(Z,, All, Free) —> oY(Z,, Free)

it is known that the image of 9" is O§(BZ,), and the composite

; &
QY - oY(Z,, Free) —> wl(Z,, All)——> QY

is multiplication by p on the complementary summand, so the image of 9 is
precisely O5(BZ,).
Thus one has a splitting, giving the diagram

0 — OF — QUZ,, All) =Q %(Z,, All, Free) — QY(BZ,) =0
1 p P 1
0 — Qf — 0i(Z,, All) — o¥(Z,, All, Free) — OQY(BZ,)—0.

Now consider the group w¥(Z,, All, Free). Letting (V,t) be an action
which is free on 9V, the fixed point set of V'is a disjoint union of closed submani-
folds F*~ 7 with normal bundles v, and 7 may be replaced by the disc bundles of
the »,. At points of F”7¢, the bundle 7@z decomposes into T(F* ?)PE,, where
&, is the trivial bundle of W, which is the trivial eigen-bundle, and bundles
(vQ)eDEr, where &, is the trivial bundle with fiber W, and (v,), is a sub-bundle
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of vg| F*~9, giving the eigen-bundle corresponding to multiplication by exp(z%zk)
for 1<k<(p—1)/2. Considered as a complex Z, bundle, the bundle TP~
decomposes into complex sub-bundles 7%, the trivial eigen-bundle, and

7;, 1<j<p—1 on which d¢X s acts as multpilication by exp(gg—i]). Taking the

parts of the complex decomposition which give the real decomposition, one has
7, =T(F* ) DE,. so F**? is stably almost complex, and (v,).PEx==7:,Pn,; where
(p—D/2<j<p—1 and exp(?) is the complex conjugate of exp 2—7;)1!@), or
j=p—k.

After stabilization, the bundles 7, and %,_, are stable complex bundles sub-
ject only to the condition that 7,7, _, should be stably isomorphic as complex
bundle with (v,);. Thus, the class of (V,t) is completerly determined by the
bordism classes F&;?—BU, X BU X - X BU,O_UZ)XBU where 7,+.-+7p_yn
=q/2, where F%;? are the portions of F* ¢ over which (v,), has real dimension
274, the map into BU,, classifying (v,)s, and that into the k-th BU factor classify-
ing 7. Thus, one has

Proposition 3.2 wY(Z,, All, Free) is isomorphic to

(69 QY ,(BU, XBUX - xXBUrcy_;,,x BU),
9]

the sum being over all sequences (r)=(r,**,7c,_11) of non-negative integers, and
with r=r,+ 47, 1.

In order to analyze p: QY(Z,, All Free)—>w§(Z,, All, Free),one may simply
note that analogously QY(Z,, All, Free) is isomorphic to

B QY (BU, xBU, x - xBU X BU
(€]

S(p-1/2) t(p—l/z))

where %azrzsl—f—---—}—s(p_l/z)—{—tl—l----—l—t<p_1/2) and the map of F 7 into BU,,
classifies 7, and into BU,, classifies 7,_s, With (v¢)s=27,P7,_in this case. The
map p is then induced by the maps U BU,,xXxBU,,—~BU,,x BU given by the

ST
Whitney sum map BU,,XxBU,—~BU,, and by BU,,xBU,, irBUSk % BU
where pr is the projection and o is stabilization.

One may then observe that p is anything but monic, for many summands in
QY(Z,, All, Free) map to the same summand in wJ(Z,, All, Free). (One need
only look at the terms with #—=2r in which many copies of Z map to a single copy
of Z). Since, by the commutative diagram, the kernels of the homomorphisms
p: QY(Z,, All, Free)—~>wy(Z,, All, Free) and p: QJ(Z,, All)»wJ(Z,, All) are iso-
morphic, one sees that p: QY(Z,, All)->wy(Z,, All) is also not monic.
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The homomorphism p is also not epic, for the map
U BU,,xBU,~BU,,xBU factors through BU,,xBU,,. One can,
sk+tk=rk
of course, compute p: QJ(Z,, All, Free)—wY(Z,, All, Free) explicitly since the
groups and map are completely known, but it hardly seems worthwhile,.

As a final note, one should consider the reason why the Z, and Z, cases, p
odd, are so different. Clearly the problem is the dissimilarity between the nature
of real representations in the two cases. In studying Q¥(G, *, *) only the
complex representations really play a role, while in 0¥(G, *, *) both types enter.
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