<table>
<thead>
<tr>
<th>Title</th>
<th>Haar measure 存在ノ証明ニ就テ （河田氏ノ手紙ヨリ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>河田, 敬義</td>
</tr>
<tr>
<td>Citation</td>
<td>全国紙上数学談話会．194 P.76–P.79</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1940-03-04</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/74776</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/74776</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Markoff Process に用いられる Haar の Measure
を求めめる問題は一般に locally compact group
においてトモ実数値をとりマセンが、compact group
のとき、従って同様= almost periodic function
mean = value 1 存在 1 様子は八以前＝満永先生と小野
君とから関タイコトノール証明法の若干変形シテケア特ク
レルク＝恩ヒマスノデ、以下＝述べサテテ頂キデイト東ヒ
マス。

『群 G 上）almost periodic function \(f(x) \) が
持ヘラレルト定義ガラ

\[
f(x, y) = \lim_{a, b \to \infty} \left| f(ax + b) - f(a y + b) \right|
\]

が \(G = \) 一般に metric ト入レル totally bounded
＝なるマスカフ \(E_n \to 0 \) ＋正数列 \(\{ a \} \) 取り、\(E_n \) は créé
\(G = E_1^{(m)} + \cdots + E_r^{(m)} \) ト直徑ガ \(E_n \) 以下ノ有限箇ノ dis-
jeinet setノ＝各ケルコトが出来マス、\(E_n^{(m)} \) カラ任意
＝一箇 \(p_1^{(m)} \) フトリ（\(m = 1, 2, \cdots \); \(i = 1, \cdots, \mu_r \)）。
共等ノ列ベク \(p_1, p_2, \cdots \) テン、\(p_r = \frac{1}{2^r} + \) が prob-
ability ノ分配スルコト＝モッテ G 上= completely
distributive + probability distribution \(P(E) \) が

-74-
作ります。

レヴェル単位時間における移動確率 \(P(x, E) = P(x', E) \)

マルコフ過程 で考えます。

\[
 f^{(n)}(x, E) = \int_G P^{(n)}(x, dy) P(y, E), \quad (P^{(0)}(x, E) = P(x, E))
\]

\[
 f^{(n)}(x) = \int_G P^{(n)}(x, dy) f(y) \text{ トスレベ}
\]

(1) \(f^{(n)}(x) \to M \int f^{(0)}(x) = \text{const.} \) (uniformly)

が証明出来ます。（皆 \(f(x) \) へ real function トシュレ Бесの定義）。

\[
 M_n = \text{fin} f^{(n)}(x), \quad m_n = \text{fin} f(x), \quad O_n = M_n - m_n \quad (n = 0, 1, \ldots, f^{(n)}(x) = f^{(0)}(x))
\]

トシュレ Бес

\[
 M_n = M_{n+1} = M_{n+1} = m_n, \quad O_n = O_{n+1} = \ldots
\]

カル \(O_n \to 0 \) が証明すべきよない事はナリマス。

レペレラレ \(E \) で \(\forall \tau \exists E \ni \tau \sub E \) でレペレラルレマス。

\[
 f^{(n)}(x, y) = \text{reg} \quad \forall \tau \quad \forall E_\tau \ni 0 \quad \tau \text{ ルクレルス}\]

取りリマス（以下 \(E^{(n)}_1 \) ～ ～ \(\tau \) ルクレルス）。\(P(E) \) に

定義 で \(P(E_i) > \mu > 0 \) （\(i = 1, \ldots, n_r \)）\(\tau \) で

存在シマスカラ

\[
 f^{(l)}(x) - f^{(l)}(y) = \int_G f^{(l-1)}(xt) P(dt) - \int_G f^{(l-1)}(yt) P(dt)
\]

\[
 = \int_{E_1} f^{(l-1)}(xt) P(dt) + \int_{G - E_1} f^{(l-1)}(xt) P(dt)
\]
\[- \int_{E_1} f'(y) \, \mathcal{P}(dt) - \int_{G-E_1} f'(y) \, \mathcal{P}(dt) \leq \mathcal{P}(E) \cdot \frac{1}{\text{fin}} \int_{E_1} f'(y) \, \mathcal{P}(dt) + \mathcal{P}(G-E_1) \cdot M_{\epsilon-1} \]

\[- \mathcal{P}(E) \cdot \frac{1}{\text{fin}} \int_{E_1} f'(y) \, \mathcal{P}(dt) - \mathcal{P}(G-E_1) \cdot M_{\epsilon-1} \]

\[\leq \left(\frac{\text{fin}}{\epsilon^{l-1}} \right) \int_{E_1} f'(y) \, \mathcal{P}(dt) \cdot \mathcal{P}(G-E_1) + (1-\mu) \cdot O_{\epsilon-1} \]

\[
\text{若} E_1 \cap E_2 = 0 \quad \text{ならば} \quad 2 \epsilon \mu^l \text{超えない。} \quad \text{故} = \mu, \quad \text{又び}
\]

\[
O_{\epsilon} \leq 2 \epsilon \mu^l + (1-\mu) \cdot O_{\epsilon-1}
\]

\[
O_{\epsilon} \leq 2 \epsilon \mu \left\{ 1 + (1-\mu) + \cdots + (1-\mu)^{l-1} \right\} + (1-\mu) \cdot O_0
\]

\[
\leq 2 \epsilon \mu \left(1 + (1-\mu)^l \right) + O_0
\]

\[
\text{故} = (1-\mu)^l < \frac{\epsilon}{2} \quad \text{と仮設した} \quad \text{故} \leq \mu^l \text{である。}
\]

\[
O_{\epsilon} \leq \epsilon \text{の列} \quad \text{即} \quad O_{\epsilon} \rightarrow 0.
\]

\[
M(f(t)) = M(f(at)), \quad M(df(t)) = tM(f(t)).
\]

\[
P'(x, y) = \text{fin} \left\{ \int \left| f(ax) - f(ay) \right| \, \mathcal{P}(dt) + \text{fin} \left| g(ax) - g(ay) \right| \, \mathcal{P}(dt) \right\}
\]

\[
\text{関数} f, \quad \text{又び} \quad f(x), \quad g(x) = \text{対として}
\]

\[
M(f(t) + g(t)) = M(f(t)) + M(g(t))
\]
トナレ。

\[\sum_{i=1}^{N} \beta_i f(t+\lambda \alpha_i) < E + \epsilon \ \text{十} \ \sum_{i} d_i = 1 \]

十 \ \lambda_i, \ a_i \in G \ \text{存在入}

\[f^{(m)}(x) \ \text{八定義} \]

\[\sum_{i=1}^{\infty} \beta_i f(t+\beta_i), \ \beta_i > 0 \ \sum_{i} \beta_i = 1 \]

ナル形トナレ \ カタ

先ペ \[|Mf - f^{(m)}(t)| < \frac{\epsilon}{2} = \text{ナル} \ \text{取リ} \ \beta_0 = \sum_{i} \beta_i < \frac{\epsilon}{2 \theta_0} \]

＝ \text{ナル} 取レバ， \ \beta_0 = 1 \ \text{トシテ}

\[|Mf - \sum_{i=0}^{N-1} \beta_i f(\beta_i) - \sum_{i=0}^{N-1} \beta_i f(\beta_i)| \leq |Mf - f^{(m)}(t)| \]

\[+ |f(t) - \sum_{i=0}^{N-1} \beta_i f(\beta_i) - \sum_{i=0}^{N-1} \beta_i f(\beta_i)| < \epsilon \]

ヲ満足スル。

同様＝ \[P'(x, E) = P(E^\infty) \ \text{ナル} \ \text{Markov Process} \]

ヲソヘテ right invariant +, mean が得ラレ、共レ

等が一数シテ unique ナルコトハ J. v. Neumann 1

Compositio Math. Vol. I 1 論文カラ直シテ介り

マス。]