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1. Introduction

Let X be a locally compact separable metric space and m be a Radon meas-
ure on X whose support is the whole space X. Let (&, F) be a regular sym-
metric Dirichlet space on L* X, m) and denote by M=(Q, X, P,) a symmetric
Markov process associated with the Dirichlet space (€, F). For u€SF denote
by # the quasi-continuous version of u and let A¥'=a(X,)—#(X,). Then, it
is known in Fukushima [6] that the additive functional (abbreviated by AF) A"l
can be written as

(1.1) AY = MM4N¥ |, P,—ae ge x

where M%) is a martingale AF of finite energy and N7 is a continuous AF of
zero energy (for notions see [6]). This decomposition is regarded as an exten-
sion of the notion of semimartingale AF’s in the sense that the quadratic varia-
tion of N1 vanishes (see (5.2.10) in [6]).

On the other hand, under the assumption that the Markov process M is
conservative, Lyons-Zheng [10] obtained another expression of A : for >0

(12) AW = % ME"L—% (MY3(rp)— M52 (r,)), 0<t<T, P,—a.c.

where 75 is a time reverse operator at T, i.e., X,(r;)=X;_;, and P,, is a o-finite
measure defined by [x P,[+]dm. Denote by &, (resp. G;) the o-field generated
by {X,; 0<s<#} (resp. {X,; T—t<s<T}). Then we see that M%¥(r;) is a
(P, G;)—martingale. Thus, the AF A is the sum of a (P,, F,)—martingale
and a (P,, G,)—martingale. The formula (1.2) is derived from the fact that the
symmetry of M implies the time reversibility: for & -measurable function F

(1.3) E,[F(r;)] = E,[F].

One can say that the decomposition (1.2) reflects the symmetry of the
Markov process M faithfully. Furthermore (1.2) would enable us to use the
martingale theory more effectively than (1.1) in the study of symmetric Markov
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processes. 'The purpose of the present paper is to demonstrate this in getting
a conservativeness criterion, a tightness criterion and also some sample path
properties for symmetric diffusion processes. We shall further consider an
extension of the method to non-symmetric situations.

In §2, we shall give a sufficient condition for symmetric diffusion processes
to be conservative (Theorem 2.2). In some important cases, our criterion is
sharper than Ichihara’s test [7] for the conservation of probability.

In §3, we shall give a sufficient condition for a certain class of symmetric
diffusion processes on R? to be tight. Lyons-Zheng [10] have proved the
tightness property for a similar class of diffusion processes but in the “pseudo-
path topology” which is even weaker than the Skorohod one. We shall prove
the tightness in the usual uniform topology (Theorem 3.1). As an application,
we can strengthen those results in Albeverio-Hepegh-Krohn-Streit [2] and Al-
beverio-Kusuoka-Streit [3] on the semi-group convergence of energy forms to .
weak convergence results.

In §4, we shall present two elementary estimates. The first one (Lemma
4.1) was obtained in Kusuoka [9] by an analytic method but the present method
is simpler in that we only use the decomposition (1.2) and the representation
theorem of continuous local martingales by Brownian motions. The second
one (Lemma 4.3) is applicable to showing certain sample path properties of sym-
metric diffusion processes as we shall see in §5 for the upper estimate of the
law of the iterated logarithm.

In §6, we shall consider how we can extend the formula (1.2) to the case
of special non-symmetric diffusion processes with an invariant measure.

We emphasize that the diffusion processes we are treating include those
whose generators are of divergence form with non-smooth coefficients and ac-
cordingly they can not be handled by the method of stochastic differential equa-
tions based on the Brownian motions. Nevertheless, the present method enables
us to reduce their study to elementary properties of the Brownian motion. One
may use known powerful estimates of fundamental solutions in the uniformly
elliptic cases, but it seems quite difficult to derive such probabilistic results as
Lemma 4.3 and Theorem 5.1 by using only the analytical estimates of this kind.

A part of the present results has been announced in [12].

2. A conservativeness test for symmetric diffusion processes

We use the notions and the notations in [6]. Let X and m be as in §1
and (&, &F) be a regular Dirichlet space on L*( X, m) such that &(u, v) vanishes
whenever v is constant on the support of «. If, for any relatively compact open
set G, there exists a function v such that u=v, m—a.e. on G, the function
u is said to be locally in F (ue,. in notation). We see that the formulas
(1.1) and (1.2) are extended to u&¥,,.. As is shown in Chapter 5 in [6], for
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uEF . there exists a Radon measure u(,; corresponding to the quadratic var-
iation {M™>, and the Dirichlet form & is written as

@.1) 8(u,v)=is dpcesy, #,0EF
2 Jx

1
where d/-‘(u,v>='§ (dll'(u'rv)—dl“(u)—dﬂ'(v))'

Let X denote the class of compact sets K satisfying that m(K)>0, supp
(Xgm)=K and that the bilinear form

EK(u, ‘Z)) = % SK dp,(u’,» , u, veEF

(which can be seen to be dependent only on restrictions to K of u, vEF) is

closable on LA X, Xgm). Here, Xy is the indicator functions of K. For K€ X,

we denote by F¥ the domain of the closure of £X. Then, the pair (€%, F¥) can

be regarded as a regular Dirichlet space on L¥ K, Xxm) and the diffusion process

on K associated with (&%, F¥) is conservative because X, € F¥ and EF(Xg, Xx)=0.
We set

¢y 1is absolutely continuous
gloc,ac - { Pegloc;

with respect to m.

and denote by T"(p) the density of u(,y with respect to the Radon measure m for
PEF 2. Furthermore, we set

lim p(x) = oo and for any >0 }

'-’4 = { Pegloc.acn C(X)’ =>A
the set {x&X; p(x)<r} belongs to K.

where C(X) is the family of the continuous functions on X and A is the extra
point in the one-point compactification of X.

Let B, ,={xcX; p(x)<r} and M,(r)=ess.sup I'(p)(x) for pEF o ac
Then, we have *SPre

Lemma 2.1. ForpeJ

(22) Py, . [OZI;ISB' (p(Xy)—p (X)) =7]1<6m(Bg.,,p) 1 <3\/—M——.ﬁ ,,—(ZI”HT)T> ,

where l(d)=\/—1~2_” S: e 2 dx.

Proof. Put (&, F")=(EP ¢, FPr.¢) and m,=Xp,, m. Let M=(P,, X;) and
M'=(P;, X,) be the diffusion processes corresponding to (£, F) and (&', F")
respectively. Then, we have, for R, >0
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(2.3) Py [ sup (p(Xi)—p(Xo))27]
= PR“[ sup (p(X))—p(Xo))27]
< Pu [SUP (p(Xr)—p(Xo))=7] .

Since the diffusion process M**’ is conservative, it follows from the formula
(1.2) that

1

P(X)—p(X0) = - MP—— (M) — ML (rr), PR3, —ace..

Thus, we see that the right hand side of (2.3) is not greater than

(@4  PE[suwp M= 2 +PE, [sup le(r,)z%r]
<t<T

MRy
+Pauzl [ M‘r"](rr)>—r]

<2Pgir [sup M[”]> r]—{—P’”’ [sup (—ME"J)Z—%r]

m
R+r 0<t<T

by the relation (1.3). Using a one-dimensional Brownian motion B(#) with re-
spect to P¥*" for g.e. x, we see that the right hand side of (2.4) is dominated by

2Py, [sup B[ T(p) (X)) du) > 2 11+-PE:7, [sup — B([ (o) (X) d)= 2]

MRy

2
< 3PR+r “
PR S, BOZ5]

2r
=6 m(B,H,,,,) l(m) . qed

We shall prove the following general criterion for the conservation of pro-
bability.

Theorem 2.2. If there exist p& A and T>0 such that for any R>0

25) lim m(Bgs,,») £ W) —

then the diffusion process corresponding to (€, &F) is conservative.

Proof. Let M=(P,, X,) be the diffusion process corresponding to (&, &).
By Lemma 2.1 and assumption (2.5), we have for 7= g T

Pug[sup (p(Xi)—p(Xo)) = oo] = lim P, [ sup (p(X)—p(Xo))27]

< !Lrel} 6 m(BR+r.P) Z(VM—(;TW)
p
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P 1(x) = P, [T'<(]
= P.[sup (p(X))—p(Xy)) <o°]
=1, m—ae.,

where ¢ is the life time of the diffusion process M. By virtue of the semi-group
property we can conclude that for any t>0, P, 1=1, m—a.e.. q.e.d.

To give examples, we deal with a more concrete Dirichlet space for X=R?.
Let & be a symmetric bilinear form on L*(R?, m) defined by
ou 0v

= dm,u, veCy(R?Y),
0x; Ox; m 4, 0 S C(R)

(2.6) E(u,v) = % Z"j SR,, a;;(%)

where C7(R?) is the space of infinitely differentiable functions with compact
support. Let the coefficients a;; be locally integrable Borel measurable func-
tions satisfying

i) a;=a;

(2.7) ‘
i) HZ=! a;(x)E E;>0 forany «x,(cR?.

Together with (2.6), we consider for each closed ball B,={xeR?; |x|<r} a
symmetric form

(2.8) &P (u, v) = _;_ ps S a; % 00 Gy w0 C(B,),

ij
B, Ox; Ox;

where C*(B,) is the restrictions to B, of functions in C7(R?).

We assume the closability of the form (2.6) on L*(R¢, m) and also that of
(2.8) on L*B,, m) for each r. This closability requirement is satisfied if m is
the Lebesgue measure and if a;; are either locally uniformly elliptic or smooth.
See [11] for the closability for more general 7 and a;;.

ExampLE 1 Consider the case that there exists a constant A such that
d
Sla;(x) E E;<N|E|? for any x, EER?.  Since the function |x| belongs to 4,
i,j=1
we see according to Theorem 2.2 with p(x)=|x| that, if there exists 7'>0 such
that

(2.9) lim m(By.,) 1(7;_7 =0 forany R>0,

then the corresponding diffusion is conservative. Noting that l(a)< 1 e,
a
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for a>0, we see that if m(B,)<c, ¢%"* with some constants ¢, and c,, (2.9) is

fulfilled by choosing T<2; This improves a result of Ichihara [7: Example
Ca

3.2] not only in the growth order but also in that we require neither the absolu-

tely continuity of m nor the non-degeneracy of the density except for the closa-

bility requirement. The diffusion process corresponding to a;;=3§;; and m(dx)

=e!*1"** dx is known to be explosive for any £>0.

ExampLE 2 Consider the case that the measure m is the Lebesgue measure
on R’ and Ed a;;(x) & E;<k(24|x|)? log(2+ |x|)|E|* with some constant k.
i,j=1
Employing the function p(x)=log(2+ |x|)E A, we have

m(Brir,e) ! (mﬁ)

= m({x; log(2+ |x|)<R+r}) l(ﬁ)
r
r(5+1)
-0, as r— oo,

if T<L. Hence, Theorem 2.2 shows that the corresponding diffusion is con-

servative, improving again a result of Ichihara [7: Example 3.1]. It was known
in Davies [5] that if a;;(x)=(1+ |x|)? (log (14 |x]))? 8;;, B>1, the corresponding
diffusion is not conservative.

3. A tightness criterion for symmetric diffusion processes
Let £"(u, v) be a sequence of symmetric bilinear forms on L*(R?, m,) defined

by

Gl &)=L N S at; 9% 0% g for u,0eC(RY
2 =t JRt T Oy Ox;
where m, is everywhere dense positive Radon measure on R?. Let the coeffi-
cients a?; be Borel measurable functions satisfying
i) alj=aj;
ii) for each ball B, there exists a constant A(r) independent of # such that

OS.ZZIIaZ’;(x) £ E,<\M)|E|?, forany (x,£)EB,xR‘.

For each ball B,, let £#2r be the symmetric form defined by (2.8) with 4;; and m
replaced by a}; and m,. We assume the closability of (£*, C5(R?)) and (€™,
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C>(B,)) on LXR¢ m,) and L¥B,, m,) respectively. The corresponding closure
will be denoted by (€%, F") and (€™, F™"). Furthermore, we assume

Condition I 'There exists a constant 77>>0 such that for any R>0

r

VMR+T

Note that, by virtue of Theorem 2.2, Condition I implies that the diffusion
processes M"=(P%, X,) corresponding to (£", F”) are conservative.

For probability measures x, on R we define the probability measures P}
on C([0, o0)—R?) by

sup {m,(Bgs,) 1 (

)}—>O, as 7 — oo,

Prl1={ Pil1da,

where C([0, oo)—R?) is the space of all continuous functions from [0, co) into
R°. Now, we give the sufficient conditions for the sequence of probability

measures P to be tight.
We consider the following conditions:

Condition I i) sup m,(K)<co for any cmpact set K.

il) p, is absolutely continuous with respect to m,, say u,=@, m,, and a sequence
{p,} satisfies that sup ||@,||. x(=sup ess- sup |@a(x)])<<oo for any compact set
K. ’ T
iil) {u,} is tight.

Theorem 3.1. Under Condition I and 11, the sequence of probability measures
Py is tight on the space C([0, oo)—R?) equipped with the local uniform topology.

Proof. For §>0, put qZ,‘,L(x)zP;‘[oss’ugL|X§——X§|>B]. Here X! is the
1#=si<h
i-th component of the diffusion process X,. Note that (i 1, @s)m, <||P4llw, 55
(%2> X5g)m,+ 1n(B%). Thus, by Condition IT ii) and iii), if we can show that

(3.2) lirr°1 sup (¢#.2, Xpg)m, = 0, forany L, R>0,
PR
then we have lim sup (¢4,z, @,)s,=0, for any L>0, and arrive at this theorem.
PR

Let T'=_‘;_T. Then

(3.3) (95,1 Xag)u, = Pl sup [ Xi—X31>8; A]+
1t-s|<h ) )
Py, [ sup | XI—X1|>8; A7),

[t=sI<h
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where A,= {w; og}lslgl([X,l —|X,|)<r} and M™"=(P}’, X,) is the diffusion pro-

cess corresponding to (€™, F™"). Since it follows from the formula (1.2) that
Xi—Xi— % (M&’iJ—ME"ﬂ)—l——;— (MED () —MED, (1), PLE " —ae.,

the first term of the right hand side of (3.3) is dominated by

n,R+r i_ Yt
(34) PLEa [ sup | Xi—Xi| >3]
1t=sI<h

SP;;BR+1 [ sup |M[x] M[*,]I>8]+
05:! T/
it-—s|<h

4;;"*..[ sup, | ME(rpr)—ME3(rpr) | >8]

1= SIS’I

= 2PyR4ry, [ sup |M¥A—ME1|>38].

R+r 0<s,t<T’
1t=si<h

It is clear that
{w; sup |MYI—ML1|>8}
0<s,t <1/
1#=s|<h
= o3, sup_ | B([ au(X) dw)—B({ au(X.) du)|>8)

1~ s1<h
C {w; _sup |B()—B(s)|>8}, Py**"-ae., qe. x,
0L s, t SACT +1T7
1t =sI<SACR+1rA
where B(t) is the one-dimensional Brownian motion with respect to Pi%+7,
Therefore, denoting by (W=C([0, co)—R?), P*) the standard Wiener space and
setting v (h, r)=P“[weW; sup |w(t)—w(s)| >8], the last term of (3.4) is not

0<s,t<ACHOHT/
1 = s|SAC(rA

greater than 2 m,(Bg.,) v (h, R+7).
On the other hand, according to Lemma 2.1 we have P}, ,[A7]<6m,(Bg.,)

(m) Hence, we see that the rlg:}t hand side of (3.3) is dominated
by 2 m,(Bg+,) v(hy, R+7)+6 m,(Bg.,) I(W>, and consequently

(3.5) lhu? sup (¢h. 1/, Xgg)m, = 0, forany R>0

by virtue of Condition I and Condition II i).
Note that by the Markov property
(3.6) P”“BR"’"E, sup | Xi—Xi|>8] = (Pa(gi.z7), Xg)m,

SH<T/+B
1t-s'<h
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= (q”: T/ XBR/ P;(xBR))m,—l_(q; T’y xﬂg’ P;(XBB))M::
<(gh.1% Xsg)m,+(Xag: P5(X5g,))m, -
Thus, it follow from (3.5) and Lemma 2.1 that for 0<B<T"
lim sup Py m L sup le——XiI>8]

>0 B B<s,t<T
g
< Iim Iim sup {(gh.7s X5 myt+ (Xgs PE(X52))mat =0,

R/>o  h>0
and, consequently, lirgl sup (¢i.7/+p Xpp)m,=0 for any R>0. By repeating this
K0 m
argument, (3.2) is established. q.e.d.

ExamPLE 3 Let 4 be a positive Borel function such that L% (R?, dx)
and {yr,} be an increasing sequence of positive Borel functions bounded by 4,
ie.,
0<n <y, <o <.

Putting m, =% dx and m=+)* dx, we define Dirichlet spaces (€", ") and (€, F)
by

d
w0 =5 5w, 5w,
(3.8) ] g*: the closure of C¥ (R%) in L*(R%, m,) with respect to
E+( s Im
and
1 d
I T L vy oy
F: the closure of C5(R?) in LR, m) with respect to
E+( 5 Im

Let M"=(P}, X,) and M=(P,, X,) be the diffusion processes associated with

Dirichlet spaces (3.8) and (3.9) respectively. Then, if m(B,)<c, ¢=*, Condition

I is satisfied for T<2L. Hence, it follows from Theorem 3.1 that for f& L'(m)
Cy

N L=(m) with f>0, m-a.e. the sequence of probability measures {P} ,, , k,=

1} is tight on C[([0, oo)—RY).
mﬂ

Suppose further that, for some (possibly empty) closed set K,
i) Cap(K)=0

(3.10) ii) % — 1 uniformly on any compact set K'CR!‘—K.
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Then we can conclude that P} ,, converges to P, weakly. Here Cap is the

capacity associated with the Dirichlet form (3.9) and A=———. In fact, let

ffd
O,;={x=R% inf {|x—y|; yeB,NK}>8} and =, ,=inf {t; X,EEB,OO,,}
In the similar manner as we have in the derivation of (3.2) from (3.5), we can
show that for any R, L>0 lim sup Py o [sup(IX,l——IXol)Zr] =0. There-

fore, in view of Lemma 5.11 in [6], we see that for any £>0 and any L>0 there
exist r and § such that

SUp P, s, [L27, 5]+ Pagm[L 27, 5]<E .
Note that for A= {w; X, €4,, -+, X;,€4,}(0<t,< - <t), ;€ B(R?))

(.11) | PR ym, [A]—Pipw[A]l
S|P ym [A]=Pi pm [AN Aty <7} 1|+ | Ph oy, [AN <772} ]
—Pypu[ANA{t, <7, 5} 1| 4+ | Pagm[A D {t, <7y 5} 1—Piym[A] |
SPhimy[ts2718] - Pigm[ty =70 814 | Piyym, [AN {t, <75} ]
—Pym[ANA{t, <7, 411 .
Then, since Condition ii) of (3.10) and Theorem 5 in [2] imply that the last
term of (3.11) tends to zero by letting % to infinity, we have the stated weak
convergence. By combining Theorem 3.1 with some other statements on the
semi-group convergence in [2] and [3], we can get the corresponding weak con-
vergence statements.

4, Preliminary estimates

Let (€, &F) be a regular Dirichlet space on L X, m) as in §2. We assume
that the corresponding diffusion M=(P,, X)) is conservative. Set

gloc,n = {pegloc,ac; I‘(P)Say m"a'e'}: a>0 ’
and denote by B(X) the family of the Borel sets of X. Then, we have
Lemma 4.1. For A, Be B(X) and pF,,. ,N C(X)

(4.1) P,[X,€4, X, eB]<2(m(A)+m(B))l(P(A B))

Here, p(A4, B)=inf {p(x)—p(y); x4, yEB} Vinf {p(y)—p(x); x4, yEB}.

Proof. Suppose that p(A B)=inf {p(y)—p(x); x4, y=B}. Then, since

p(X7)— p(Xo)——— M¥PI— M ¥(r;), P,-a.e. by the formula (1.2) with t="T, we
have
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4.2) P,[X,=4, X;€B] = P,[X,€4, X;€B, p(X;)—p(Xs)=p(4, B)]
<P,[X,=4, X;B, M¥'>p(4, B)]+P.[X,€4, X;EB,
— M¥(r)=p(4, B)].

The first term of the right hand side of the inequality (4.2) is not greater than
(X4 P [ sup M2 p(4, B)))a
— (a PuLsup B[ T(o) (X.) d)2p(4, B
<(Xa P[ sup B(s)2p(A4, B)])n

where B(s) denotes a one-dimensional Brownian motion with respect to P, for
q.e. x€X. Moreover, the second term of the right hand side of inequality (4.2)
is equal to P, [X,€B, X, €4, —M¥'>p(A4, B)]. Therefore, in the same man-

A, B
ner as above, we see that it is not greater than 2 m(B) [ <p(/’7))’ and thus we
VvV a

obtain the inequality (4.1). Noting that the left hand side of (4.1) is equal to
P,[X,EB, X;€ 4], we attain the estimate (4.1) in the case that p(4, B)=inf
{p(x)—p(»); x4, yEB} as well. q.e.d.

For ped . NC(X)welet T, ,={xeX;r<p(x)<r+1}.

Corollary 4.2. Let pEF,,.,NC(X). Then, for r>0 and A= B(X) such
that ACByg,

(+3) Prinl X2 € Tasr ] S20m(A)tm(Taar) 7).
Using (4.3), we have the next lemma.

Lemma 4.3. Let pe¥, . ,NC(X)and Ac B(X) with ACBg, Let A€
Fp with P,[A]<y, m-a... Then, it holds that for p, ¢>1 such that _11)_+i=1,
q

(44) Py ulrro€AI<yV m(By,)+2% 3 m(Tees,s) "*(m(A)
Ve k /g
+m(Trr,0))" l(\/ﬁ) » -

Proof. By Holder’s inequality, we have

Py u[rro€EA] = P,[wEA, X;€ A]
< S P.[A]" P,[X,€ A" dm
X
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s«ng P.[X, € A" dm
X

=fy""{s P,[X,eA]l/«deriS P,[X, < A]Ye dm}
Br,p TR+ ko

k=0
<y m(Bro)+ S m(Ten ) (| PulXpeA)dmphey,
- R+kop

and therefore the proof is complete in view of Corollary 4.2. q.ed.

5. A sample path property of symmetric diffusion processes

If one combines Lemma 4.3 with the first Borel-Cantelli lemma, one can
prove several sample path properties of symmetric diffusion processes. For
example, we have the next theorem.

Theorem 5.1. Consider pEF,,. N\ C(X) such that p=>0.
1) if m({r<p<r+1})<cr? (c: positive constant, D>—1: constant),
m——————
= /a(D+1)tlogt

(5.1) <1, P,-a.e.,, m-ae. x.

i) if m(X)<oo

m p(Xy)

5.2 —
(52) Pt V2at log log ¢

<1, P,-a.e., m-a.e. x .
ReMARK 5.2. We do not know if the statement (5.2) also holds for D=
-1

Proof of Theorem 5.1. In what follows, ¢, ¢,, --+ will denote some positive
constants.
i) Let >0 and set 'y(t)=\/a(D-}-8+1) tlogt- By Corollary 4.2 we see that
for >1and ACB;,

" 0M-+k—R
63 Pualp(E) 2y @12 0@ tm(Taoma ) (M)

First, suppose that D>0. Then, since for any p there exists a constant ¢(p)
such that

S“ # et dt<c(p) @ e for a>0,
the right hand side of (5.3) is dominated by

v(6")+k—R
Vab"

cl g (7(6”)+k)p l( )SCZ 0”/2 S:(o")—Rtp—l e-tZIZao" dt
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<c, 6120+ Vn S‘” oz 071 gt

wo
1/2(D+1-(D~8’+1
<c, Qv ( ))n ,

where 8’ is any constant such that 0<<§’<d. In case —1<D<0, the right
hand side of (5.3) is dominated by

v(0")+k—R
skz;)l Vab"

Hence, it holds that, for D>—1,

><cs 9@

(54) 3Py lp(Xe) 27 (6] <o .

Next, we will show that, for D> —1,

(5.3) EPm[ sup  (p(Xe)—p(Xen) 227 (67(0—1))]<oo .

0 s:so
Since p(X;)— P(Xo")ZM(M[p] Mm)‘*‘— (ME:]“—t(rO"“) —Me-1)(Ter+1)), we
obtain

(5:6)  Pyul sup  (p(X)—p(Xer)=27(8°(0—1))]

05150
<Pyl sup (MPI—ME)>2y(6"(0—1))]
o"<i<o"t!
+Py gl Sup (M (ron)—Mflo-1(ron+)) 227(6°(0—1))]
o"<i<o"*

The first term of the right hand side of (5.6) is equal to Py ,,[ sup (M1, —

0<¢<6"0-1>
ME) >2q(6"(6—1))], which is dominated by P, ,,[ sup B(#)>2y(6"(6—1))]
iy (L= e
=2m AR o=/
On the other hand, it holds that

P,[ sup (MG ,—Mil-1)=2v(0"%(0—1))]
o"<i<g"t!

—P,[ sup MP—Ml1y>2y(8"(0—1))]

0<t<0"(0-1)

<2P, sup B()=v(6"(6-1))

0<1 <@g - 1>
"(0—1
=4l(7(6 Gl))AY)
vV ag"(6—1)
According to Lemma 4.3 we see that the second term of (5.6) is not greater than

o ¥(6°(0—1))

Yp -
S =tr) B2 S m (T YA T ) m( A
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) (‘—\/a—keTﬁ)llq} .

Beside, if D>0, the inside of { } in the above expression is dominated by

o[ @t ()

<c g(..+1)/2qs 2= () g~ 2)/2000"+* g
0
n+1 1 n+l

<c 070 72 S“ P~ W) g= %12 gy
0
<,y 0V20+DR

and if —1<D<0, it is dominated by

‘n S: £ l( 0~+1>

Sclzeﬂz-:l (l; :)“ ”+1
<, 0(FF+T)",
Hence, if we choose a constant p such that —1—(D+ 1)——M<0 in case D>0
1 D+1 2 2
and £+————*_~—t§— <0 in case —1<<D<0, we can conclude that the state-

2p
ment (5.5) is true.
By virtue of (5.4), (5.5) and first Borel-Cantelli lemma, it holds that, for

P, ,u-a.¢. o, there exists N(w) such that for n>N(w) and "<t <6"*!

P(Xy) = p(Xon)+(p(Xs)—p(Xor))
<Va(D+8+1)0"log 6" +2v/ a(D+8+1) 8" (@—1) log 87(6—1)
— VaDFs 1) 0 log & (1421 1—‘Mg;ﬁ)
D+8+1 nlog 0+log(6—1)
D+1 (1+2\/0——1Q/ nlog 0 )

<Va(D+1)tlogt

Consequently

— p(Xy) D+38+1
li —_— 142 ,
e ies Y Dy1 G2V
By letting 8 | 0 and @ | 1, we get (5.1).
ii) Let 8>0 and set v(!)=+/(2+8) atlog log z. 'Then, for ACB,

0")—R
Py imlp(Xer) 27 (67)]<2(m(A)+m({p ()27 (6")})) ! (V(\/ziﬁ )

%X gm™ a.C. .
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1 _(2+8) log log "
= 8 /28 loglog &
Leu—r7 for 0<§'<3,
n 2

and

P, sup (p(Xy)—p(Xo) 227 (6(0—1))]

OStSO
2v(67(6—1)) v(6"(6—1))
S2'"(X)l(\/oza”(«9—1)')+"'’"(X)l<\/¢xa"(a—1))
Ses—p for 0<8'<3.
n 2

Therefore, we can prove the statement (5.2) by the same argument as above.
g-e.d.

6. An extension of Lyons-Zheng’s formula

In this section, we shall extend the formula (1.2) in the case of special non-
symmetric Dirichlet spaces.

Let & be a non-symmetric bilinear form on L*(R?, m) written as

6.1)  E(uov)— ﬁ‘.éﬁ"id +ES 6uvdm,

ALY
2 = et V9
for u, veC7(RY).

where a;;, b; are bounded measurable functions which satisfy the following con-
ditions:
i) a;=aj;

(6.2) ii) there exists a constant >0 such that

BlElP< 3 ay EiE;, ESR?

i,j=1

iii) i} SRJ gf dm =0 forany ¢=CF(RY).

We set £9(u, v):w Z S @i g_u 0o dm, and suppose that the symmetric form
,i=1JR .

&£ is closable in L”(R" m). If we denote by F the closure of C7(R?), the pair
(&, F) becomes a non-symmetric Dirichlet space and we get a diffusion process
M=(Q, X,, P,) through the Dirichlet space (£, F) (see S. Carrilo Menendez [4]).
Here, we set Q=C([0, o0)—R?) and define X ,(w) as the position of 0 EQ: Xi(w)
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=w(t). We can also define the adjoint Dirichlet form by & (4, v)=E (v, u) and
in this case

A 1 & S ou 0v d S ou
L 0) = — 22 %Y gm— b —ovd
€ ) 2 "-1'2=1 w0 Ox; Ox; i E rY - Ox; v
by the condition iii) of (6.2). Then, it was shown in Kim [8] that for &
the AF A¥=4(X,)—#(X,) has the decomposition
(6.3) A = MM+ N P,-ae. qee. x,

where M is a martingale AF of finite energy and N% is a continuous AF of
zero energy. But, unlike symmetric cases, the energy of an AF 4 is defined as

(6.4) e(4) = lim o* E, [S: (A, d] .

Denote by ]lAI=(.()., X, 13,) the diffusion process associated with the adjoint
Dirichlet space (£, F). Then, using the notions corresponding to the adjoint
Dirichlet space (&, &F), the AF A1 is also decomposed as

(6.5) A = ML N, Pae. qe. x.

A
Now we assume that diffusion processes M and M are conservative. Then,
the basic measure m becomes an invariant measure and the following relation
holds: for & r-measurable function F

(6.6) E,[F(rz0)] = E,[F] .
Lemma 6.1. It holds that for ue F

(6.7) N_2 % f' ®; 63_”) (X)) ds = N, P,-a.c. .
i=1 Jo x;
For the proof we need the next proposition due to Oshima which is an
extension of Theorem 5.3.1 of [4] to non-symmetric case.

Proposition 6.2. (éshima)* Let A be an AF. Then, the following two

conditions are equivalent.

i) A=N" ycF

il) A is a continuous AF such that e(A)=0, lim « E,[Sw e * A,dt]=0, q.e. x,
and o °

lim aZE,,,,,[S” 4, df] = —E(u,v) forany vEF .
0

@>oo

*private communication
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Proof of Lemma 6.1. Denote by A the generator associated with (é, F)
and g)(/i) the domain of 4. We first prove the lemma for ueg)(/i). Note

that IV E“J=S’ Au(X,)ds and so N?(r,)=N%. Then, we see that for vEF
0

Evm [N[fu]] Em [N[t“](rt) a (Xt)]
E,[N¥ 5(X,)]

E,[N1 9(X,)]+E, [N¥(5(X,)—(Xo))] -

But since
| B, [S” e~ N5 (X,)—9(Xy)) di]|
<(@B,[[ ey any (@ B[ e 0 (X)—0 (X)) de)”
— (N 2.8(402 — 0, as a—> oo,
it follows from Proposition 6.2
lim E,,,,,[g e NI¥ dr] = lim azE,,,,,[S et NW df] = —&(u, ) .
Hence, by the equality that

—E(u, v)—2 ég 5, 0% 3“ v dm = —&(u, )

we have
. o _ A d t au
(6.8) lim o B, [S (N2 31 S (b 22) (X,) o) di
i=1Jo X;
— lim o?E,, [S et NI g] .
On the other hand,
(6.9) e(N1) — lim o?E, [S" e~ (N9)2 df]
a>roo 0
— lim o*E,, [j” e~ (N 1]
@00 0
= &(NT)
=0,
and hence N}— S (b; —) (X,) dsis an AF of M of zero energy. (6.8), (6.9)

and Proposition 6.2 lead us to the desired equality (6.7).
Next, for a general u S there exists a sequence u,eg)(fi) such that u,
converges to # with respect to &{” and for q.e. x
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P[] =1

where I'y= {o€Q; N () converges to NT(w) uniformly in # on an interval
[0, T}. Since

(6.10) N (rp0) = S:‘ Au,(X () ds
= Mu"] (“’)'—N[;:t (‘0) ’

the set 'y is rp-invariant, i.e., {r;0 €'z} =T';, and consequently the complement

of I'; (T'% in notation) is also 7,-invariant. Hence, we have that

and consequently we can attain (6.7) for the present # by the approximation
method. q.e.d.

Now, we obtain

Theorem 6.3. For ued,,
(6.11) A(X,)—0(X,) = % ME“]-—% (VI8 (rp) — M, (r))

d t au
_ ES (B: 2%y (X)ds 0<t<T, P,-ae..
i=1Jo" " Qu;
Proof. By operating 7, to the formula (6.5), we have
(6.12) (Xp_)—0(Xg) = M (rp)+N¥(rp), Ppeace. .

Since by the approximation method the relation (6.10) extends to u&EF,,,
namely,

(6.14) NW¥(r;) = N¥(r,)—N§,, P, -ae.,

the right hand side of (6.11) is equal to

2 @(X)— (X~ NI~ (@(X)—2(X)+ N ()~ )
d t au
- e o) (X ds

_ (ﬁ(X,)—z?(Xo))—l——:lz— (NI—N1I—2 3 S' (5; 21y (X,) ds), P,-ace. .
i=1Jo 0x;

Therefore, by Lemma 6.1 the proof is complete. q.e.d.
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ReEMARK 6.4. Using Theorem 6.3 we can obtain the results corresponding

to Lemma 4.1, Corollary 4.2 and Lemma 4.3 in the present non-symmetric
situation.
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