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0. Introduction

Consider an algebraic differential equation of the first order F(y,y’)=0 over
an algebraically closed ordinary differential field & of characteristic 0, where F
is an irreducible polynomial over k. Recently Matsuda [3] presented a dif-
ferential-algebraic definition for F=0 to be free from parametric singularities
and gave a purely algebraic proof of the following theorem essentially due to
Fuchs [2] and Poincaré [8]: Suppose that F=0 is free from parametric sin-
gularities. Then it is reduced to a Riccati equation or a defining equation of
elliptic function by a birational transformation over k if the genus of F=0 is 0
or 1 respectively. The author [4] proved that under the above assumption it
is reduced to an equation of Clairaut type by a birational transformation over k
if the genus is greater than 1. This theorem is essentially due to Poincaré [8],
Painlevé [5] and Picard [6].

Here a differential-algebraic formulation and its proof of the following
theorem which is essentially due to Painlevé [5], [6] will be given: The general
solution 7 of F=0 depends algebraically upon an arbitrary constant over some
differential extension field of % if and only if there exists an algebraic differential
equation of the first order G=0 over & such that it is free from parametric sin-
gularities and the general solution of G=0 is a rational function of » and »’
over k. Here, we assume that & contains non-constants.

Let k& be an algebraically closed ordinary differential field of characteristic
0, and Q be a universal differential extension field of k. Suppose that K is
a differential subfield of Q and it is an algebraic function field of one variable
over k. Let P be a prime divisor of K and K, be the completion of K with
respect to P. Then K is a differential extension field of K and the differentia-
tion is continuous in the metric of Kp (cf. [1, p. 114]). Let v, and ¢, denote
respectively the normalized valuation belonging to P and a prime element in
P. The following definition is due to Matsuda [3]: K is said to be free from
parametric singularities over k if we have vp(t?)=0 for each prime divisor P of



250 K. NisHIokA

K. Here, we do not set the assumption that K takes the form k(y,y’) with
some element y of K, which is done in [3]. In this general situation is the
author’s paper [4] which will be quoted later.

Let k* be a differential extension field of k in Q; we take for granted that
the field of constants of k* is the same as that of k and K,k* are independent
over k. Since k is algebraically closed, K and k* are linearly disjoint over k
(cf. [11, p. 19]). K*, ky and K& will indicate k*(K), the fields of constants of
k and K* respectively; &, is algebraically closed.

DeriniTioN. K will be said to be of Painlevé type over k if there exists such
k* that K =k,.

If K, is of Painlevé type over & and K, is an algebraic extension field of
K, of finite degree, then K, is so over k: For K, and k* are independent over k.

Theorem. K is of Painlevé type over kif and only if there exists a differential
subfield of K which is free from parametric singularities over k.

The “if” part is known: For, a differential subfield M is of Painlevé type
over k in our sense if M is free from parametric singularities over % (cf. [4]).
Suppose that K is of Painlevé type over k. Let I' be the totality of those prime
divisors P of K satisfying vp(¢5)<<0. Assume that K is not free from parametric
singularities over .. Then T is not empty. Let P be an element of I'. Then
the number 7, defined by np=1—vp(¢;) does not depend on the choice of a
prime element £, in P. It is an integer greater than 1. We define G, as the
group of all differential k-automorphisms of K that are continuous in the metric
of Kp. By a theorem of Rosenlicht [9, Th. 3] we have the following:

Lemma. G; is a cyclic group of order np.

Let L denote the totality of those element of K each of which is left in-
variant under Gp for any P in I". Then L is a differential extension field of
k. Itis proved to be free from parametric singularities over 2. Thus Theorem
is obtained. If k& contains non-constants then L takes the form k(y,y’) with
some element y of L.

In case I'=¢, we set L=K.

Proposition. Suppose that K is of Painlevé type over k. Then, every

differential subfield of K which is free from parametric singularities over k is con-
tained in L.

Lemma, Theorem and Proposition will be proved in §1, §2 and §3 respec-
tively. In the last §4 some examples will be given.

ReMARK 1. Suppose that K is of Painlevé type over k. Then, there
exists such k¥ that (K¥),=%k, and [K*: k*(K§)|=[K¥: kF(K¥),)] if k*DEF,
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where K¥=Fk¥(K) and (K¥), denotes the field of constants of K¥.

REMARK 2. By a result (3) in §2 we have the following: If K*=k*(K§)
for some k¥, then K is free from parametric singularities over k. Hence, K is

free from parametric singularities over k if K™ is so over some algebraically
closed k*.

The author wishes to express his sincere gratitude to Professor M. Matsuda
for his kind advice.

1. Proof of Lemma

Let P be an element of " and # be #,. By a theorem of Rosenlicht [9, Th. 3]
there exists a prime element ¢ in P such that #'=c#'"* with a nonzero element ¢
of k. Suppose that o is an element of Gp. Then, we have vp(ox)=wvp(x) for
each x in Kp, since o is continuous in the metric of K,. We shall prove that
ot==E&t with &'=1, é€k,. In Kp, ot=2r1a;t'*'; a;Ek, a,+0. Differentiation
of this expression of ot gives us

(ot) = 27-o(i+1)ait’t’ + 2\ m0alt ™
= 87" o[(i+ )ca;+al-alt;

here we assume that ¢;=0 if 7<<0. On the other hand

o(t') = co(t™") = ct' "(Xmoait’) ™"
Hence,
(1) (ra0ast)) o[ V)cai+-ai ]t = ¢

Comparing the constant terms of both sides, we have caj=c and aj=1; q, is a
constant. Let us show that a;=0 for any 7=1. To the contrary assume that
there exists an index 7=1 with a;30. Let j be the minimum of those indices.
The coefficient of #/ on the left hand side of (1) is (n+j)cat'a;. Hence a;=0.
This is a contradiction. Thus ;=0 for any i=1. Therefore ot==6t with £=a,.
Conversely let € be an n-th root in %, of 1 and € be a mapping of K, to itself
defined by

0(.70) = 2 b,-(et)i, X = 2 b,’ti, b,Ek .
Then 6 is a continuous k-automorphiém of Kp. Itis a differential one: For,
O(x") = 0] ichit "+ 21 bit')
= 21ich,(&2) 7420 bi(Et)’
= Y ich, &t 43 bleit
= (X b:Et) = (Ox) .
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2. Proof of Theorem

Suppose that K is of Painlevé type over k. We may assume that k* is
algebraically closed, since K and the algebraic closure of k* are independent
over k. If T' is empty, then K is free from parametric singularities over k.
We assume that T" is not empty. Let P be an element of I'. We have a
prime element ¢ in P such that #'=c#'"" (cf. §1). There exists uniquely a prime
divisor P* of K* such that the restriction of v¥« to K is vp, where v}« is the
normalized valuation belonging to P*. The completion K, of K with respect
to P is a subfield of the completion K#: of K* with respect to P*.

We shall show that K* and K are linearly disjoint over K. They are so if
and only if £* and K are linearly disjoint over &, since K*=k*(K) and K, k*
are linearly disjoint over k. Assume that m elements a,, -+, a,, of k* are linearly
dependent over Kp: D \1a;u;=0 with u; €K, and u; =0 for some 7. We may
suppose that vp(u,) <vp(x;) for any 7. For each 7 let b; be an element of k such
that vp(u;/u;—b;)>0. Then b,=1 and D> /..a;h;=0. Hence ay,+--,a,, are linearly
dependent over k. Thus k*, K, are linearly disjoint over 2 and K*, K, are
linearly disjoint over K.

For each element & of G there exists uniquely a continuous differential &2*-
automorphism o* of K¥. whose restriction to Kpis o. Set Gi={c*; s =G}.
Let us define a subset L*(P) of K* as the totality of those elements of K* each
of which is left invariant under G¥. Put L*=NL*(P), PET. Then, L* isa
differential extension field of k*.

We shall prove that K§ is contained in L*. Let v be a constant of K*
that is transcendental over k. 'Take an element P of I'. In K#« we have

¥ =D ait, a,ER*, ap0.
Differentiation of this expression of ¥ gives us

0 =9’ = 27 [ica;+al_.]t";
here we assume that @;=0 if 7<<<p. This implies
(2) icait-aln = 0 (p<i).

In particular, pca,+aj_,=pca,=0. Hence p=0. We shall show that =0 (mod z)
if a@;=£0. To the contrary assume that there exists an index 7 such that a;+0
with 720 (mod 7). Let j be the minimum of those indices. Then we get 4;_,
=0, and a;=0 by (2). Hence our assertion is true. Since o*¢"=¢", 7 is con-
tained in L¥(P). Hence yEL*.

Put L(P)=L*(P)NK and L=L* N K= NL(P), PET. By the definition of
L* and L, L*Dk*(L). We prove that

(3) L* = k¥(L).
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Let x be an element of L*. Since L*C K*=k*(K), we have
DVaau—x 25-1bjv; = 0;

here a;, b,€k* and w;, v;€K. Among those expressions of x pick one with a

minimal s. We may assume that a,,++,q, are linearly independent over K and
v,=1. Then

(4) Ay =y Gy, xbl’ '"’xbs-—l

are linearly independent over K by the minimality of s. Let P be an element
of T. Then the members of (4) are linearly independent over Kp, since K*
and K are linearly disjoint over K. 'Take an element ¢* of G¥. Then,

0 = o* (X raim;—x 2j-1b;0;)
= >V _1a;0u;—x Zj’-lbjo“vj ’

x=x. We have gv,=v, by v,=1. Hence,
2;"=1ai(u;'—0'u,‘)_x Ej:} 1(7)]—0'7)1) =5 0 .

Since each of u;—ou; and v;—gv; is in Kp, we obtain #;=ou; and v,=gv; (1=1¢
=r,1=<j=<s). Hence, u;, v;€EL(P). They are in L and x=k*(L). Therefore
(3) holds.

By (3) we get L =k, since L* DK§2k,. We shall prove that L is free from
parametric singularities over k. Let @, 7 and 7 be a prime divisor of L, the
normalized valuation belonging to @ and a prime element in @ respectively.
Suppose that P is an extension of @ to K. Then, LeCKp. Let e be the rami-
fication exponent of P with respect to L. Take a prime element #, in P such that
7=t{. Then,

since o*

evo(7'|7) = vp(eti[t) = vp(t))—1,
and
(5) evg(7') = vp(t))+e—1.

If P&T, we have vp(#])=0 and pg(7')=0. Let us assume that PET. Then
each element of Lg is left invariant under Gp. By (5), epg(7")=e—n. For each
o of Gp, ot=Et, &"=1. There exists an element ¢ of G such that € is a primi-
tive #-th root of 1. Since vp(#°/7)=0, there exists a nonzero element a of & such

that vp(¢°/7—a)>0. We have
vp(o('[T—a)) = vp(Et[T—a)>0,
since ot=E&t and o7=7. Hence,

vp((&°—1)¢'/7) = Min {v5(E't"|T—a), vp(t[T—a)} >0.
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We have &°=1, because vp(#/7)=0. Therefore, n divides e, since € is a primitive
n-th root of 1: epg(7')=e—n=0. Thus L is free from parametric singularities
over k.

3. Proof of Proposition

Suppose that M is a differential subfield of K which is free from parametric
singularities over k. 'Then M*=k*(M¥) for some k*, where M*=k*(M) and
M is the field of constants of M* (cf. [4]). Since K§ DM 2k, K§ contains
ko properly. We may suppose that k* is algebraically closed. Since L* includes
K§, MfcK¥cL*. Hence, M*=k*(M§)CL*. Thus,

McKNM*cKNL*=1.

4. Examples

ExampLE 1. Suppose that K=k(¢) and ¢'=#—1. Then a k-automorphism
o of K defined by o#=1/t is a differential one. Let P be a prime divisor of
K determined by vp(f)=1. Then o is not continuous in the metric of Kp.

ExampLE 2. Rosenlicht [10] proved the following theorem: Suppose that
k=Fk, and K=Fk(y): If K is of Painlevé type over & in our sense, then either

y'=aflf, or y'=1/g, with f, g€k(y) and aEk.
ExampLE 3. Suppose that K=Fk(¢) and 2tt'=1. Let P be the prime

divisor of K determined by vp(t)=1. Then n,=2,and I'={P}. The generator
o of Gp satisfies ot==—1, and L.=k(#).
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