Osaka University Knowledge Archive

Title	A theorem of Painlevé on parametric singularities of algebraic differential equations of the first order
Author(s)	Nishioka, Keiji
Citation	0saka Journal of Mathematics. 1981, 18(1), p. $249-255$
Version Type	VoR
URL	https://doi.org/10.18910/7505
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

A THEOREM OF PAINLEVÉ ON PARAMETRIC SINGULARITIES OF ALGEBRAIC DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

Keiji NISHIOKA

(Received September 7, 1979)

0. Introduction

Consider an algebraic differential equation of the first order $F\left(y, y^{\prime}\right)=0$ over an algebraically closed ordinary differential field k of characteristic 0 , where F is an irreducible polynomial over k. Recently Matsuda [3] presented a dif-ferential-algebraic definition for $F=0$ to be free from parametric singularities and gave a purely algebraic proof of the following theorem essentially due to Fuchs [2] and Poincaré [8]: Suppose that $F=0$ is free from parametric singularities. Then it is reduced to a Riccati equation or a defining equation of elliptic function by a birational transformation over k if the genus of $F=0$ is 0 or 1 respectively. The author [4] proved that under the above assumption it is reduced to an equation of Clairaut type by a birational transformation over k if the genus is greater than 1. This theorem is essentially due to Poincaré [8], Painlevé [5] and Picard [6].

Here a differential-algebraic formulation and its proof of the following theorem which is essentially due to Painleve [5], [6] will be given: The general solution η of $F=0$ depends algebraically upon an arbitrary constant over some differential extension field of k if and only if there exists an algebraic differential equation of the first order $G=0$ over k such that it is free from parametric singularities and the general solution of $G=0$ is a rational function of η and η^{\prime} over k. Here, we assume that k contains non-constants.

Let k be an algebraically closed ordinary differential field of characteristic 0 , and Ω be a universal differential extension field of k. Suppose that K is a differential subfield of Ω and it is an algebraic function field of one variable over k. Let P be a prime divisor of K and K_{P} be the completion of K with respect to P. Then K_{P} is a differential extension field of K and the differentiation is continuous in the metric of K_{P} (cf. [1, p. 114]). Let ν_{P} and t_{P} denote respectively the normalized valuation belonging to P and a prime element in P. The following definition is due to Matsuda [3]: K is said to be free from parametric singularities over k if we have $\nu_{P}\left(t_{P}^{\prime}\right) \geqq 0$ for each prime divisor P of
K. Here, we do not set the assumption that K takes the form $k\left(y, y^{\prime}\right)$ with some element y of K, which is done in [3]. In this general situation is the author's paper [4] which will be quoted later.

Let k^{*} be a differential extension field of k in Ω; we take for granted that the field of constants of k^{*} is the same as that of k and K, k^{*} are independent over k. Since k is algebraically closed, K and k^{*} are linearly disjoint over k (cf. [11, p. 19]). K^{*}, k_{0} and K_{0}^{*} will indicate $k^{*}(K)$, the fields of constants of k and K^{*} respectively; k_{0} is algebraically closed.

Definition. K will be said to be of Painlevé type over k if there exists such k^{*} that $K_{0}^{*} \neq k_{0}$.

If K_{1} is of Painlevé type over k and K_{2} is an algebraic extension field of K_{1} of finite degree, then K_{2} is so over k : For K_{2} and k^{*} are independent over k.

Theorem. K is of Painlevé type over k if and only if there exists a differential subfield of K which is free from parametric singularities over k.

The "if" part is known: For, a differential subfield M is of Painlevé type over k in our sense if M is free from parametric singularities over k (cf. [4]). Suppose that K is of Painlevé type over k. Let Γ be the totality of those prime divisors P of K satisfying $\nu_{P}\left(t_{P}^{\prime}\right)<0$. Assume that K is not free from parametric singularities over k. Then Γ is not empty. Let P be an element of Γ. Then the number n_{P} defined by $n_{P}=1-\nu_{P}\left(t_{P}^{\prime}\right)$ does not depend on the choice of a prime element t_{P} in P. It is an integer greater than 1 . We define G_{P} as the group of all differential k-automorphisms of K_{P} that are continuous in the metric of K_{P}. By a theorem of Rosenlicht [9, Th. 3] we have the following:

Lemma. $\quad G_{P}$ is a cyclic group of order n_{P}.
Let L denote the totality of those element of K each of which is left invariant under G_{P} for any P in Γ. Then L is a differential extension field of k. It is proved to be free from parametric singularities over k. Thus Theorem is obtained. If k contains non-constants then L takes the form $k\left(y, y^{\prime}\right)$ with some element y of L.

In case $\Gamma=\phi$, we set $L=K$.
Proposition. Suppose that K is of Painleve type over k. Then, every differential subfield of K which is free from parametric singularities over k is contained in L.

Lemma, Theorem and Proposition will be proved in $\S 1, \S 2$ and $\S 3$ respectively. In the last $\S 4$ some examples will be given.

Remark 1. Suppose that K is of Painlevé type over k. Then, there exists such k_{1}^{*} that $\left(K_{1}^{*}\right)_{0} \neq k_{0}$ and $\left[K^{*}: k^{*}\left(K_{0}^{*}\right)\right]=\left[K_{1}^{*}: k_{1}^{*}\left(\left(K_{1}^{*}\right)_{0}\right)\right]$ if $k^{*} \supset k_{1}^{*}$,
where $K_{1}^{*}=k_{1}^{*}(K)$ and $\left(K_{1}^{*}\right)_{0}$ denotes the field of constants of K_{1}^{*}.
Remark 2. By a result (3) in §2 we have the following: If $K^{*}=k^{*}\left(K_{0}^{*}\right)$ for some k^{*}, then K is free from parametric singularities over k. Hence, K is free from parametric singularities over k if K^{*} is so over some algebraically closed k^{*}.

The author wishes to express his sincere gratitude to Professor M. Matsuda for his kind advice.

1. Proof of Lemma

Let P be an element of Γ and n be n_{P}. By a theorem of Rosenlicht [9, Th. 3] there exists a prime element t in P such that $t^{\prime}=c t^{1-n}$ with a nonzero element c of k. Suppose that σ is an element of G_{P}. Then, we have $\nu_{P}(\sigma x)=\nu_{P}(x)$ for each x in K_{P}, since σ is continuous in the metric of K_{P}. We shall prove that $\sigma t=\varepsilon t$ with $\varepsilon^{n}=1, \varepsilon \in k_{0}$. In $K_{P}, \sigma t=\sum_{k=1}^{\infty} a_{i} i^{i+1} ; a_{i} \in k, a_{0} \neq 0$. Differentiation of this expression of σt gives us

$$
\begin{aligned}
(\sigma t)^{\prime} & =\sum_{i=0}^{\infty}(i+1) a_{i} t^{i} t^{\prime}+\sum_{i=0}^{\infty} a_{i}^{\prime} t^{i+1} \\
& =t^{1-n} \sum_{i=0}^{\infty}\left[(i+1) c a_{i}+a_{j-n}^{\prime}\right] t^{i} ;
\end{aligned}
$$

here we assume that $a_{i}=0$ if $i<0$. On the other hand

$$
\sigma\left(t^{\prime}\right)=c \sigma\left(t^{1-n}\right)=c t^{1-n}\left(\sum_{i=0}^{\infty} a_{i} t^{i}\right)^{1-n} .
$$

Hence,

$$
\begin{equation*}
\left(\sum_{i=0}^{\infty} a_{i} i^{i}\right)^{n-1} \sum_{i=0}^{\infty}\left[(i+1) c a_{i}+a_{i-n}^{\prime}\right] t^{i}=c . \tag{1}
\end{equation*}
$$

Comparing the constant terms of both sides, we have $c a_{0}^{n}=c$ and $a_{0}^{n}=1 ; a_{0}$ is a constant. Let us show that $a_{i}=0$ for any $i \geqq 1$. To the contrary assume that there exists an index $i \geqq 1$ with $a_{i} \neq 0$. Let j be the minimum of those indices. The coefficient of t^{j} on the left hand side of (1) is $(n+j) c a_{0}^{n-1} a_{j}$. Hence $a_{j}=0$. This is a contradiction. Thus $a_{i}=0$ for any $i \geqq 1$. Therefore $\sigma t=\varepsilon t$ with $\varepsilon=a_{0}$. Conversely let ε be an n-th root in k_{0} of 1 and θ be a mapping of K_{P} to itself defined by

$$
\theta(x)=\sum b_{i}(\varepsilon t)^{i}, x=\sum b_{i} t^{i}, b_{i} \in k
$$

Then θ is a continuous k-automorphism of K_{P}. It is a differential one: For,

$$
\begin{aligned}
\theta\left(x^{\prime}\right) & \left.=\theta\left(\sum i c^{\prime}\right)_{i} t^{i-n}+\sum b_{i}^{\prime} t^{i}\right) \\
& =\sum i c b_{i}(\varepsilon t)^{i-n}+\sum b_{i}^{\prime}(\varepsilon t)^{i} \\
& =\sum i c b_{i} \varepsilon^{i} t^{i-n}+\sum b_{i}^{\prime} \varepsilon^{i} t^{i} \\
& =\left(\sum b_{i} \varepsilon^{i} t^{i}\right)^{\prime}=(\theta x)^{\prime} .
\end{aligned}
$$

2. Proof of Theorem

Suppose that K is of Painlevé type over k. We may assume that k^{*} is algebraically closed, since K and the algebraic closure of k^{*} are independent over k. If Γ is empty, then K is free from parametric singularities over k. We assume that Γ is not empty. Let P be an element of Γ. We have a prime element t in P such that $t^{\prime}=c t^{1-n}$ (cf. §1). There exists uniquely a prime divisor P^{*} of K^{*} such that the restriction of ν_{P}^{*} to K is ν_{P}, where $\nu_{P *}^{*}$ is the normalized valuation belonging to P^{*}. The completion K_{P} of K with respect to P is a subfield of the completion $K_{P *}^{*}$ of K^{*} with respect to P^{*}.

We shall show that K^{*} and K_{P} are linearly disjoint over K. They are so if and only if k^{*} and K_{P} are linearly disjoint over k, since $K^{*}=k^{*}(K)$ and K, k^{*} are linearly disjoint over k. Assume that m elements a_{1}, \cdots, a_{m} of k^{*} are linearly dependent over $K_{P}: \sum_{i=1}^{m} a_{i} u_{i}=0$ with $u_{i} \in K_{P}$ and $u_{i} \neq 0$ for some i. We may suppose that $\nu_{P}\left(u_{1}\right) \leqq \nu_{P}\left(u_{i}\right)$ for any i. For each i let b_{i} be an element of k such that $\nu_{P}\left(u_{i} / u_{1}-b_{i}\right)>0$. Then $b_{1}=1$ and $\sum_{i=1}^{m} a_{i} b_{i}=0$. Hence a_{1}, \cdots, a_{m} are linearly dependent over k. Thus k^{*}, K_{P} are linearly disjoint over k and K^{*}, K_{P} are linearly disjoint over K.

For each element σ of G_{P} there exists uniquely a continuous differential k^{*} automorphism σ^{*} of K_{P}^{*} whose restriction to K_{P} is σ. Set $G_{P}^{*}=\left\{\sigma^{*} ; \sigma \in G_{P}\right\}$. Let us define a subset $L^{*}(P)$ of K^{*} as the totality of those elements of K^{*} each of which is left invariant under G_{P}^{*}. Put $L^{*}=\cap L^{*}(P), P \in \Gamma$. Then, L^{*} is a differential extension field of k^{*}.

We shall prove that K_{0}^{*} is contained in L^{*}. Let γ be a constant of K^{*} that is transcendental over k. Take an element P of Γ. In $K_{P *}^{*}$ we have

$$
\gamma=\sum_{i=p}^{\infty} a_{i} t^{i}, a_{i} \in k^{*}, a_{P} \neq 0 .
$$

Differentiation of this expression of γ gives us

$$
0=\gamma^{\prime}=\sum_{i=p}^{\infty}\left[i c a_{i}+a_{i-n}^{\prime}\right] t^{i-n}
$$

here we assume that $a_{i}=0$ if $i<p$. This implies

$$
\begin{equation*}
i c a_{i}+a_{i-n}^{\prime}=0(p \leqq i) . \tag{2}
\end{equation*}
$$

In particular, $p c a_{p}+a_{p-n}^{\prime}=p c a_{p}=0$. Hence $p=0$. We shall show that $i \equiv 0(\bmod n)$ if $a_{i} \neq 0$. To the contrary assume that there exists an index i such that $a_{i} \neq 0$ with $i \neq 0(\bmod n) . \quad$ Let j be the minimum of those indices. Then we get a_{j-n} $=0$, and $a_{j}=0$ by (2). Hence our assertion is true. Since $\sigma^{*} t^{n}=t^{n}, \gamma$ is contained in $L^{*}(P)$. Hence $\gamma \in L^{*}$.

Put $L(P)=L^{*}(P) \cap K$ and $L=L^{*} \cap K=\cap L(P), P \in \Gamma$. By the definition of L^{*} and $L, L^{*} \supset k^{*}(L)$. We prove that

$$
\begin{equation*}
L^{*}=k^{*}(L) \tag{3}
\end{equation*}
$$

Let x be an element of L^{*}. Since $L^{*} \subset K^{*}=k^{*}(K)$, we have

$$
\sum_{i=1}^{r} a_{i} u_{i}-x \sum_{j=1}^{s} b_{j} v_{j}=0 ;
$$

here $a_{i}, b_{j} \in k^{*}$ and $u_{i}, v_{j} \in K$. Among those expressions of x pick one with a minimal s. We may assume that a_{1}, \cdots, a_{r} are linearly independent over K and $v_{s}=1$. Then

$$
\begin{equation*}
a_{1}, \cdots, a_{r}, x b_{1}, \cdots, x b_{s-1} \tag{4}
\end{equation*}
$$

are linearly independent over K by the minimality of s. Let P be an element of Γ. Then the members of (4) are linearly independent over K_{P}, since K^{*} and K_{P} are linearly disjoint over K. Take an element σ^{*} of G_{P}^{*}. Then,

$$
\begin{aligned}
0 & =\sigma^{*}\left(\sum_{i=1}^{r} a_{i} u_{i}-x \sum_{j=1}^{s} b_{j} v_{j}\right) \\
& =\sum_{i=1}^{r} a_{i} \sigma u_{i}-x \sum_{j=1}^{s} b_{j} \sigma v_{j},
\end{aligned}
$$

since $\sigma^{*} x=x$. We have $\sigma v_{s}=v_{s}$ by $v_{s}=1$. Hence,

$$
\sum_{i=1}^{r} a_{i}\left(u_{i}-\sigma u_{i}\right)-x \sum_{j=1}^{s-1} b_{j}\left(v_{j}-\sigma v_{j}\right)=0 .
$$

Since each of $u_{i}-\sigma u_{i}$ and $v_{j}-\sigma v_{j}$ is in K_{P}, we obtain $u_{i}=\sigma u_{i}$ and $v_{j}=\sigma v_{j}(1 \leqq i$ $\leqq r, 1 \leqq j \leqq s)$. Hence, $u_{i}, v_{j} \in L(P)$. They are in L and $x \in k^{*}(L)$. Therefore (3) holds.

By (3) we get $L \neq k$, since $L^{*} \supset K_{0}^{*} \supseteq k_{0}$. We shall prove that L is free from parametric singularities over k. Let $Q, \bar{\nu}_{Q}$ and τ be a prime divisor of L, the normalized valuation belonging to Q and a prime element in Q respectively. Suppose that P is an extension of Q to K. Then, $L_{Q} \subset K_{P}$. Let e be the ramification exponent of P with respect to L. Take a prime element t_{1} in P such that $\tau=t_{1}^{e}$. Then,

$$
e \bar{e}_{Q}\left(\tau^{\prime} \mid \tau\right)=\nu_{P}\left(e t_{1}^{\prime} / t_{1}\right)=\nu_{P}\left(t_{1}^{\prime}\right)-1,
$$

and

$$
\begin{equation*}
e \bar{\nu}_{Q}\left(\tau^{\prime}\right)=\nu_{P}\left(t_{1}^{\prime}\right)+e-1 . \tag{5}
\end{equation*}
$$

If $P \notin \Gamma$, we have $\nu_{P}\left(t_{1}^{\prime}\right) \geqq 0$ and $\bar{\nu}_{Q}\left(\tau^{\prime}\right) \geqq 0$. Let us assume that $P \in \Gamma$. Then each element of L_{Q} is left invariant under G_{P}. By (5), $e \bar{\nu}_{Q}\left(\tau^{\prime}\right)=e-n$. For each σ of $G_{P}, \sigma t=\varepsilon t, \varepsilon^{n}=1$. There exists an element σ of G_{P} such that ε is a primitive n-th root of 1 . Since $\nu_{P}\left(t^{e} / \tau\right)=0$, there exists a nonzero element a of k such that $\nu_{P}\left(t^{e} \mid \tau-a\right)>0$. We have

$$
\nu_{P}\left(\sigma\left(t^{e} / \tau-a\right)\right)=\nu_{P}\left(\varepsilon^{e} t^{e} / \tau-a\right)>0,
$$

since $\sigma t=\varepsilon t$ and $\sigma \tau=\tau$. Hence,

$$
\nu_{P}\left(\left(\varepsilon^{e}-1\right) t^{e} / \tau\right) \geqq \operatorname{Min}\left\{\nu_{\dot{P}}\left(\varepsilon^{e} t^{e} / \tau-a\right), \nu_{P}\left(t^{e} / \tau-a\right)\right\}>0 .
$$

We have $\varepsilon^{e}=1$, because $\nu_{P}\left(t^{e} / \tau\right)=0$. Therefore, n divides e, since ε is a primitive n-th root of $1: e \bar{\nu}_{Q}\left(\tau^{\prime}\right)=e-n \geqq 0$. Thus L is free from parametric singularities over k.

3. Proof of Proposition

Suppose that M is a differential subfield of K which is free from parametric singularities over k. Then $M^{*}=k^{*}\left(M_{0}^{*}\right)$ for some k^{*}, where $M^{*}=k^{*}(M)$ and M_{0}^{*} is the field of constants of M^{*} (cf. [4]). Since $K_{0}^{*} \supset M_{0}^{*} \supsetneq k_{0}, K_{0}^{*}$ contains k_{0} properly. We may suppose that k^{*} is algebraically closed. Since L^{*} includes $K_{0}^{*}, M_{0}^{*} \subset K_{0}^{*} \subset L^{*}$. Hence, $M^{*}=k^{*}\left(M_{0}^{*}\right) \subset L^{*}$. Thus,

$$
M \subset K \cap M^{*} \subset K \cap L^{*}=L
$$

4. Examples

Example 1. Suppose that $K=k(t)$ and $t^{\prime}=t^{2}-1$. Then a k-automorphism σ of K defined by $\sigma t=1 / t$ is a differential one. Let P be a prime divisor of K determined by $\nu_{P}(t)=1$. Then σ is not continuous in the metric of K_{P}.

Example 2. Rosenlicht [10] proved the following theorem: Suppose that $k=k_{0}$ and $K=k(y)$: If K is of Painlevé type over k in our sense, then either $y^{\prime}=a f / f_{y}$ or $y^{\prime}=1 / g_{y}$ with $f, g \in k(y)$ and $a \in k$.

Example 3. Suppose that $K=k(t)$ and $2 t t^{\prime}=1$. Let P be the prime divisor of K determined by $\nu_{P}(t)=1$. Then $n_{P}=2$, and $\Gamma=\{P\}$. The generator σ of G_{P} satisfies $\sigma t=-t$, and $I=k\left(t^{2}\right)$.

References

[1] C. Chevalley: Introduction to the theory of algebraic functions of one variable, Math. Surveys VI, Amer. Math. Soc., 1951.
[2] L. Fuchs: Über Differentialgleichungen, deren Integrale feste Verzweibungspunkte besitzen, S.-B. der Königl. Preuss. Akad. Wiss. Berlin, 32 (1884), 699-710.
[3] M. Matsuda: Algebraic differential equations of the first order free from parametric singularities from the differential-algebraic standpoint, J. Math. Soc. Japan 30 (1978), 447-455.
[4] K. Nishioka: Algebraic differential equations of Clairaut type from the differentialalgebraic standpoint, J. Math. Soc. Japan 31 (1979), 553-559.
[5] P. Painlevé: Mémoire sur les équations différentielles du premier order, Ann. Sci. Ecole Norm. Sup. 3^{e} Série 8 (1891), 9-58, 103-140, 201-226, 267-284; 9 (1892), 9-30, 101-144, 283-308.
[6] -_: Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (1895), Hermann, Paris, 1897; Oeuvres, Tome I, 205-798, Centre National de la Recherche Scientifique, Paris, 1972.
[7] E. Picard: Traité d'analyse, Tome III, 2e Édition, Gauthier-Villars, Paris, 1908.
[8] H. Poincaré: Sur un théorème de M. Fuchs, Acta Math. 7 (1885), 1-32.
[9] M. Rosenlicht: Canonical forms for local derivations, Pacific J. Math. 42 (1972), 721-732.
[10] -: Nonminimality of the differential closure, Pacific J. Math. 52 (1974), 529-537.
[11] A. Weil: Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ. Vol. 29, Providence, 1946.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

