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1. Introduction

Let (V^U) be a pair of a solid torus Vi and an unknotted arc U properly imbed-

ded in Vi for i = 1 and 2. Summing these pairs we obtain a pair (M, K) of the

3-dimensional sphere or a lens space M and a knot K. We call such a knot K a 1-

genws 1-bridge knot. We determine in this paper when a 1-genus 1-bridge knot is a

satellite knot.

A set of mutually disjoint arcs T = {ti, , tn} properly imbedded in a handle-

body V is trivial if there is a set of mutually disjoint discs D = {D\, , Dn} such

that ί< C dDi9 U ΠDj = 0 and 9 A - *< C <9F for 1 < i, j < n and i 7̂  j . These discs

are called cancelling discs of T.

Let M be a closed orientable 3-dimensional manifold. A closed surface H imbed-

ded in M is called a Heegaard splitting surface of M if H splits M into two han-

dlebodies V\ and V2. A link L in M is said to be in g-genus n-bridge position with

respect to ϋί if L is transeverse to H and L Π T̂  consists of trivial n arcs in Vi for

z = 1 and 2. We say also that H is a g-genus n-bridge decomposition of L. A 0-genus

n-bridge link is usually called an n-bridge link.

Note that if a link is in #-genus 1-bridge position, then it is a knot. Such a knot is

very important in light of some results and conjectures on Dehn surgery on knots. For

example, see [3], [4] by D. Gabai, [1] by J. Berge, [9], [10], [11] by Y-Q. Wu. It is

well-known that 2-bridge knots are 1-genus 1-bridge knots.

Let M be the 3-dimensional sphere or a lens space (not homeomorphic to S2xS1).

Let H be a genus 1 Heegaard surface of M. This surface H divides M into two solid

tori Vi and V2. Suppose a knot K is in 1-genus 1-bridge position with respect to H.

Then K Γ\V{ consists of a trivial arc, say ti, in Vi for i = 1 and 2.

The decomposition H is said to be K-reducible if Vi contains a meridian disc Di

and Vj contains a cancelling disc Dj of tj such that DiΠU = 0 and dDi Π dDj = 0

for i = 1, j = 2 or i = 2, j = 1. If if is if-reducible, then K is the trivial knot

bounding a disc composed of two cancelling discs as shown in [Lemma 2.2, 6].

The decomposition H is said to be weakly K-reducible if Vi contains a meridian

disc Di and Vj contains a cancelling disc Dj of tj such that int Z^ intersects U trans-

versely in one point and dDi Π dDj = 0 for z = 1, j = 2 or i = 2, j = 1. If if is
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weakly if-reducible, then K is the trivial knot or a 2-bridge knot when M — S 3 , and

if is a core knot or a composite knot of a core knot and a 2-bridge knot when M is a

lens space. This will be shown in Lemma 2.1.

Note that weak K-reducibility is not a generalized notion of K-reducibility. These

definitions are motivated by [7] by T. Kobayashi and O. Saeki.

A knot K is a. trivial knot if it bounds a disc imbedded in M. A non-trivial knot K

in a lens space M is a core knot if the exterior E(K) = M-intN(K) is homeomorphic

to a solid torus. A knot K in M is 5/?//ί if M contains a sphere 5 which decomposes

M into a punctured lens space and a ball containing K in its interior. This sphere S

is called a splitting sphere. A knot if in M is composite if M contains a 2-sphere

5 which intersects K transeversely in 2 points and 5 Π E(K) is (^-incompressible in

E(K). We call this 2-sphere 5 a decomposing sphere. A knot is said to be prime if

it is not composite. A knot is said to be satellite if E(K) contains an incompressible

torus T which is not parallel to dE(K). It is well-known that a composite knot is a

satellite knot.

In this paper we determine when a 1-genus 1-bridge knot is a satellite knot because

very much is known about Dehn surgery on satellite knots [5] by C.McA. Gordon. In

the course of the proof, we obtain two theorems, Theorems I and II, which are already

shown by H. Doll in [2]. For Theorem I, see Conjecture 1.3, the sentence right after the

proof of l.Γ from 1.3 and "the proof of 1.3 from 1.6 for g = 0,1 or M is irreducible

and non-Haken of genus g" in section 5 in [2]. For Theorem II, see the latter half of

Theorem 1.6 in [2].

Theorem I. (H. Doll, [2]) Let M, K, H, Vif U be as above, especially K is in

1-genus 1-bridge position with respect to H. Suppose that K is a split knot. Then the

decomposition H is K-reducible and K is the trivial knot.

Theorem II. (H. Doll, [2]) Let M, K, H, Vif U be as above, especially K is

in 1-genus 1-bridge position with respect to H. Suppose that H is not K-reducible

and K is composite. Then M is a lens space rather than the 3-dimensional sphere,

and H is weakly K-reducible. Moreover, K is a sum of two l-strίng tangles (Bi,Ti),

(i = 1,2) as below:

(l)Bι is a once punctured lens space, and cl(B\ — N(T\)) is a solid torus, and

(2)J92 is a ball, and cl(B2—N(T2)) is homeomorphic to the exterior of a non-trivial

2-bridge knot.

The next is the main theorem of this paper.

Theorem III. Let M, K, H, Vι, U be as above, especially K is in 1-genus 1-

bridge position with respect to H. Suppose that H is neither K-reducible nor weakly

K-reducible. If K is a satellite knot, then there is an annulus Z on H such that there
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is a cancelling disc Cι of U with (dCi Π H) C Z for i = 1 and 2. Moreover,the

incompressible torus is isotopic to dN{C\ U Z U C2) in E(K).

It is well-known that a 1-genus 1-bridge knot is of tunnel number one. K. Mori-

moto and M.Sakuma showed in [(2.1)Theorem,8] that a companion knot of a satellite

knot of tunnel number one in S3 is a torus knot.

In order to prove the above theorems, we need the next theorem. Let X be a

3-manifold, and T a 1-dimensional manifold properly imbedded in X. Let F be a

connected surface properly imbedded in X such that it is transverse to T. Then F is

called T-incompressible if for any disc D such that DΠF = dD and DOT = ® there

is a disc D' on F such that dD' = <9£> and £>' Π T = 0. We call F is merίdionally

incompressible in (X, T) if for any disc D such that D Π F = <9£> and \D Π Γ| = 1,

there is a disc £)' on F such that #£>' = dD and |D r Π T\ = 1. The surface F is T-<9-

incompressible if for any disc £> such that α = JDΠF is a subarc of dD, dD — a C <9X

and DΠΓ = 0, there is a disc Dr on F such that D'Γ)F = dD'C\F = α, 3D'-a C 9 F

and ^ Π Γ = 0.

Theorem IV. Let M, K, H, Vif U be as above, especially K is in 1-genus 1-

bridge position with respect to H. Suppose that H is neither K-reducible nor weakly

K-reducible. Let F be a K-incompressible and meridionally incompressible closed

surface imbedded in M with \F Π K\ < 2. Suppose that Fo = F Π E(K) is d-

incompressible in E{K). Then one of the following two conditions holds.

(\)We can move F by an isotopy of the pair (M, K) so that F Γ\V\ consists of a

parallel set of peripheral discs each of which cuts off a ball containing t\ from

VL

(2)We can deform F so that F Π V i is a peripheral disc which intersects t\ in

two points, cuts off a rational tangle (B,T) and is (£χ — T)-d-compressible in

cl(Vλ - B).

2. Preliminaries

Lemma 2.1. Let H be a 1-genus 1-bridge decomposition of a knot K. Suppose

that H is weakly K-reducible. Then K is a sum of two 1-string tangles (Bk,Tk),

(k = 1,2) as below:

(l)Bι is a ball or a once punctured lens space, and the exterior of T\ is homeo-

morphic to a solid torus, and

is a ball, and cl(Bi — N(T2)) is homeomorphic to the exterior of a (possibly

trivial) 2-bridge knot.
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When M is the 3-sphere, K is the trivial knot if (B2,T2) is the trivial tangle, and K

is a 2-bridge knot if (B2, T2) is non-trivial. When M is a lens space, K is a core knot

if (B2, T2) is the trivial tangle, and K is a composite knot if (B2, T2) is non-trivial

Proof. Let A be a meridian disc with \Dι Π U\ — 1, and Dj a cancelling

disc as in the definition of weak If-reducibility. Let Bλ = N(Di)\Jc\(Vj - N(Dj))9

B2 =cl(M - J5i) and T{ = K Π S<. Since (B2 > T2) is the sum of the ball V{ - 7V(A)

containing two subarcs of U and the ball N(Dj) containing the arc tj, its exterior is

homeomorphic to that of a 2-bridge knot. See Figure 2.1. •

Figure 2.1

Lemma 2.2. Let H be a I-genus l-bridge decomposition of a knot K. The de-

composition H is weakly K-reducible if and only if there is a 2-sphere S satisfying the

following two conditions for i = 1, j = 2 or i = 2, j = 1.

(l)S ΠVi is a peripheral disc which intersects U in two points, cuts off a rational

tangle (B,T) and is (U - T)-d-compressible in cl(Vi - B).

(2)5 ΠVj is a peripheral disc which is disjoint from tj, cuts off a ball Br containing

tj from Vj.

Proof. First we assume that there is a 2-sphere 5 as above. The disc D = i

has a d-compressing disc in cl(Vi — B). Along this disc compressing D, we obtain

two meridian discs Rι, R2 each of which intersects U in one point. We can take a

cancelling disc C of tj in B1 to be disjoint from S. Since ( C Π H) c (Bf Π H) =

( S ί l f f ) , we have dC Π dRi = 0. Then the discs Rλ and C imply that H is weakly

if-reducible.

Conversely, we assume that H is weakly if-reducible. Then V* contains a merid-

ian disk Di and V} contains a cancelling disc Dj of ίj such that Di intersects U
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transversely in one point and dDi Π dDj = 0. Let D[ be a parallel copy of Di such

that D'i Π Dj = 0. The boundary loops <9A and dD[ together divide the torus H into

two annuli, one of which, say A, contains dti. We can take an essential arc α on A so

that a Π dDj = 0. We perform a band sum operation on Di and D[ along α, to obtain

a peripheral disc Q\ satisfying the condition (1) above. We can take a neighbourhood

N(Dj) in Vj so that d(N(Dj) Π H) = dQλ. Then Qλ U (dN(Dό) - # ) is a desired

2-sphere. •

Lemma 2.3. Lei F k α solid torus, t a trivial arc properly imbedded in V, and

C a cancelling disc of t. Then there is a meridian disc QofV containing C.

Proof. A standard cut and paste argument allows us to take a meridian disc Qr

of V to be disjoint from C. We take an arbitrary arc a connecting dC and dQr on dV

and perform a band sum operation on these discs along a to obtain a new cancelling

disc, say C" of t. This disc C" can be isotoped slightly so that C" Π C = t. Then

Q = C U C is a desired meridian disc of V\ •

3. Formation of Graphs

Our goal of sections 3,4,5 and 6 is Theorem IV' below. Let M, H, Vi, K, U be

as in section 1. We consider the three situations below simultaneously.

(1) "(i)" The knot K is split and F is a splitting sphere.

(2) "(ii)" The knot K is non-split and composite, and F is a decomposing sphere.

(3) "(Hi)" The knot K is non-split and prime. Let F be a if-incompressible and

meridionally incompressible connected closed surface imbedded in M such that

\F Π K\ < 2 and Fo = F Π £ ( # ) is ^-incompressible in

In the following deforming F means rechoosing F in cases (i) and (ii), and moving

F by an isotopy of the pair (M, if) in case (iii).

Theorem IV7. Let F be of type (i), (ii) or (iii) as above. Then one of the follow-

ing three conditions holds.

(1) The decomposition H is K-reducible in case (i) or weakly K-reducible in cases

(ii) and (iii).

(2) We can deform F so that F Γ\Vι consists of a parallel set of peripheral discs

each of which cuts off a ball containing t\ from V\.

(3) We can deform F so that F Π V\ is a peripheral disc which intersects t\ in

two points, cuts off a rational tangle (B,T) and is (t\ — T\d-compressible in

diyx - B).
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Lemma 3.1. We can deform F so that FΓ\V\ consists of meridian discs disjoint

from t\ and at most two meridian discs intersecting t\ transversely in one point.

Proof. By Lemma 2.3 there is a meridian disc Q of V\ which contains t\. Let

Q' be a meridian disc of V\ which is disjoint form Q. We isotope F in (M, K) so

that it is transverse to Q and disjoint from Q'. Then every curve of (F Π Vi) Π Q

intersects t\ at most once since Fo is ^-incompressible in E(K) in cases (ii) and (iii).

We can isotope the intersection arcs of (F Π V\) Π Q disjoint from t\ out of V\ along

the subdiscs of Q. Then F ΠQ consists of only proper arcs intersecting t\ precisely

once.

Let B be the ball obtained by cutting V\ along Q, and A the annulus B Π dV\.

The arc t\ divides each copy of Q into two subdiscs. Suppose that there is an arc a

of F Π A such that a is inessential on A and has both endpoints in the same subdisc

of a copy of Q. Then A contains an inessential arc β which is isotopic rel. dβ into a

subarc of dQ — dt\ (see Figure 3.1). Hence we can isotope fixing F Π K in M so that

every inessential arc of F Π A connects the two subdiscs of a copy of Q.

We can deform F so that F Π B is incompressible. (For example, in case (i), let

D b e a compressing disc of F Π B, where dD divides F into two discs D\ or D2.

Then DUDi or DUD2 is a splitting sphere of if.) Then FnB consists of discs. The

boundaries of these discs meet a copy of Q at most once. Recall that FnQ' = φ. When

we recover V\ by attaching two copies of Q on dB, we obtain three kinds of discs:

meridian discs which do not intersect Q, meridian discs which intersect Q in an arc,

and peripheral discs which intersect Q in at most one arc. We can push the peripheral

discs out of Vι by an isotopy of the pair (M, K), and obtain the desired conclusion.

D

Figure 3.1

Moreover we take F so that the number of meridian discs of F Π V\ is minimal

over all deformations of F. Let P = F Π V2, E(V2,t2) =cl(V2 - N(t2)) and Po =

FΠE(V2, t2). Then P is t2-incompressible and meridionally incompressible in (V2, t2),

but is possibly t2-<9-compressible. Let C be a cancelling disc of t2 in V2. We take C
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and F so that \dCΠdP\ is minimal over all cancelling discs of t2 and all deformations

of F. Moreover, we can isotope C in V2 fixing dC so that CΠP consists of arcs only.

Let Qi, , Qm be the meridian discs of F Π V\ which do not intersect t\ and

appear in V\ in this order so that t\ is between Q m and Qi. Let i?i, , i? n , (n < 2)

be the meridian discs of F Π V\ which intersect t\ transeversely in one point appearing

in V\ in this order. We assume that Qm and JRI are adjacent in V\.

Clearly m + n > 0. Since M is the 3-sphere or a lens space, M does not contain

a non-separating closed surface, and hence m + n is even. We study in this and next

sections the case (I) of m > 0 and n > 0. If ra = 0 or n = 0, then either (II) n = 2

and both meridian discs intersect t\ in one point, or (III) ra > 2 and all the meridian

discs are disjoint from t\. We will study case (II) in section 5 and case (III) in section

6. In sections 3, 4 and 5, F intersects K, and hence we consider the cases (ii) and (iii)

only.

The four discs Qi, Q m , R\ and Rn together divide the solid torus V\ into four

balls B\, B2, B% and B4, where B\ is between Q\ and Qm, B2 is between Qm and

i?i, B3 is between Rι and Rn, B4 is between i?n and Q\. Let A^ be the annulus

H Π <9#i for i = 1, 2,3 and 4. We regard 5 3 as the disc # 1 , and A3 as the loop dRi

when n = 1.Similar for B\ and Aχ

If we can take C so that dC Γ\Aι = 0, then H is i^-reducible, which contradicts that

K is not trivial. If we can take C so that dC Π A% = 0, then i ί is weakly if-reducible,

which is a desired conclusion of Theorem IV'. Hence we can assume that dC Π A±

and dC Π ̂ 3 are non-empty sets. Since \dC Π <9P| is minimal, it is clear that

(1) dC Π A\ consists of essential arcs in the annulus A\ such that each of them

intersects every meridian loop dQi just once for ί — 1, , m, and

(2) dC Π As consists of essential arcs in the annulus A3 such that each of them

intersects every meridian loop dRi just once for i — 1, , n, and

(3) For i = 2 and 4, ΘCπAi consists of essential arcs in the annulus Ai, inessential

arcs which are essential on Ai — dt\, and an arc connecting dt\ and dAi.

We form a graph G on the disc C. The vertices of G are "long vertices" dC Π A\

and dC Π A3. The edges of G are the arcs C Π P. The edges of G are classified

into two classes: we regard an arc of C Π P an interior edge if its endpoints are in

long vertices of G, a d-edge if one of its endpoints is in a long vertex and the other

is in t2. Note that there is not an edge whose both endpoints are in t2 since Fo is

^-incompressible in E(K). A long vertex contains m or n endpoints of edges.

4. Case (I)

Lemma 4.1. Let e be an edge of G which is outermost on C. Then e is not a

d-edge.
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Proof. Suppose for a contradiction that e is a <9-edge. We can assume without

loss of generality that e has an endpoint in dQi or dR\. Let O ( c C) be the outermost

disc of e, that is, O is surrounded by e and a subarc of DC and O does not contain

another edge of G. We isotope a regular neighbourhood of e on P along the outermost

disc O.

When e has an endpoint in dQi, Qι is deformed to a meridian disc intersecting

tι in one point. This operation does not change the number \F Π Vx | but decreases the

number of intersection \dC Π dP\. This is a contradiction.

When e has an endpoint in dRi, R\ is deformed to a meridian disc D intersecting

t\ in 2 points, and Fo is 9-compressible. This is a contradiction. •

An edge is called a /cw/? edge if its two endpoints are in the same long vertex.

Lemma 4.2. The graph G does not contain a loop edge.

Proof. Suppose that G contains a loop edge e, and we can take e to be outermost

on the disc C. Let X be the long vertex which e is incident to, and O the disc

face surrounded by e and a subarc of X. This face O does not contain an edge, and

endpoints of e are in adjacent meridian discs, say Qx and Qx+i or R\ and R2. In

both cases, we push regular neighbourhood of e on P into VΊ along the disc O, and

these meridian discs are connected by a band and deformed into a peripheral disc D

in V\. If D Dti = 0, we push this peripheral disc into V2 and decrease the number

of the meridian discs of F Π Vi, which is a contradiction. If Z) Π ti ^ 0 , then F o is

9-compressible, and we obtain a contradiction. •

Let E be a set of edges of G. An edge e of E is said to be outermost away from

Ϊ2 among E if there is an outermost disc O ( c C ) surrounded by e and a subarc α of

dC — ̂ 2 such that O does not contain another edge of E.

Lemma 4.3. Let e be an edge of G which is outermost away from t<χ. Then e

does not connect a vertex of dC Π A\ and a vertex of dC Π A%.

Proof. Suppose that e is such an outermost edge. We can assume without loss of

generality that e connects Qm and Rι. We push a regular neighbourhood of e on P

into Vι along the outermost disc. Then two meridian discs Qm and R\ are connected

by a band, and are deformed into a peripheral disc D intersecting t\ in one point. We

can push D into V2 by an isotopy of the pair (M, K), which contradicts the minimality

of the number of the meridian discs of F Π V\. •

Lemma 4.4. Let e be an edge of G which is outermost away from t2. Then e

does not connect two long vertices of dC Π A\.
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Proof. Suppose that e is such an outermost edge. We can assume without loss

of generality that e has both endpoints in dQm. We push a regular neighbourhood

of e on P into V\ along the outermost disc. Then a band is attached to Qm, and

Qm is deformed into an annulus A one of whose boundary components bounds a disc

D ( c H) intersecting K precisely once. In case (ii), dD divides F into two discs D\

and D2, and either D U D\ or D U D2, say D U D\ is a decomposing sphere. In case

(iii), the loop dD bounds a disc D' on F such that D' intersects K precisely once

because F is meridionally incompressible. We can isotope F so that D' is replaced by

D. If A c D2 or i C D', then we have a contradiction to the minimality of \F Π V\ |.

Thus A is deformed to a meridian disc intersecting K in one point. In all cases, either

\F Π Vί I or \dC Π dP\ decreases. This is a contradiction. •

Lemma 4.5. Let e be an edge of G which is outermost away from £2 Then e

does not connect two long vertices of dC Π A3.

Proof. Suppose that e is such an outermost edge. We can assume without loss

of generality that e has both endpoints in dR\. We push a regular neighbourhood

of e on P into V\ along the outermost disc. Then a band is attached to Rι, and

Rι is deformed into an annulus A one of whose boundary components bounds a disc

D ( c H) intersecting K precisely once. In case (ii), dD divides F into two discs D\

and D2, and either D U Dι o r D U D2, say D u D i is a decomposing sphere. In case

(iii), the loop dD bounds a disc D' on F such that \D' Π if | = 1. We can isotope F

so that £>' is deformed onto D. If A <z D2 oτ A c D', then we have a contradiction

to the minimality of \F Π Vί|. Hence, in both cases, the deformed F contains the

meridian disc A U D intersecting t\ in 2 points, and FQ is 9-compressible. This is a

contradiction. Π

Proof of Theorem IV7 in case (I). In this case, we ultimately obtain a contradic-

tion. Let b be a boundary edge which is outermost among all the boundary edges of G

on C. Let O be the outermost disc of b. By Lemma 4.1, O contains an interior edge

of G. Hence G contains an interior edge which is outermost away from £2- On the

other hand, by Lemmas 4.2, 4.3, 4.4 and 4.5, G cannot contain such an edge. This is

a contradiction. •

5. Case (II)

In this section we assume that F Π V\ consists of parallel meridian discs Rι and

R2 each of which intersects t\ transversely in one point. The two discs R\ and R2

together divide the solid torus V\ into two balls Bι, B2, where B2 contains dti. Let

Ai be the annulus H Π dB{ for i = 1 and 2.

If we can take C so that dCΠ A\ is the empty set, then H is a weakly if-reducible
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1-genus 1-bridge decomposition, which is a desired conclusion of Theorem IV'. Hence

we can assume that dC Π A\ ^ 0.

Since we took C and F so that \dC Π dP\ is minimal, it is clear that

(1) dC Π A\ consists of essential arcs in the annulus Au and

(2) dC Π A2 consists of essential arcs in the annulus A2, inessential arcs each of

which separates the two points dt\, and two arcs connecting dt\ and ΘA2.

We form a graph G on the disc C. The vertices of G are "long vertices" 8CΠA\.

The edges of G are the arcs C C\P. Since \F Π K\ < 2 and \{F(ΛVι)ΠK\ = 2, the

edges of G are all interior edges. A long vertex contains 2 endpoints of edges. We

give an orientation to C arbitrarily. Then dC has the induced orientation and the long

vertices also do. A long vertex is positive if its orientation goes from R\ to R2, and

otherwise, negative.

The next lemma is proved by the same argument as in the proof of Lemma 4.2.

Lemma 5.1. The graph G does not contain a loop edge.

Lemma 5.2. Let e be an edge of G which is outermost away from t2. Then e

does not connect vertices of mutually opposite signs.

Proof. Suppose that e is such an outermost edge. We can assume without loss

of generality that e has both endpoints in dR\. We push a regular neighbourhood

of e on P into V\ along the outermost disc. Then a band is attached to Rι, and

Rι is deformed into an annulus A one of whose boundary components bounds a disc

D ( c H) intersecting K precisely once. In case (ii), dD divides F into two discs D\

and D2, and either D U Dι or D U D2, say D Π Ό\ is a decomposing sphere. In case

(iii), the loop dD bounds a disc D' on F such that \D'Γ\K\ = 1. We can isotope F so

that D' is replaced by D. If A c D2 or A c D\ then we have a contradiction to the

minimality of \F Π Vι\. Since D intersects t\ in one point, R2 c D2 or R2 c D', and

the annulus 4̂ is deformed into a meridian disc D% which intersects t2 in two points.

Moreover, F Π V\ — D%, which implies that F is a non-separating surface in M. This

is a contradiction. •

Lemma 5.3. If G contains an edge e which is outermost away from t2 and con-

nect vertices of the same sign, then we can deform F so that F ΠV\ is a peripheral

disc which intersects t2 in two points, cuts off a rational tangle (B,T) and is (tι —T)-

d-compressible in cl{V\ — B).

Proof. The edge e connects R\ and R2. We push a regular neighbourhood of

e on P into V\ along the outermost disc. Then two meridian discs Rι and R2 are

connected by a band, and are deformed into a peripheral disc D intersecting t\ in 2
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points as desired. •

Proof of Theorem IV7 in case (II). The graph G contains an interior edge e which

is outermost away from t2. By Lemmas 5.1 and 5.2, e connects vertices of the same

sign. Then by Lemma 5.3 we obtain a desired conclusion of Theorem IV7. Π

6. Case (III)

In this section we assume that FΠVi consists of meridian discs Qi, , Qm which

are disjoint from t\. It is clear that m is positive and even. We consider cases (i), (ii)

and (iii) simultaneously in this section. The two discs Q\ and Q m together divide the

solid torus V\ into two balls J3χ, B2, where B2 contains t\. Let Ai be the annulus

H Π dBi for i = 1 and 2.

If we can take C so that dC Π A\ is the empty set, then H is a K-reducible 1-

genus 1-bridge decomposition, which is a desired conclusion of Theorem IV' in case

(i), and which contradicts that K is not trivial in cases (ii) and (iii). Hence we can

assume that dC Π A\ Φ 0. Since we took C and F so that \dC Π dP\ is minimal, it is

clear that

(1) dC Π Aι consists of essential arcs in the annulus A\ such that each of them

intersects every meridian loop dQi just once for i = 1, , m, and

(2) dC Π A2 consists of essential arcs in the annulus A2, inessential arcs each of

which separates the two points dti, and two arcs connecting dt\ and dA2.

We form a graph G on the disc C. The vertices of G are "long vertices" dCΠ A\.

The edges of G are the arcs C Π P. The edges of G are classified into two classes:

interior edges and 9-edges as in section 3. A long vertex contains m endpoints of

edges. We give an orientation to C arbitrarily, and long vertices are classified into

positive ones and negative ones as in section 5.

The next three lemmas are proved by the same arguments as in the proofs of

Lemmas 4.1, 4,2 and 4.4. We omit them.

Lemma 6.1. Let e be an edge of G which is outermost on C. Then e is not a

d-edge.

Lemma 6.2. The graph G does not contain a loop edge.

Lemma 6.3. Let e be an edge of G which is outermost away from t2. Then e

does not connect vertices of mutually opposite signs.

Let e be an interior edge connecting vertices X, Y of G. The edge e is a diagonal

edge if the two vertices X and Y are not adjacent on the arc dC —12. A vertex X of

G is nice if there are neither boundary edges nor diagonal edges incident to X.
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When GUt2 is not connected, G contains a connected component which does not

contain a <9-edge. A connected component G' of G is outermost away form t2 if there

is a subarc 7 of dC - t2 such that G' Π dC c 7 and (G - G) Π 7 = 0. We take an

arbitrary connected component G' of G among outermost ones away from t2. When

GUt2 is connected, we put G' = G. Let n' be the number of vertices of G'. If n' < 2,

then there cannot be a diagonal edge in G'.

Lemma 6.4. Lei b be a d-edge which is outermost on C among all the d-edges

of G. Then the outermost disc Oofb contains a diagonal edge.

Proof. Since G contains a <9-edge, G — G. Let X be the vertex which b is

incident to. If O does not contain an edge incident to X except for 6, then Lemma 6.1

implies that there is another connected component of G in O, which is a contradiction.

Hence O contains x interior edges incident to X except for b where 0 < x < m.

Suppose for a contradiction that O contains no diagonal edges, then all the vertices

on O are nice except for X. Then O contains a vertex Y adjacent to X on the arc

dθ Π dC, and the above x edges connect X and Y. Since the vertex Y is nice,

there are m — x interior edges of G connecting Y and the vertex(^ X) adjacent to

Y. Similar arguments show that dθ contains infinite number of vertices, which is a

contradiction. Π

Lemma 6.5. n' > 2.

Proof. Suppose that n' = 1. Then the graph G has only one vertex X. The edges

of G are <9-edges because G has no loop edges by Lemma 6.2. Then G contains a

<9-edge which is outermost on C, which contradicts Lemma 6.1. •

Lemma 6.6. If G does not contain a diagonal edge, then n' = 2 and G consists

of two vertices X and Y of the same sign and a parallel set of m interior edges

connect X and Y.

Proof. The graph G does not contain a d-edge by Lemma 6.4. Hence all the

vertices of G are nice. Let X be a vertex of G which is the nearest to t2 on dC, and

Y the vertex of G which is adjacent to X on dC —12. Then X and Y are connected

by m interior edges, and n' — 2. The vertices X and Y are of the same sign by

Lemma 6.3. •

Lemma 6.7. If G contains a diagonal edge, then there is one, say e, satisfying

the conditions below. Let O be the subdisc of C surrounded by e and a subarc δ of

dC —12, and X and Y the vertices which e is incident to.

(1) All the long vertices which meet δ are of the same sign, and
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(2) all the long vertices contained in δ are nice (except for X and Y).

Proof. Among all the diagonal edges of G1 we take one, say e, which is outer-

most away from t2. Let O be the outermost disc of e. The disc O does not contain a

9-edge. Hence all the vertices of Gf contained in dθ Π dC are nice (except for X and

Y). By Lemma 6.3, all the vertices incident to dθ are of the same sign. •

Lemma 6.8. We can deform F so that F Π V\ consists of a parallel set of pe-

ripheral discs each of which cuts off a ball containing t\ from V\.

Proof. By lemmas 6.6 and 6.7, G' contains a pair of vertices X and Y such that

(1) X and Y are adjacent on the arc dC — t2, and

(2) X and Y are of the same sign, and

(3) X and Y are connected by a parallel set of ra/2 edges one of which is outermost

away from t2 among all the edges of Gf.

We push regular neighbourhoods of these edges on F into V\. Then the discs

Q\ and Qm, Q2 and Qm-i, •••, Qm/2 and Q(m/2)+i are connected by bands, and

deformed into peripheral discs in V\. •

This lemma completes the proof of Theorem IV7, which includes Theorem IV.

7. When F Π V\ consists of peripheral discs

Let M, H, Vi9 K, U, F and Fo be as in section 3. The surface F is of type (i),

(ii) or (iii). Our goal of this section is the next proposition.

Proposition 7.1. Either the condition (1) of Theorem IV holds, (2) we can de-

form F so that FΠVi consists of parallel peripheral annuli such that they are disjoint

from t\ and are not peripheral in V\ — t\, and boundary loops of these annuli are

essential and non-meridional on dW\t or the condition (3) of Theorem IV holds.

We begin with the condition (2) of Theorem IV'. Then F Π V\ consists of parallel

peripheral discs each of which cuts off a ball containing t\ from V\. Moreover we take

F so that the number of peripheral discs of F Π V\ is minimal over all deformations of

F. Let P = F Π V2, E{V2,t2) =cl(y 2 - N(t2)) and P o = P Π E(V2,t2). Then P is

£2-incompressible and meridionally incompressible, but is possibly £2-9-compressible

in V2. Let C be a cancelling disc of t2 in V2. We take C and F so that \dC Π dP\ is

minimal over all cancelling discs of t2 and all deformations of F. Moreover, we can

isotope C in V2 fixing dC so that C Π P consists of arcs only.
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Let Qι," - , Qm be the peripheral discs of FΠ V\ which appear in VΊ in this order

so that Qι is the nearest to t\. Clearly m > 0. Let B be the ball which is cut off from

V\ by Qi, and E the disc BπH. Let R be the annulus on H surrounded by dQ\ and

dQm.

If we can take C so that dCΠR is the empty set, then H is a X-reducible 1-genus

1-bridge decomposition, which is a desired conclusion of Proposition 7.1 in case (i),

and is a contradiction in cases (ii) and (iii). Hence we can assume that dC Π R φ 0.

Since we take C and F so that \dC Π dP\ is minimal, it is clear that

(1) dC Π R consists of essential arcs in the annulus R, and each of them intersects

dQi just once for i = 1, , m, and

(2) dC Π ϋ? consists of arcs separating the two points dt\ and two arcs connecting

dt\ and dQi, and

(3) dC Π ( # - i n t ( £ U Λ)) consists of essential arcs.

We form a graph G on the disc C. The vertices of G are "long vertices" dC Π JR.

The edges of G are the arcs C Π P. The edges of G are classified into two classes:

interior edges and 9-edges as in section 3. A long vertex contains m endpoints of

edges.

Lemma 7.2. Let e be an edge of G which is outermost on C. Then e is not a

d-edge.

Proof. Suppose that e is a <9-edge. Then e has an endpoint in dQ\. Let O ( c C)

be the outermost disc of e. We isotope a regular neighbourhood -of e on P along the

outermost disc O. Then ζ>i is deformed to a peripheral disc D intersecting t\ precisely

once. We can push D into V2 by an isotopy of the pair (M, K), which contradicts the

minimality of \F Π V\ |. •

A similar proof as that of Lemma 4.2 shows the next lemma, and we omit it.

Lemma 7.3. The graph G does not contain a loop edge.

Lemma ΊA.Let e be an edge of G which is outermost away from tϊ. Then e does

not connect vertices which are adjacent on the arc dC — £2 and connected by an arc

ofdCΠE.

Proof. Suppose that e is such an outermost edge. Then e has both endpoints in

dQ\. We push a regular neighbourhood of e on P into V\ along the outermost disc.

Then a band is attached to Qι, and Qi is deformed into an annulus A which cuts off

a regular neighbourhood of t\ from V\. This regular neighbourhood contains a disc
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D such that D Π A = dD and |Z> Π ί i | = 1. This is a contradiction in case (i). In

case (ii), dD divides F into two discs D\ and D 2 , and either D U D\ or D U D2 is

a decomposing sphere. In case (iii), since F is meridionally incompressible, there is

a disc D' on F such that dD' = dD and |Z>' Π *i| = 1. We isotope F so that £>'

is deformed onto Zλ Thus, in cases (ii) and (iii), A is deformed to a peripheral disc

intersecting t\ once. We can push this peripheral disc into V2 by an isotopy of the pair

(M, K), This contradicts the minimality of the number | F Π Vι\. •

Lemma 7.5. Γλe graph G contains two vertices X and Y which are adjacent on

the arc dC — t2, connected by an arc of dC Π (H—int(E U R)) and a parallel set of

m interior edges.

Proof. We apply the same arguments as in section 6, and obtain a pattern as in

Lemma 6.6 or 6.7. Note that the condition "the vertices are of the same sign" is substi-

tuted by the condition "the adjacent vertices are connected by arcs of dCΠ(H—int(EU

R)Y\ On dC - t2, there appear arcs of dC Π E and arcs of dC Π (H-int(E U R))

alternately between long vertices. Hence patterns as in Lemma 6.7 is impossible, and

we obtain a pattern as in Lemma 6.6. •

Proof of Proposition 7.1. We push regular neighbourhoods of the parallel set of

m edges in Lemma 7.5 on F into V\. Then bands are attached to the discs Qi, Q m ,

and they are deformed into parallel peripheral annuli in V\. If their boundary loops

are meridional ,then we can deform the innermost annulus to a meridian disc by a

deformation of F, which contradicts that F is separating. Π

8. Proof of Theorem I

We prove Theorem I in this section. The surface F is a splitting sphere. We apply

Theorem IV'. When the conclusion (1) holds, H is K-reducible, and we obtain the

desired conclusion. The conclusion (3) is impossible because F Π K = 0. Hence we

assume that the conclusion (2) of Theorem IV' holds to obtain a contradiction. We

denote the graph G in section 7 by Gc in this section for clearness. We form a graph

Gp on the sphere F. The vertices of GF are "fat" vertices ζ>i, , Qm- The edges

of GF are arcs of C Π P. We thus obtain two graphs Gc and GF, whose edges are in

one to one correspondence.

An edge e of GF is a loop edge if its endpoints are both in the same fat vertex.

If a loop edge e of GF cuts off a disc from the punctured sphere P, then we call e a

trivial loop edge.

Lemma 8.1. The graph GF does not contain a trivial loop edge.
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Proof. Suppose for a contradiction that GF contains a trivial loop edge e. Let O

be the disc which e cuts off from Pi We can take e to be outermost on P, that is, so

that intO does not contain an edge. The edge e divides the cancelling disc C into two

discs C\ and C2, one of which, say C\ contains t2. Then the disc C = C\ U O is a

cancelling disc of t2, and after a small isotopy of C we have \dC Γ\dP\ < \dCΠdP\,

which is a contradiction. •

Proof of Theorem I. Each of the parallel m edges of Gc in the conclusion of

Lemma 7.5 corresponds to loop edges of GF- Since F is a sphere, there is a trivial

loop edge among them, which contradicts Lemma 8.1. •

9. Proof of Theorem II

We prove Theorem II in this section. Let F be a decomposing sphere of K.

We apply Proposition 7.1. When the conclusion (1) holds, H is weakly K-reducible,

which is the desired conclusion of Theorem II. The conclusion (3) implies that H is

weakly if-reducible by Lemma 2.2. Hence we can assume that the conclusion (2)

holds. Then F Π V\ consists of parallel peripheral annuli, say i?i, ,jRm, whose

boundary components are essential on H. Among these loops, there are at least two

loops which are innermost on the sphere F. At least one of the innermost discs, say

D, intersects K at most one point. The disc D is a meridian disc of V2 since dD is

essential in H. We can take a cancelling disc C of t± in V\ so that C Π ( J R I U -URm) =

0. Then the discs D and C imply that H is UΓ-reducible or weakly if-reducible. In

the former case, we obtain a contradiction. In the latter case, we obtain the desired

conclusion.

In addition, M is not the 3-dimensional sphere by Lemma 2.1. This completes the

proof of Theorem II.

10. Proof of Theorem III

Let M, H, Vi, K, ti, F and F o be as in section 3. Suppose that the surface F

is of type (iii) such that F is disjoint from K in this section. First, we will prove

Proposition 10.1 below. We apply Proposition 7.1. The conclusion (3) of Proposition

7.1 is now absurd since F is disjoint from K. We begin with the situation of the

conclusion (2) of Proposition 7.1. Then F Π V\ consists of parallel peripheral annuli

Ri, " 5 Rm each of which cuts off a solid torus containing the trivial arc t\ from V\.

Moreover, the boundary loops dRi are essential on H. We take F so that the number

of peripheral annuli of F Π V\ is minimal up to isotopy of F in (M, K). We assume

that R\,' , Rm appear in this order in V\ and Rι is the nearest to tι. We can take a

cancelling disc d o f ίiso that C^Rx = φ. Let P = FΠV2, E(V2,t2) =cl(V2-N(t2))
and PQ = PΓ\E(V2,t2). Then P is ^-incompressible and meridionally incompressible,
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but is possibly ^-^-compressible. Let C be a cancelling disc of t2 in V2. We take C

and F so that \dCΠdP\ is minimal over all cancelling discs of t2 and up to isotopy of

F in (M, K). Moreover, we can isotope C in V2 so that C Π P consists of arcs only.

Clearly ra > 0. Let V be the solid torus which is cut off from V\ by i?i, and .A2

the annulus V ΓΊ if. Let Ai be the annulus H—inL42.

Proposition 10.1. Let M, if, Vi, K, tif F and Fo be as in section 3. The surface

F is of type (Hi) and is disjoint from K. Then one of the following three conditions

holds.

(1) The conclusion (1) of Theorem IV holds.

(2) (a) There is a cancelling disc C of t2 such that dC Π A\ — 0, or

(b) the graph G which will be formed in this section contains a pattern as in

Lemma 10.4.

We assume that the conclusions (1) and (2)(a) do not hold to prove that the con-

clusion (2)(b) holds. Since we take C and F so that \dC Π dP\ is minimal, it is clear

that

(1) dC ΓϊAi consists of essential arcs in the annulus A\, and each of them intersects

each component of dRi just once for i = 1, , ra, and

(2) dC Π A2 consists of essential arcs in the annulus A2, inessential arcs each of

which separates the two points dti, and two arcs connecting dt\ and dR\.

We form a graph G on the disc C. The vertices of G are "long vertices" dCΓ\Aχ.

The edges of G are the arcs C Γ) P. The edges of G are all interior edges since F is

disjoint from K. A long vertex contains 2m endpoints of edges.

Lemma 10.2. The graph G does not contain a loop edge.

Proof. Suppose that G contains a loop edge e, and we can take e to be an out-

ermost one on the disc C. Then either (1) endpoints of e are in adjacent peripheral

annuli, say Rx and Λ x +i, or (2) e connects two boundary loops of i? m . We push a

regular neighbourhood of e on P into V\ along the outermost disc of e. Then two loops

are deformed into a loop ί bounding a disc D disjoint from dt\ on H. In case (1), Rx

and Rχ+i are deformed to an annulus R with a hole. In case (2), i ? m is deformed into

a torus T with a hole.

The if-incompressible surface F contains a disc D' such that 3D = dDf and

Df ΠK = 0. We can move F by an isotopy of the pair (M, K) so that D' is deformed

onto D. In case (1), Rx and Rx+\ are deformed to a peripheral annulus or disc R\

and we can push R' into V2 by an isotopy of the pair (M, K). This contradicts to the

minimality of the number of the peripheral annuli of F Π V\. In case (2), T is deformed
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to a torus T' = Γ U D , and F = Tf. We can push this torus to be entirely contained in

intVi, and hence F is If-compressible, which is a contradiction. •

Lemma 10.3. Let e be an edge of G which is outermost away from t2. Then e

does not connect vertices which are adjacent on the arc dC — t2 ond connected by an

inessential arc of dC Π A2.

Proof. Suppose that e is such an outermost edge. Then e has both endpoints in

dR\. We push a regular neighbourhood of e on P into V\ along the outermost disc.

Then a band is attached to i?χ, and R\ is deformed into a pair of pants, one of whose

boundary components bounds a disc D intersecting if at a single point on H. Since F

is meridionally incompressible, 3D bounds a disc intersecting if at a single point on

F. This contradicts that F is disjoint from if. Π

Lemma 10.4. The graph G contains two vertices X and Y such that

(1) X and Y are adjacent on the arc dC — t2, and

(2) X and Y are connected by a parallel set of m edges one of which is outermost

away from t2 among all the edges of G, and

(3) X and Y are connected by an essential arc of dC Π A2.

Proof. We apply the same arguments as in section 6, and obtain a pattern as in

Lemma 6.6 or 6.7. Hence G contains a pair of vertices X and Y as in the conclusion

of this lemma. •

Proof of Theorem III. Let T be an incompressible torus which is not parallel to

dE(K). If T is meridionally compressible, then K is composite, and H is weakly

if-reducible by Theorem II, which is a contradiction. Hence T is meridionally incom-

pressible.

We apply Proposition 10.1 setting F = T. The conclusion (1) is that H is weakly

if-reducible, which is a contradiction. When the conclusion (2)(a) holds, we can iso-

tope int P so that PnC = φ. Hence cl(M - N(C^A^C)) is a Seifert fibred manifold

over a disc with two exceptional fibres, and T is isotopic to its boundary. Hence we

can assume that (2)(b) holds, and the graph G contains edges as in Lemma 10.4. We

push regular neighbourhoods of these edges on T into V\. Then bands are attached to

the annuli i?i, Rm, and they are deformed into tori with a hole in V\. Since T is of

genus one, m — \ and T Π V2 is a peripheral disc which cuts off a ball containing t2.
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Then the desired conclusion easily follows. Π
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