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The Amitsur cohomology with respect to the unit functor has been studied

by many authors. One of the most interesting features of the theory is that its
second cohomology group H2(S/R, U) gives a description of the Brauer group
Br(S/R) in far general cases beyond Galois extensions ([1], [13]). But in ring
case the extension S/R must satisfy some restrictive condition for the validity

of the isomorphism, and Chase and Rosenberg established an exact sequence

which is comprised of the unit cohomology, Pic cohomology and the Brauer

group, instead of the direct description of Br(SIR) ([4]).
In a preceding paper, we attached a series of abelian groups Hn(S, G) to a

commutative ring S and a group G operating on 5, which are defined in close

connection with the Pic-valued group cohomology, and we showed that if S

is a finite Galois extension of R with G as the Galois group, H2(S, G) is isomor-
phic to Br(SjR) ([9]), see also [8]).

In this paper, we shall develop a parallel theory in the framework of the
Amitsur cohomology, and prove among others that if S is finite projective and

faithful as an Λ-module, our second group is isomorphic to Br(S/R). This ex-
tends both the above mentioned case of Galois extensions, and the description

by means of the unit-valued cohomology so far established.

In § 1 we shall define the groups Hn(S/R) and prove a long exact sequence
which, combined with the interpretation of H2(S/R) as the Brauer group, yields

the Chase-Rosenberg sequence. This part is an immediate transcription of
the corresponding part of [9]. The theory of faithfully flat descent precisely

fits to the situation around ^(S/R), and is applied to prove an isomorphism
Hl(SIR) — Pic(R) (§2). After some analysis of '2-cocycles' in §3, we
introduce and study a class of algebras denoted by (A, P, p) in § 4. This may
be considered as a far more generalized version of the concept of crossed pro-

ducts, and indeed covers the known constructions so far treated in various
context. Further, it is immediately observed that the multiplication alteration
of Sweedler [15] (hence in particular the construction of Rosenberg and Zelinsky

[13] as noted by Sweedler) is nothing but the unit-valued case of our construe-
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tion. We then prove in §5 that this construction leads to the isomorphism
H2(S/R)—Br(S/R) stated above. In § 6 we establish a long exact sequence
concerning a homomorphism of extensions S/R-*S'/R'y in which appear a
certain kind of relative Amitsur cohomology groups as relative terms. This sec-
tion is parallel to [9] § 4. The paper closes by § 7 dealing with the case of
Galois extensions. (See also Hattori [23].)

We owe to a recent paper of Yokogawa [18], which we have had an op-
portunity to read before publication. It gives a direct proof to the Chase-Rosen-
berg exact sequence, by attaching a Pic-valued 1-cocycle P to an 5/Λ-Azumaya
algebra, a C/-valued 3-cocycle u to P, and by constructing an algebra related to
P, which may be interpreted as our (£", P, p).

After this work was completed, we have got access to a recent paper of
Villamayor and Zelinsky [16]. It deals with similar problems as ours, and
establishes a description of the Brauer group in somewhat more general case.
The basic ideas seem to be near to each other, but in contrast with their cate-
gorical approach, we proceed concretely by making use of the construction of
crossed product nature. (See also Ulbrich [20], Hattori [22].)

M. Takeuchi informs us that he has also obtained several results on the
Brauer group, including Theorem 5.2. His paper is in preparation. (Cf. [19].)

We shall treat in a subsequent paper the case where S is operated by a finite
group G without being Galois over the fixed subring R. (Published as [21].)

1. Hn(S/R) and an exact sequence

1.1. Let R be a commutative ring with identity. R is the base ring of
various algebras considered in this paper, and an unspecified ® means ®R

unless otherwise stated. Let 5 be a commutative algebra over R, and denote
by Sn the tensor product 5® •• ®*Sf of n copies of S. Its identity 1® •• ®1 is
denoted by Γ. As customary, let £,: Sn-*Sn+1 (i=l, •••, n+l) denote the
algebra homomorphisms defined by

They satisfy the following identities:

(1.1) &£, = VA

Each £, defines a functor SΛ+1®5» of the module categories. We prefer the
notation £tM to denote the module 5n+1(g)s»M thus obtained. We also use
the notation £,# to denote the image ln+1®x of x^M by the canonical map
M-+£{M. This is compatible with the original definition of £, : S"-+Sn+1 =
£t 5

n. £,M is generated as 5n+1-module by the set of £ t#(#eM). For
/eHoms«(M, N), £, /e Honv+i^M, £{N) is determined by the condition
£,./(£,.*)=£</(*) (*€=M).
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Let ^^c(Sn) be the category of projective *Sw-modules of rank one (w=l,
2, •••). This is a category with product ®s*. For Pe£P*<Sn), P* denotes
the dual module of P as an *SΛ-module unless otherwise stated. Hence
P*^g?ά(Sn), and there is a canonical pairing < >: P®snP* ~ Sn. This pairing
satisfies the commutativity of the diagram

P®S»P*®S»

(1.2)

This property will be utilized quite often in the sequel (cf. [9] § 1). In par-

ticular, if 2<X , ?i>=lι WG have tf— Σ<#, ?iv>*» f°r every #eP. In this case
we say that {#,-} and {I,} are a pair of dual bases of P and P*. An isomorphism

/: P~ Q has its dual/*=(ί/)-1: P*~0*.

8{: Sn-+Sn+1 yields a functor $ΰ(Sn)-*&ά(Sn+l), which preserves the
product and the dual. The latter means that there exists a natural isomorphism
£f (P*)~ (£, P)*, where the convention on the usage of * is as explained above.
We define dn: &ά(Sn}-+ &ά(Sn+l) as the 'alternate sum' of £,., i.e.

and also for/: P~Q in 5MSW),

dnf=€1f®€2f*® :dnP~dnQ

There exists a canonical isomorphism In+1: dnS
n^ίSn+1, through which we

identify dnS" with Sn+1. An automorphism of PeS)^(5rn) is given by the
multiplication of a unit w^S'n, which will be written as u in this paper. Then
we have du—duy where du denotes the coboundary of u in the [/-valued
cohomology.

We denote the isomorphism class of P by | P | . The set of all | P |
(P^S>^o(Sn)) constitutes an abelian group Pic(5n). dn induces a homomor-
phismPic(5Λ)-^Pic(5n+1), satisfying dn+ldn=Q, and we have the Pic-valued

Amitsur cohomology groups:

H"(SIR, Pic) = Ker(4,+1)/Im(rf.) .

In the sequel dn will be denoted as d, unless specific mention to the degree
n is needed.

1.2. We now proceed parallel with [9] § 2 toward the definition of
groups Hn(S/R). For any P^ζPtc(Sn)y we have a canonical isomorphism
d2P~Sn+2, given by contracting all dual pairs appearing in the expression of
d2P. We use the notation cp or can to denote this isomorphism. For/: P~Q,
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the following diagram is commutative:

Cp

d2P - >Sn+2

(1.3) \d2/ I
Ψ CQ II

d2Q— ̂ Sn+2

In particular, cs» : d2Sn ~ Sn+2 coincides with the composite of dln+1 : d2Sn-*dSn+1

and In+2: dSn+1~Sn+2, and we use this isomorphism to identify d2Sn with Sn+2.
Let n>\. (P,p) denotes a pair of a module P^S>^c(Sn) such that

\P\^Zn-1(S/R9 Pic) and an isomorphism p: dP~Sn+1. An isomorphism
(P, />)2J(P', p'} is an isomorphism/: P2JP' satisfying^^p'd/'. We denote the
category of these pairs and their isomorphisms by 9?n(SIR). This is a category

with product defined naturally by (P, p)(Q, q)=(P®s

nQ> P®sn+1(ϊ) The set of
isomorphism classes ((P, p)) of (P, p)^S>n(SjR) forms an abelian group, which
we write Pn(S/R). We denote by Zn(S/P) the subgroup of Pn(S/K) consisting
of all ((P, p)) satisfying dp=cp (we are identifying dSn with Sn+1 via /n+ι), and
by Bn(S/R) the set of all ((dP, cp)) (P^^^(Sn~1}). For n=l, we put B^S/R)
= {((5, 72))} . Since dcP=cdP, Bn(S/R) is a subgroup of Zn(S/R), and we have
the groups

Hn(S/R) = Zn(S/R)/B"(SIR)

For n=0, we put Z°(5/Λ)=:{we C/(5)|rfw=z/-1(g)z/-:l} and
Hence H°(S/R)=H°(S/Ry U).

There is another way to describe these groups Hn(S/R). Let £P/ί(S/jR) be
the category of triples (PJ, Q) where P, ρ<ΞS^(S*) and /: dP~dQ, and
isomorphisms (P,f, Q)^(P')f> Q') which is a pair of isomorphisms ^>: P~P'
and ^: Q^Q' satisfying f dp =dqf. This is a category with product, and this
product induces on the set of isomorphism classes ((P, /, Q)) the structure of
an abelian group. We write Ph(S/R) the factor group of this abelian group by
the relation

Then this group is isomorphic to Pn(S/R), since the map ((P,p)t-*((P,p, Sn))

has an inverse given by

where

/* = < χ/®l): dP®sn+ιdQ* -> dQ®sn+ιdQ* -> Sn

In this correspondence, Zn(S/R) corresponds to the subgroup Zl(SjR) consisting
of ((P,f,Q)) such that df=Cg1cP9 and Bn(S/R) to Bn

h(SIR) consisting of
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((dP, CQICP, dQ))(P, Qt=3>*>(S*-1)), Thus Hn(S/R) is isomorphic to Zn

h(S/R)/
). The subscript h means the homogeneous description.

1.3. This part is an adaptation of [9] § 3 to the present case. For details
the reader is referred to that part.

Every u<EΞU(Sn+1) determines a pair (Sn,u) where u: dSn=Sn+1-+Sn+1,
and ((Sn, u))<=Zn(S/R) if and only if u^Z\S\E, U). Since (S\ dv)^(S\ 1)
(~(dSn~l, csn-ι) if /x^l), we have a homomorphism

a": Hn(S/R, U) -> Hn(S/R); cl(u) *-+ cl((S\ u))

For n=Q, a° is defined to be the identity map u\-*u.

The definability of the following map is clear.

βn: H*(SIR)-*H«-\SIR, Pic); cl((P,p)) H-> cl\ P\ .

Let |P I ςΞZn~l(SIR, Pic), and take any/>: dP~Sn+1. There exists a unit
u<=Sn+2 such that

(1 4) #
is commutative, and we see easily that du=ln+3. Changing P to an isomorphic
module P' does not affect the cohomology class of u. Hence we have the
following homomorphism.

γ": Hn-\S/Ry Pic) -> Hn+1(SIR, [/); d \P \ ι-» cl(u) .

Theorem 1.1. The following sequence is exact:

Q-+H1 (S/R, U) -2-+ H\SIR) -^-* H°(SIR, Pic) -?-+ -

- ~ H"(S/R, U) ̂ -+ H\S\K) -^->Hn-\S/R9 Pic)-^> HΛ+1(5/JR, E7)

Outline of Proof. It is easily verified from the definition of maps that the
composite of any two consecutive maps reduces to 0. Let cl((P, ^>))eKer(/3Λ).
We may assume that P=dQwith some Q^S)^(Sn~1). Then there exists
u^ U(Sn+1) such Uιatp=ucQy and it must satisfy du= 1. Since we have

((P,p))=((dQ,p))^Im(an). Here we treated the case n>ί. But the case
κ=l is easy. If cl\P \ eKer(7B), we have dp=cp with a suitably chosen
p: dP^S"*1. This means that β/|P|eIm(/9"). If cl(w)eKer(α'1+1), there



362 A. HATTORI

exists PeS^S"'1) such that (Sn, u)—(dP, cp). This means that there exists

p: dP^ίS" satisfying cp=udp. Hence M""1elm(fyίl), and therefore

2. Interpretation of H°(S/R ) and H\S/R)

Proposition 2.1. // S is faithfully flat over R, then H°(SIR) —

This is clear by [12] Π.2.2. We shall proceed to H^S/R). We denote
the unit map jR-> S by £0.

Theorem 2.2. // S is faithfully flat over R, then J5

Proof. P0e£P&(l?) determines a pair (P, p) defined as follows:

p:

where we identified P* with £oP0*. We shall compare d£> with cp. The image of

(where Λ?f eP0, f,eP0*, 8^=6^^^ and ® = ®s») by the map φ is

<Λ?

while its image by cp is

But by the commutativity of (1 .2) these two elements of S3 are identical. Namely
(P, p) satisfies the ^-condition. Clearly the correspondence P0t-*(P,p) is
multiplicative and preserves the isomorphism of objects. Hence we have a

homomorphismPic(lZ)-»Z1(5//?)=JJ1(5/J?2). We shall show that this homo-

morphism admits an inverse mapping. To this purpose, let ((P,
We convert^) to the following isomorphism:

. c p '*-' c p/9^ sp p* /S?\ ap p — *-̂  c p

. CjJt _ ̂ . Cji y^> s 2 ^<-7 s ^2* _ >• ^2

where {#,-} and {?,-} are a pair of dual bases. On the other hand, the ^-con-
dition dp=cp can be expressed as the commutativity of the following diagram
(where ® = ®ss):

(2.1) \ε,p \ε3p \ε2pψ ψ ψ
r C2 <O\ c C2 ,—,
CjO \£/ ^3*^

We examine the composite of maps Bλjt and £3]>:

£,52
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6 ,p: €ux H» Σ

£3p: ^ Σ SιX£ιι*®£i2f <) Σ

By the commutativity of (2.1), this last element is identical with

Σ W

Thus we have £3p°€ιί*=£2p. It follows from the descent theory that there exist
PQ<=&ic(R) and an S-isomorphism/>0: S®P0^P such that pBipQ=62p0, and the
pair (PO,PQ) is determined up to isomorphism by the condition ([12]) II Theorem

3.2). Hence we have a well-defined map ((P9p))*-*P0 which is the inverse of
the map defined at the first part of the proof.

3. Preliminary considerations on ί?2(S/jR)

3.1. From this section on, we deal with 52-modules and S3-modules of
various type. Sometimes (but not always) we regard an ^-module X as a left
S- and right 5-module. Then the notation λX9 means that s1®s2^S2 acts on X
as S1xs2. EndSt-.(X) means the endomorphism ring of X regarded as a left S-

module. ι^2®s2 2^3 means that we form the tensor product of X and Y satisfy-
ing the condition xs®y=x®sy, and then regard it as an S3-module under the
operation (s1®s2®s3J X®y)ι-*s1xs2®ys3. Xs denotes the subset {x^X\sx =
xs, s^S} of X, which is isomorphic to Honv(,S, X). Thus e.g. (1^2®s1ι^2)S2

means that this is an ^-module consisting of elements Σ xi®yi °f ι^®slιY
which satisfy ^xis®yi=^xi®yis (s^S), with the *S2-operation given by

Σ fΛ®JΆ
We denote the twist map *S2-»S2: S1®s2^>s2®s1 by r. For an S2-module

M, we denote the module τM by M°, which is derived from M by exchanging
the left and right *S-operations. We use the notation π:Sn-^S to denote
the map defined by sl® ®sn\-^s1 ^sn. We further introduce the notations

τr t: S
3-^S2 (ί=l, 2, 3) to denote the contraction maps defined by

The composite of τr, with the £. is given by the following table:

(3.1) TΓj

7Γ2

*3

GI C2 C3

l®π 1

1 1®7Γ

T T

1

T

l<g)7Γ



364 A. HATTORI

Now an object (P, p) of <P2(S/R) consists of an S2-module PeS^(S2) and
an ^-isomorphism p : dP^S3. The isomorphism^) can be transformed to the

following form:

(3.2)

or in another expression to

(3.3) ^

We introduce the notation

(3.4) p(x, y) =

to denote the image of x®y by the isomorphism (3.3). The relation with the

53-operation is expressed as

£ (Ws, ys3) = £($!*, s2ys3) = 2 %&(*, j)®*ιAp(^ y)%
CP,/0

Conversely, any ^-isomorphism (3.3) gives rise to an *S3-isomorphism p: dP~S3

by putting

(3.5) ρ(ε1y®ε2ζ®£3x) = <P(x, y), 62ζ> (x,

Proposition 3.1. Let PeΞ^MS2) be such that \P\^Z1(S/R, Pic). Then

we have the following isomorphisms :

(3.6) πP^S,

(3.7) P°®S*P^S2.

Hence P° is ίsomorphίc to the dual module P*.

Proof. Take any p: dP^S3, and apply nλ to both terms of the isomor-

phism (3.2). Then, in view of (3.1), we have

Multiplying P*, we have S®πP~S2, and the contraction π: S®s* yields the
first isomorphism πP—S. If we apply π2 to the isomorphism (3.2), we get

pO/o\ o D , — , Q/^^n-P- — ' Q(<7\ Q•L yy 52 JL - O yy TtJΓ - O yy O .

These isomorphisms obviously depend on the choice of p: dP^S3. We

denote the induced map P->τrP->*S' by πpj whose explicit form is given by

where { f̂-} and {ξs} are a pair of dual bases of P and P*. Using this map

πp, the isomorphism (3.7) is expressed as
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(3.8) xΰ®y h-> 2 Ps(
x> y)®πPPp(x> y)

Lemma 3.2. Let P^g?to(T). If an isomorphism f: X^Y of T-modules
is derived from g: P®TX~P®TY by the commutatίvity of

X

then conversely we have g—l®f.

This follows immediately by tensoring P and applying the commutativity
concerning < > (1.2).

We apply this Lemma to the following maps:

/: S®πP ~ S2\ s®πy ^ s®πp(y)

g: P®s2(S®πP) ~ P; x®(\®πy) H-> πιp(x, y)

Then we get

(3.9) xπp(y) = π^x, y) = Σ &>(*,

If we apply τr3 to the isomorphism (3.2), we have the following isomorphism:

P0; (l®πx)®yQ h-> π3p(x} y)

Arguing as in the proof of Proposition 3.1, we obtain a new isomorphism

πP^S. For a moment we denote the map P-*πP->S thus obtained by π'p,
i.e.

Lemma 3.3. π'p coincides with πp.

Proof. In view of (3.5), we can express πp as follows:

πp(x) = π Σ^P(^ιx®^i®^i)

where {x{} and {£,-} are as above. Since 6^=^ (l®ζx, ξ^)B^x^ we have

A similar computation shows that

π'p(x) = π
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But, since <#, £,•>?,•=<#, £,•>?,-, we obtain that πp(x)=π'p(x).
Applying Lemma 3.2 to this π'p=πpy we have

(3.10) πp(x)y = (π3p(p(x, y))' = Σ &(*, y)$P(x, y)

3.2. Now we shall make explicit what is meant by the Z2-condition dp=cp.

This identity may be read as the commutatrvity of the following diagram

(where ® = ®S

4)'

(€1ε1P®ε182P*®S1ε3P)®(ε3ε1P®ε3e2P*®e383P) —

II canonical / ^ H canonical

Tensoring ε3ε2P^εzε2P to every term, and cancelling several pairs of dual

modules, we have the following commutative diagram:

ε3ε3P®ε1ε3P®ε1εlP — ε3ε2p
II II

where the vertical isomorphisms are those derived from the identity (1.1).

The horizontal isomorphisms are given respectively by the following maps:

ε3ε3x®ε1ε3y®ε1ε1z \-+ ΣPs(y> z)^®P(x> PP(V>
(P,P~)

Bf&®e£ly®e#lz h-> Σ A(^ yWP(Pp(*> y),
(F.PΪ

Therefore we have

Lemma 3.4. ((P, p))^Z2(S/R) if and only if the following identity holds in

S2®S3®iP4for every x, y, z^P:

s(χ, Pp(y, z))Ϊ2®Ps(y> z)^®PP(χ, PP(y, *))

= Σ Σ $s(χ, y}Ϊ2®Ps(Pp(χ> y), ^®PP(PP(χ> y), )̂
CP,^)CP,ί)

Later, this identity will be interpreted as the associativity of algebras con-

structed using (P, p).

Next we shall prove a proposition concerning the splitting of ,Z2-elements.

Let R' be a commutative algebra over R, and denote the R '-algebra R '®S by
SR', or S'. Then the Λ'-algebra (SR')n is canonically isomorphic to (Sn)R'y
for every n. Similarly, for an *Sn-module P, the *S/w-module P'=S'n®snP is
isomorphic to PR'. An ίS^-homomorphism /: M-*N yields an S' -homomor-

phism f'=fR': M'-+N'. For an5n-isomorphism /: M^N, we have (dfY=df:
dM'^dN'. Hence a pair (P, p)tΞ£>n(S/R) yields (P', p')ςΞ&\S'lRr). (P, p)

is said to be split by R' if (P', p') — (dQ, CQ) with some
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Proposition 3.5. Every element of Z2(S/R) is split by S. More precisely,

we have (Ps,ps) — (dP, cp) for every (P,p) satisfying Z2 -condition, where P of the

right hand side is considered as an element of ^^(83) (not of

Proof. We treat *Sl-modules as ^-modules via the canonical isomorphism
2 — S®S2—S\ where we put R'=S as the first factor. Then Ps=ίS

r

1®

3~8iP. The isomorphism p is applied to yield

(3.11)

On the other hand, we have for an *S"-module M,

Adapting to the present case, we observe

(3.12) dP ̂  OS^PaJΘs OSaΘΛ)*

Combining this to (3.11), we have an ^-isomorphism P5~dP. Next we shall

show ps=Cp. cp: d2P^(Ss)
3^=^S4: is described, in view of the isomorphism

(3.12), as the following isomorphism which takes place by the canonical pairings

(where ® = ®s*):

(3.13) (8282P®8283P*)®(8382P*®8383P)®(8482P*®8483P*) — S4

while ps: dPs^S* is the following isomorphism derived from/): dP^S3:

8281P®8381P*® 848^—8*

which is converted to an isomorphism of the same type as (3.13) by applying

the isomorphism (3.11). Now the Z2-condition dp=cp can be expressed in

the following form:

Multiplying three factors appearing in 8λdP on all the four terms, we obtain

the following commutative diagram:

£2£,

€1ε1P®ε1ε2p*®ε1ε3P

(3.11)
,P ^ left hand side of (3.13)

) ) canonicalI I
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This commutativity means that the maps ps and cp as expressed in the form

(3.13) exactly coincide.

4. The algebra (A, P, P)

4.1. In treating the crossed product-like construction, it is convenient
to call a pair of an JR-algebra A and an algebra embedding t: S-*A an S/R-
algebra. In this case A has a natural *S2-module structure. An 5-isomorphism
of *S//?-algebras is an algebra isomorphism which preserves the embedding of S.

Let A be an 5/Λ-algebra, and let (P, p)G&2(S/R). We define a multi-
plication in D=A®S*P by putting

(4.1) (a®x)(b®y) = Σ *$s(*> y}b®pP(xy y) (a, b(ΞA, x,

Lemma 4.1. // ((P, p))<=Z2(S/R), then the multiplication inD=A®s*P
defined above satisfies the associativity for any SjR-algebra A. Conversely, if
End(*S)®s2p satisfies the associativity and S is R-projective, then we have

((P,p))<=Z\SIR).

Proof. The first half follows immediately from Lemma 3.4. Now the equali-

ty of ((l®*)(a®30)(l®*) and (l®*)((α®jO(l®*)), where αeHomΛ(S, P l),
assumed to hold in End(S)®s2p, is expressed as (l®a®\)(L — R)= 0, where
L resp. R denotes the left resp. right hand side of the equality of Lemma 3.4.
But under the assumption of jR-projectivity of *S, this certainly implies that

L—R=Q, as desired.
Henceforth we assume that ((P, p))^Z2(S/R). We define a map tD: S-+D

by the commutativity of

(4.2) J

S - D

where the left vertical map is the isomorphism of (3.6). ιD is a monomor-
phism of *S2-modules. We shall show that this is actually an algebra homomor-
phism, and that the left resp. right multiplication of CD(S) in D yields the left
resp. right action of $e S on the 52-module Z), namely that

(4.3) ιD(s)d=sd, dιD(s) = ds

Indeed, if eP^P be such that πp(ep)=l, then ιD(s)=s®eP, and we have

(s®ep)(b®y) — Σ Φs(ep, y)b®pP(ef, y)
C-f,ί)

P) y)pp(ep, y) = sb®y
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in view of (3.10), proving the first half of (4.3). The second half is shown
similarly. In particular we have ιD(s)iD(t)=sιD(t)=ιD(st), which shows that ιD

is an algebra embedding. Hence (Z>, ιD) is an S/Λ-algebra, whose identity
element is given by \®ep. We denote this 5/12-algebra by D=(A, P, p).
Clearly if (P, p)~(Q, q), then (A, P, p) and (A, Q, q) are isomorphic.

Lemma 4.2. If B = (A,P,p) and C=(BίQίq), then we have C —
(A, P®s* Q, p®q). In particular, if B=(A, P, p), then A = (B, P*, />*).

Proof. Clearly we have

ρ®q(x®y, x'®y') = p(x, x')®q(y, y')

= Σ Σ&(*, χ')9άy>y')®φp(*> *')®to/))
(.PiP) CQ,?)

Hence the multiplication in (A, P®s

2Q,p®q) is given by

(a®(x®y))(af®(x'®yf))

= Σ Σ *$s(χ,

= Σ (a®x)(qs(y, y'y®x')®qQ(y, y')
C<2,0)

=((a®x)®y)((af®x')®yf) (product in (B, Q, q))

A direct computation shows that πp®q: P®S*Q-*S is given by πp®q(x® y)=
7tp(x)πq(y). Hence eP®eQ serves as an eP®Q. It follows that the way of embed-
ding of S in (Ay P®s* Q, p®q) agrees with that in (B, Q, q).

By this Lemma, the set of isomorphism classes of iS/P-algebras is partitioned
to orbits with respect to the operation of Z2(SJR). The following is the most
degenerate case.

Proposition 4.3. If S is central in A, we have (A, P,p)^A for every

Proof. In this case, the multiplication in (A, P, p) reduces to the form

(4.4) (a®x)(b®y) — ab®πp(x)y

Further, the isomorphism A®S(S®S*P)^A®SS may be expressed in the fol-
lowing form:

D = A®S*P~ A a®x h-> aπp(x)

and the identity (4.4) shows that this map gives an algebra isomorphism.
This Proposition suggests that the opposite extreme case where S is maxi-

mally commutative in A will be most interesting.
In [15], Sweedler studied the multiplication alteration of *S/Λ-algebras
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by U- valued Amitsur 2-cocycles. Namely, let A be an S/JR-algebra, and u—

,U). On a copy Aw= {au} of A, one defines a multi-

plication by

aubu =

Then A^ becomes a new S/P-algebra. Now, fc defines ((S2, u))<=Z2(S/R), and

we have

Proposition 4.4. (-4, S2, M) ίί isomorphίc to Sweedler's A(u\

Proof. The isomorphism p associated with p=u is given by

P(\\ I2) = I3u = ^u(2)®(uω®u(3))^S®S2

CO

Hence the multiplication in (A, S2, u)= A®S*S2= A®s* I2 is given by

which coincides with that of A(u) given above.

REMARK. Construction of an inverse isomorphic algebra. We define

the opposite pair (P°, p°) of (P, p) as follows. P°=rP as in § 3. p°: dpQ~S3

is defined by

(x,

where ° means the involution of S3 defined by r®s®tι— »t®s®r. Then p° is
given by

X, y)®PP(χ, y)°

If πp(ep)=l9 we have πpo(e*p)=l. Now let A be an /S/Λ-algebra, and A° its
opposite algebra. Then (AΌ, P°, p°) is an opposite algebra of (A, Py p). The
embedding of S is certainly preserved, since s®ep is mapped to s®e°P.

4.2. Next we consider the case where ((P, p))^B2(S/R).

Proposition 4.5. For MeS^(S), the S/R-algebra (A, dM*y CM*} is isomor-
phic to End A(M® s A) in which S embeds as left operations.

Proof. We have dM^ — M^Mf, and CM*: dM*®dM*~S®dM* is

given by (x®ξ)®(y®η)ι-*ζy, ξy®x®η. Hence the multiplication of D=
A®s? dM* is expressed in the following form:

Now we have an isomorphism
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ΈndA(M®sA)
(4.5)

a®(x®ξ) I-*/, where f(z®c) = x®a(z, ξ^c

and it is immediate to see that the composition in EndA(M®sA) precisely

corresponds to the multiplication of A®s*dM* given above. Next, the iso-
morphism πcan: π(dM*)^S is given by the map M®M*-*M®SM*^S.

Hence an element eM* such that πcan(eM*}=\ is given by eM*= 2 mi®fJLi where
{wt} and {μt } are a pair of dual bases of 5-modules M and M*. Hence the
embedding S-*D is given by sh-^s®^(mi®μi). Then the corresponding

embedding S^>EndA(M®sA) is as follows:

s ι->/; f(x®ά) =

which coincides with the natural embedding.

Proposition 4.6. If A=EndR(N), where N is an S -module and is R-pro-

jective, then we have

Proof. It suffices to show that ΈτιdA(M®sA)~ ΈndR(M®sN) in view

of the preceding Proposition. This isomorphism is established by the follow-

ing correspondence:

/^//: f'(m®ri) =f(m®l)(n)

where we regard elements of M®sEndR(N) as inducing maps N-+M®SN in
a natural way. Indeed, this is the composite of the following isomorphisms:

EndΛ(M®s^) — Homs(M, M®SA) — Homs(M, (M®SN)®N*)

— HomR(M®sN, M®SN)

A simple culculation shows that the map /ι— >/' is multiplicative, and it clearly

preserves the embedding of S.

The explicit form of the isomorphism of the Proposition is given by

EndR(N)®s* dM* -* EndR(M®sN)

\®(x®ξ) h^/, where f(z®y) = x®\«z, ξ>y)

As a particular case, we have

Corollary 4.7. If S is R-projectίve, we have

(End* (S), </M*, CM*) ̂  EndR(M) .

Let R' be a commutative /?-algebra, and we use the notations such as
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Sy, MR', to denote the change of the base ring (cf. §3.2). Then we clearly
have (A,P,p)R' — (AR',PR',pR

f). If, in particular, R'= *S, every 2-cocycle
splits (Proposition 3.5), and we can apply Proposition 4.5 to the extended
algebra Ds. Fortunately several properties can be descended to Z), and lead to

Proposition 4.8. Assume that the unit map R-^S R-spliΐs, and A is
finite protective and faithful as an R-module. Then D=(A} P,p) is semi-simple,
separable or central separable if and only if A is so respectively. In the central
separable case, Ds belongs to the same algebra class as As.

Proof. In view of Lemma 4.2, it suffices to prove the if part. In the
split case where (P, p)=(dM, CM) .we have D — EndA(M*®sA). By the as-
sumption on A, M*®SA is an 7?-ρrogenerator, so that D is the commuter of
A° in the central separable algebra EΐidJt(M*®sA). Hence the result follows
from the commuter theory ([2] for central separable, [10] for separable, and
[6] [7] for semi-simple). In the general case, the above facts can be applied
to DSί and we know that these properties of algebras are descended to D under
the assumption of Λ-splitness of /?-» S.

This assumption on S is equivalent to saying that S is an JR-generator, and
is satisfied if S is Λ-finite projective and faithful as is well known.

REMARK. In order to derive the splitting property of Z)s, we can argue more
simply, without employing Proposition 3.5, as follows. We consider the case
A=ΈndR(S)= HomΛ(52, SΊ) Then S® A^Ends(S® S). We express the
isomorphism p: dP^S3 in the form ^P— Homs

3(^*, £3^*), and we have

S1®(A®S*P) — (S1®A)®S^(S1®P) — Honv(£2P*, Ends(S®S)®s*83P*)

5.

5.1. In this section we assume that S is Λ-finite projective and faithful.
An iSyj?-algebra (A, ι) is called a left (resp. right) S/R-Azumaya algebra, if A
is central separable over Ry ι(S) is a maximally commutative subalgebra of
A, and A is left (resp. right) S-projective. The set £r(S/R) (A(S, R) in the
notation of [4]) of all *S//2-isomorphism classes of left iS/P-Azumaya algebras has
the structure of an abeJian group ([4] § 2). An expression of the product of A
and B is given by

(5.1) A*B = (lA2®SιlB2)
s*

whose multiplication is the one naturally induced from that of A®B. (Notice
that in A®S±B itself this natural multiplication can not be spoken of.) The
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embedding of S in A*B is given by ίh->ί®l = l®ί. We know that by for-
getting the embedding of S we have an epimorphism Or(S/R)-*Br(SIR), whose
kernel Pr(S/R) consists of EndΛ(M), M^&*>(S) ([4] §2).

Proposition 5.1. (A, P, p) is a left S\R-Azumaya algebra if and only if A is.

Proof. It suffices to prove the if part. Already we know that D=(Ay P, p)
is central separable. The left iS-projectivity of D=A®S*P is clear. Suppose
rf=Σ βi®Xi commutes with every s(— s®ep)^ S. Then d®ξ (£eP*) commutes
with s(=s®ep® ep*) in (Z), P*, />*). By Lemma 4.2, this means that Σ <#,-,
^A commutes with every s^S. Hence Σ<Λ j ξ^a^S. Let {pj} and
be a pair of dual bases of P and P*. Then we have

Σ Σ <*,-, ^>^®/>; e5®s2p(=5 in
3

REMARK. The part of proof concerning the maximal commutative embed-
ding of S is independent of the separability, and valid for general

5.2. We now argue in reversed direction. Let A be a left xS/jR-Azumaya
algebra. Since A is left S-projective, SAA is right *S(g)^4-ρrojective by the
separability of A. Hence the dual module

is a left S®^I-projective module. Since the 52-module S2®ιA is *S2-pro-
jective, P has the structure of an *S2-projective module, and we are interested
in this S2-module P. An element / of P is determined by x=f(l)^S®A
which should satisfy sx=xs (s^S). Hence P may be identified with (*Sf

2®1^42)
lS2

We begin by showing that an isomorphism of *S3-modules

(5.2) ί iΛΘ^Λ^X^φΛ

is established by the correspondence

(5.3) (Σ *, ®0, )®(Σ fy®δy) ̂  Σ *, ®(Σ
» J J

Since the canonical pairing

, S®A)®SA -> S

is an isomorphism and A is S®^4-finite projective, we have a series of isomor-
phisms of 53-modules as follows:

S^A(Ay S3®2A)

, S3®HomS2<s>A(A, «S2®ι^)®s2-
4)

, S3®(S2®A))

, S3®A) = 82®^ .
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An examination of maps shows that the isomorphism (5.2) thus obtained is

given by the correspondence (5.3).
Next we shall show that

(5.4) πP = S®S*P ~ S\ τr(Σ ί.

This is verified as follows:

A(A, S®A) ^ Homs®A(A, S®S*(S®A)) ̂

The isomorphism (5.2) may be interpreted as £3P®S

3£1P— £2P. So,
applying π2 as in the proof of Proposition 3.1, we have (using (5.4)):

(5.5) P°®S2P^S2.

It follows that P<=5^(S2), and P° — P*. The isomorphism (5.2) then gives
rise to

p: elP®s3£2P*®s*83P~S3

Thus a left S/β-Azumaya algebra A determines a pair (P, p) <Ξ ̂ (S/R) . Clearly
any algebra S-isomorphic to A yields a pair isomorphic to (P, p).

Now we shall examine the algebra (E, P>p), where E=End#(S) and (P,p)
is the pair derived from A. Since

E®S*(S2®A) — (Sl®Sί)®SlA — Sf ®A ̂  HomR(S2, A)

we have

E®S2 Homs®A(A, S2®A) — Homse>A(A, E®S*(S2®A))

= Homs®A(A, Hom^(5, A)) ̂  Homs(5f, A)^A

Namely we have

(5.6) (E, P,p)^A λ®(Σ ̂ ® α,) ̂  Σ λ(s,)*,

This is actually an algebra isomorphism, since we have

Σ λ(*,χί;.)K &,. = Σ λ(^W(ίΛ (

in view of ^si®ai^(S®A)s. Since (£", P,p) — A satisfies the associativity,
((P,p)) is contained in Z2(S/R) by Lemma 4.1. As an element eP^P such that
πp(ep)=l, we can take l®le(5(g)^l)s. Hence the embedding of S in (E, P, £)
is given by s\-*s®ep, and this corresponds to the original embedding S-+A.
Hence (5.6) is an isomorphism of 5/Λ-algebras.

REMARK. If S/R is a quasi-Frobenius extension, EndΛ(5) and A are S2-
projective (cf. [17] Theorem 2.1). In this case, the situation is simpler, since
P= EndR(S)*®s2A — Homs2(End/?(*Sf), A) works.
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We now start with a pair (P, p) satisfying the Z2-condition, and construct

A=(E, P, p). A, in turn, determines a pair, say (P', />'), by the above procedure.

We shall show that this pair is isomorphic to the original (P,p). At first, we

observe

P' =

In this isomorphism, x^P corresponds to ^2si®(ai®x)^P'9 where {st} and

{cti} are a pair of dual P-bases of S and S*. Next we examine ^>'. This is

defined by (5.3) as follows:

^ 2S3®53lP3 ̂  P

Σ *ί

- Σ J, ® (Σ s&Jgaifsfa y)ctj®I>p(χ, y))

Since αftay=αf (£)αy for ίe5, this is identical with

Σ ^® (Σ ^® αy® Σ «,(&(*, y))A(^, ̂ ))
» y c-f, ̂ )

In terms of the above isomorphism P'^P, this last element of S®P' corres-
ponds to

y* s.fi7 j *i\ (*> y) = (χ, y) = P(χ, y)

Thus the isomorphism of (P',p') with (P,p) is verified. Summing up, we have

established a bίjectίve correspondence between £r(S/R) and Z2(S/R).
Finally we shall show that this correspondence preserves the product,

namely that, if A — (E, P, p) and B — (E, Q, q) then A*B — (E, P®S*Q, p®q).
By Lemma 4.2, it suffices to show that A*B — (Ay Q, q). Now, as ^-modules

we have

Since A®S*(S®B) is isomorphic to A®SιB as a left S2-and right *Sf®.S-module,

further we have

B(B, A®SιB) ̂  A*B

The explicit correspondence of this isomorphism is given by

a® y \- > Σ a$i®bi , where y = Σ si®bi^(S®A)s

The multiplication in (A, Q, q) is given by

[a® (Σ Si® δ, )] [a'® (Σ t&Cj)] = Σ asfl'
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which precisely corresponds to the multiplication in A*B:

(Σ ̂ , W(Σ a't&cj = Σ asia'tj®bicj

This verifies the assertion.

These considerations, combined with Proposition 5.1 and Corollary 4.7,
proves the following theorem.

Theorem 5.2. Assume that S is R-finίte protective and faithful. Then
the correspondence (P, p)ι-^(Ey P, p), where E=EndR(S), yields an isomorphism
Z2(S/R) — &r(S/R). It induces an isomorphism H2(S/R) — Br(S/R).

As will be shown in § 7, this generalizes [9] Theorem 3, which treats the

case of finite Galois extensions.

REMARK. The opposite algebra of a left *SyjR-Azumaya algebra is right

S/Λ-Azumaya. The isomorphism classes of right *Sy./?-Azumaya algebras form

an abelian group $r'(S/R) isomorphic to £r(S/R). If S/R is quasi-Frobenius,

they coincide; if not, they are two distinct orbits with respect to Z2(S/R).
By this Theorem, the exact sequence of Theorem 1.1 yields that of Chase

and Rosenberg [4], [18]:

0 - H^S/R, U) -> Pic(Λ) -> H°(S/R, Pic)
( ' ' -> H2(S/R, U) -> Er(S/R) -> Hl(S/R, Pic) -+ H\S/R, U) ->

The assumption on S/R is satisfied, if R is a Dedekind domain and S is

72-finite and torsion-free. If, in particular, L/K is a finite extension of fields, the
homomorphism a2: H2(L/K, U)-*H2(L/K) is actually an isomorphism. Hence

the isomorphism H2(L/K, U)~Br(L/K) so far established in various context may
be considered as a special case of Theorem 5.2. An important general case

is the Hopf Galois extensions of Sweedler [14]. We briefly recall the relevant

part of his theory, adapted to the ring case [5], [17].
Let if be a finite cocommutative Hopf algebra over R which is J?-projec-

tive, and let S be a commutative .R-algebra which is an ίί-module algebra. S

is called an H-Hopf Galois extension of R if S is Λ-finite projective and faithful,
and the natural map from the smash product SΦH to End1?(*S') is an isomor-
phism. The cohomology is defined with respect to a semi-simplicial complex,

composed of Hn and the appropriate face operators. If S/R is ίf-Hopf Galois,
then Sn+1 is isomorphic to HomΛ(ίίn, S) and yields an isomorphism of U- valued

Amitsur cohomology with the Hopf Galois cohomology. Sweedler defined

the crossed product S^pH with respect to a 2-cocycle σ, and proved that if
σ

L/K is an H-Galois field extension this construction leads to an isomorphism

H\H, L)=^Br(L/K) ([14] Theorem 9.7). Now let u<=S3 be the 2-Amitsur
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cocycle corresponding to σ. Then a simple computation shows that S^pH is
<Γ

isomorphic to (SΦH)™ in the notation of [15]. Hence it is isomorphic to
(E, S2

y u) by Proposition 4.4. Therefore the present theory may be considered
as a natural generalization of his theory [14]. The Brauer group of Hopf Galois

extensions in ring case was dealt with by Yokogawa [17], where he considered

certain construction which generalised S weedier 's crossed products, and em-
ployed it to a direct proof of Chase-Rosenberg exact sequence. Yokogawa

[18] then extended his theory further to the general case, and some constructions

of the present paper are anticipated by these works.

6. Homomorphism S/R -+S'/R'

Let φ0: R-^Rr be a homomorphism of commutative rings and S resp. S'

be an algebra over R resp. R'. By a homomorphism of algebras φ: S/R—^S'/R'
we mean a ring homomorphism φ:S-+S' satisfying φ(rs)—φQ(r)φ(s) (rEΞR,

s^S). φ induces a homorphism φn\ Sn/R-*S'n/R' for every n.

We introduce a complex Am(φ, Pic) as follows. Amn(φ, Pic)=Pic(<pM)

(n>l), which consists of isomorphism classes of pairs [P,f] such that Pe

&<c(S») and /: φnP^S'n (in &*>(S'*) (cf. [9] §4). We identify SfoJ*) and
φn+ι(£iP) canonically. Hence we can define £,-/: φn+18iP—£iφnP->S/n+l^ and
thereupon

Hence we have a homomorphism

dn: Pic(<pB) - Pic(φn+1); [P,f] H» [dP, df\

For convenience, we put rf0=0. The commutativity of

φn+2d*P =d*φnP

m n+2 ___^ ςr/»+2

Φn+2 & - *->

means that cp: d
2P~Sn+2 defines an isomorphism [d2Py d2f] — [Sn+2, 1]. Thus

Am (9?, Pic)={Pic(<pn), d} constitutes a complex, and we shall denote

H'(φ, Pic) = Ker(rf.+])/Im(rf.) (n>0)

ΐϊc(φn) can be treated homogeneously as the group of isomorphism classes

of triples [P,/, Q], where P,Q<=&ά(Sn) and /: φnP~φnQ, subject to the

condition [P,/, Q]\Q,g,R\=[P,gf, R] (cf. [3], [9]). In this description, the
coboundary operator is defined by d[P,f, Q]=[dP) dfy dQ].

Now, φn : Sn -> S'n induces a homomorphism of Amitsur cohomology groups,
and also of our groups:
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φ": IΓ(SIR) - H»(S'/R'); cl((P9 p)) ι->

For n=Q, φ* is defined to be the restriction of φ to JJ°(5//?) (C U(S)). The
kernel and cokernel of this map are connected with the relative Amitsur groups

Hn(φ, Pic) defined above, and what follows proceeds completely parallel to [9]

§4. We say that φ satisfies the Z7r-injectivity resp. the Picr-surjectivity, if

U(Sr)-+U(S'r) is injective, resp. if Pic(Sr)->Pic(S'r) is surjective. Notice that
if φ satisfies the Picr-surjectivity for some r, then φ necessarily satisfies the

Pic^-surjectivity for every &<r, since the homomorphisms £ι £ι: S*-»Srand

S' ->S'r are simultaneously split by contraction homomorphisms Sr->Sft,

S'r-*S'k. Similary for the [/-injectivity.
First, we assume the PΊcn-surjectivity, and define the following map:

X": H*(S'IR') -> H*(φ, Pic); cl((φnP) p)) H> cl[dP3 p]

For jι=0, %° is defined by u't-+[S, u'] where w'e U(S') and satisfies \®u'=u'®\.
The definability of this map (n>l) is verified as follows. Since dp=CφnP, we

have d[dP,p]^[S«+2, 1]. If (<pnP, p)^(φnQ, q), there exists /: φnP~φnQ
satisfying p=qdf. The equality [dP,p, Sn+1] = [dP, df, dQ][dQt q, Sn+1] shows
that \dP3p3 Sn+1] and [dQ, q, Sn+1] are cohomologous. Hence the corresponding

non-homogeneous objects [dPy p} and [dQ, q] are cohomologous. Finally,

(φndP, cφnP) corresponds to [d2P, CφΛp]^[SH+1

9 1].
Next we assume the Un+3-injectίvίty, and will define

Let [P,f]^Pic(φn+1), and assume that d[P,f\^[S*+2, 1], i.e. there exists
p: dP~Sn+2 satisfying φn+2p=df. Such p is unique by the ?7Λ+2-injectivity.
We compare dp with cp. We observe φn+3dp=dφn+2p=d2f=Cφn+ιp=φn+3cP,

whence follows dp=cp by the ί7M+3-injectivity. Hence ((P, p))<=Zn(S/R). A
simple computation using [7-injectivity shows that isomorphic [P,/]'s yield

cohomologous ((P,^))'s. Since d[P,f] yields ((ί/2P, ̂ )), we have a well-defined
map ψn as above.

Theorem 6.1. If φ: S/R-+S'/R' satisfies the Un+3'injectivity and the

Picn-surjecΐivity, then the following sequence is exact :

φ° X° ι/r°
0 -> H°(SIR) -?-+ H\S'/R') - > H \φ, Pic) -U ...

Proof. We reproduce the proof of [9] Theorem 2 almost word by word.

1) Clearly X°φ*=Q. If [5, u']^[S, 1] for iί/eC7(5/) such that du'=l,
then there exists z/eC/(5) such that φ(u)—uf. By the [/-inject ivity, dφ(u)=\
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P
means du=l, i.e. w'<Ξlm(<p°). For n>l, Xnφ" maps ((P,p}} to [dP, φn+1p]^

[Sn+1, 1]. Assume for ((φnP, p))<=Zn(S'/R')y there exists [£), q] such that
[dP,p]~d[Q, </]. This means that there exists/: dP^dQ satisfying p=dqφn+1f.
In homogeneous description of Pn(S'/R'), we have

((φ.P, p, S'")) = ((φnP φn+J, φ.Q))((φ.Q, dg, 5'"))

From CφHp= dp = d2qφn+2df and the t/-injectivity, we deduce cP = cQdfy which

means ((P,/, Q))&Zh(S/R). Since {<?, 1} gives an isomorphism (9>Λζ), </#, S'") —

(S'n, 1, *S" ), we have cl((φnP,p, S'n))εϊlm(φn), which also means cl((φJP,p))G

Im(φn).

2) ψβκ°(fi/)=(('s» !))• Let [P,/]eKer(ψ °). There exists^: P2J 5 satis-
fying dg=py where/): dP^S2 is defined by the condition φ2p=df. Putf~u'φg
with u'^U(S'). Then we have ώ/=l, since df=φ2dgy and 9?^ provides an

isomorphism [P,jf|— [5, «']. Hence [P,/]eIm(X°). For n>l, ι/rw%Λ maps

((φnP,p)) to ((<*P,£?p)). Let [P,/]eKer(^M). There exist Q& &*>($*) and
^: dQ^P such that pdg=cQ. Since φn+1p=df, we have dfdφn+1g=CφnQ. It

follows that ((φnQ,fφn+1g))ςΞZn(S'/Rf), and %n maps this pair to

3) 9>«+V maps [P,/] to ((̂ .+1P, <Pn+2p))^((S'n+\ 1)) (cf. definition of
maps). Let ((P, p))^Ker(φn+1). If w= 0, there exists /: φP~Sr satisfying

df=φ2p. This means ((P,/>))=ψ0[P,/]. If n>\, there exists geff^ίS*)
such that (φn+lPy φn+2p) — (d<PnQ> CφnQ). Hence there exists g: φn+1P~dφnQ
satisfying φn+2p=CφnQdg. Then {p, CQ} defines an isomorphism (dP, dg, d2Q) —

(Sn+2> 1, 5n+2), and we have [P,£, dQ]<=Zn(φ, Pic). This means [P®s», dQ*,g*]

GZ*(φ, Pic), where ̂ *=< >(^®1): φn+ιP®s'»^dφnQ*->dφnQ®s>n+ιdφnQ*-*

5 / Λ f l. Since the commutativity of

/ Λ + 2

shows dg*=(dg)*=φn+2p®CφnQ*, we have

ψ*[P®s»+ι</ρ*,£*] - ((P®sn+1dQ*,p®cQ*) = ((P,p))(dQ*, c*))

Hence cl((P9ρ)) elm (I/ΓM).

Proposition 6.2. 7/ΆS r^5p. 5' ώ faithfully flat over R resp. R' we have

Proof. Let [P, /] e Pic (^>) satisfy rf[P,/]~ [S2, 1]. Namely there exists
p: dP~S2 such that φ2p=df. By Theorem 2.2, (P,/)) determines up to iso-
morphism a pair of P0^3>^c(R) and pQ: S®PQ~P satisfying pε1p0=82p0. df
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/-^/
is converted to df: S&P^SzφP, and the commutativity of

shows ε1f=ε2fdf=£2fφp. Put P'0=R'®P0. Then we have the following iso-
morphism/' in

/': S'®Λ>PΌ = S'®S(S®PQ) S'®SP- S'®R>R'

Since we have

f is descended uniquely to/0: P'Q^R' such that f'=l®f0 ([12] II Proposition
2.5). Thus [P,f] is descended to [P0>/o]> and an isomorphism H°(φ, Pic) —
Pic(9?0) immediately follows.

Combining Proposition 2.1, Theorem 2.2 and the above Proposition, the
initial part of the exact sequence of Theorem 6.1 reduces to the following basic
sequence :

0 -> U(R) -+ U(R') -> Pic(^0) -̂  Pic(Λ) -̂  Pic(Λ') ->

in case S/R is faithfully flat. (If we assume the exactness of Theorem 6.1, the
above proposition can easily be proved by the 5 -lemma technique. But the
direct proof given above will be of some interest in itself.)

The following proposition is a generalization of [9] Proposition 5.1 (cf. § 7).

Proposition 6.3. Let S/R be an extension of integral domains, and L/K the
extension of the respective quotient fields. We assume that S is finite projectίve
and faithful as an R-module. Then we have the following exact sequence:

0 -> Hl(φ, Pic) -> Br(S/R) -> Br(L/K) -+ H\φ, Pic)

This is immediate applying Theorems 2.2, 5.2 and 6.1.

7. Galois extensions

Let S/R be a Galois extension with a finite group G as the Galois group.
In this case the Amitsur cohomology is naturally isomorphic to the group
cohomology, based on the isomorphism Sn+1 — Cn(Gy S) (n-th cochain group)
(cf. [12] V). In particular it induces an equivalence of 3?ά(Sn+l) to the category
Cn of the maps P(σn): Gn-*g?tc(S} introduced in [9] §2, in which an isomor-
phism dP~Sn+2 corresponds to 8P(σn+1)~S. It follows that H"(S/R) is iso-
morphic to Hn(Sy G)=Hn(S/R) defined in [9], and the exact sequence of
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Theorem 1.1 agrees with that of [9] § 2 in case S/R is a Galois extension. The
isomorphism of Theorem 5.2 extends that of [9] Theorem 3.

Moreover, in this case the algebra (£", P, p) can be described as a generalized
crossed product Δ( ]y j) of Kanzaki [11] in the following manner. Let e=
Σ Ui®Vi be the separability idempotent of S and put eσ=^ <r(ui)®vi(σ^G) as
in [8]. 12=Σ e<r gives a decomposition of the identity of S2 into orthogonal
idempotents. If we regard S3 as 1Sl®S22Sl it yields a decomposition 13=

Σ *σ®£τ When we regard S3=1S
22®slιSlί we have eσ®S2eτ=eσ®Sι eσΊ. Now

has a decomposition

P = Π /σ , Jσ = eσP (eP(S, σ) in the notation of [8])

and the isomorphism/): dP~S3, expressed in the form

Λ®s2A = (Sι®s2)®Sllp3

decomposes into

eσP®S2 ej> — e<rS1®Sι e^f

x ® y = ev®jσtT(x, y)

Hence we have, for x^Jff, y^Jr>

ρ(x, y) = Σ Vi® O-(%);V,T(^ j>)

Kanzaki's construction is Δ(/,y)=Π/σ^ withyσ τ as multiplication, while
<Γ '

Z) = (jg, P, j>) = End(5)®s2P ̂  Π S? ®S2 eσP = Π J,

where S* — 5 is given by fr<->l. The multiplication of Z> is given as follows:

(tr®x)(tr®y) = Σtr vi tr®σ(ui)j(ΓtT(x, y)

This shows the coincidence of the multiplication of D and that of Δ.
If S/R and *$"/#' are Galois extensions both with G as the Galois group,

and φ: S-*S' is a G-homomorphism, φ is a homomorphism of algebras in
the sense of § 6, φQ being the restriction of φ to 72. The equivalence of
&ΰ(Sn+1) resp. 5)^(6f/w+1) with £*(£, G) resp. Cn(S', G) then gives rise to an
isomorphism of Hn(φ, Pic) to Hn(G, Pic(φ)) for every n. Thus the exact
sequence of Theorem 6.1 coincides with that of [9] Theorem 2 in this case of

Galois extensions.
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