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The Amitsur cohomology with respect to the unit functor has been studied
by many authors. One of the most interesting features of the theory is that its
second cohomology group H*S/R, U) gives a description of the Brauer group
Br(S/R) in far general cases beyond Galois extensions ([1], [13]). But in ring
case the extension S/R must satisfy some restrictive condition for the validity
of the isomorphism, and Chase and Rosenberg established an exact sequence
which is comprised of the unit cohomology, Pic cohomology and the Brauer
group, instead of the direct description of Br(S/R) ([4]).

In a preceding paper, we attached a series of abelian groups H*(S, G) to a
commutative ring S and a group G operating on S, which are defined in close
connection with the Pic-valued group cohomology, and we showed that if S
is a finite Galois extension of R with G as the Galois group, H*(S, G) is isomor-
phic to Br(S/R) ([9]), see also [8]).

In this paper, we shall develop a parallel theory in the framework of the
Amitsur cohomology, and prove among others that if .S is finite projective and
faithful as an R-module, our second group is isomorphic to Br(S/R). This ex-
tends both the above mentioned case of Galois extensions, and the description
by means of the unit-valued cohomology so far established.

In § 1 we shall define the groups H"(S/R) and prove a long exact sequence
which, combined with the interpretation of H*(S/R) as the Brauer group, yields
the Chase-Rosenberg sequence. This part is an immediate transcription of
the corresponding part of [9]. The theory of faithfully flat descent precisely
fits to the situation around H'(S/R), and is applied to prove an isomorphism
H'(S/R)=Pic(R) (§2). After some analysis of ‘2-cocycles’ in §3, we
introduce and study a class of algebras denoted by (4, P, p) in §4. This may
be considered as a far more generalized version of the concept of crossed pro-
ducts, and indeed covers the known constructions so far treated in various
context. Further, it is immediately observed that the multiplication alteration
of Sweedler [15] (hence in particular the construction of Rosenberg and Zelinsky
[13] as noted by Sweedler) is nothing but the unit-valued case of our construc-
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tion. We then prove in §5 that this construction leads to the isomorphism
H?*(S|R)=Br(S/R) stated above. In §6 we establish a long exact sequence
concerning a homomorphism of extensions S/R—S’/R’, in which appear a
certain kind of relative Amitsur cohomology groups as relative terms. This sec-
tion is parallel to [9] §4. The paper closes by § 7 dealing with the case of
Galois extensions. (See also Hattori [23].)

We owe to a recent paper of Yokogawa [18], which we have had an op-
portunity to read before publication. It gives a direct proof to the Chase-Rosen-
berg exact sequence, by attaching a Pic-valued 1-cocycle P to an S/R-Azumaya
algebra, a U-valued 3-cocycle u to P, and by constructing an algebra related to
P, which may be interpreted as our (E, P, p).

After this work was completed, we have got access to a recent paper of
Villamayor and Zelinsky [16]. It deals with similar problems as ours, and
establishes a description of the Brauer group in somewhat more general case.
The basic ideas seem to be near to each other, but in contrast with their cate-
gorical approach, we proceed concretely by making use of the construction of
crossed product nature. (See also Ulbrich [20], Hattori [22].)

M. Takeuchi informs us that he has also obtained several results on the
Brauer group, including Theorem 5.2. His paper is in preparation. (Cf. [19].)

We shall treat in a subsequent paper the case where S is operated by a finite
group G without being Galois over the fixed subring R. (Published as [21].)

1. H"(S/R) and an exact sequence

1.1. Let R be a commutative ring with identity. R is the base ring of
various algebras considered in this paper, and an unspecified @ means Qg
unless otherwise stated. Let S be a commutative algebra over R, and denote
by S” the tensor product S®---@S of # copies of S. Its identity 1Q---®1 is
denoted by 1". As customary, let &: S"—S**! (=1, ---,n41) denote the
algebra homomorphisms defined by

E(51QQs,) = 5Q - Rs5;-,01Q5,Q - Qs,
They satisfy the following identities:

(1.1) EE, = &nb  (i<))

Each &; defines a functor S*"'@g» of the module categories. We prefer the
notation &;M to denote the module S*"'@¢M thus obtained. We also use
the notation &x to denote the image 1*"'®x of xM by the canonical map
M—&M. This is compatible with the original definition of &: S"— S§**1=
E:S". &M is generated as S**'-module by the set of &x (x& M). For
f€Homg(M, N), & fc Homgn+1(E;M, EN) is determined by the condition
&:f(€x)=¢:f(x) (x&M).
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Let Si(S™) be the category of projective S”-modules of rank one (n=1,
2,-+). This is a category with product Q. For PePu(S"), P* denotes
the dual module of P as an S"-module unless otherwise stated. Hence
P*e Pi(S™), and there is a canonical pairing  >: PQ«P*= S”. This pairing
satisfies the commutativity of the diagram

1
P@s"P*®s”P<‘—>§i> S“®S”P
(1.2) l1®< 5 “
PRyS” —— P

This property will be utilized quite often in the sequel (cf. [9] §1). In par-
ticular, if 31 <x;, £>=1, we have x=31<{x, £ >x; for every x&P. In this case
we say that {x;} and {£;} are a pair of dual bases of Pand P*. An isomorphism
f: P=0 has its dual f*=('f)"1: P*= Q%

&: 8"—=> 8" yields a functor Pi(S")— Pie(S**!), which preserves the
product and the dual. The latter means that there exists a natural isomorphism
&(P*)=(&,P)*, where the convention on the usage of * is as explained above.
We define d,: Pic(S")— Pic(S**) as the ‘alternate sum’ of &, i.e.

d,P = E PR nr1EP*RQgn+1 o
and also for f: P Q in Pie(S™),
d,f=&fQRE*Q 1d,P=d,0

There exists a canonical isomorphism I,,,: d,S"= S*", through which we
identify 4,S" with S**'. An automorphism of P& Px(S") is given by the
multiplication of a unit & S”, which will be written as % in this paper. Then
we have du=du, where du denotes the coboundary of # in the U-valued
cohomology.

We denote the isomorphism class of P by |P|. The set of all |P|
(P=%Px(S™) constitutes an abelian group Pic(S"). d, induces a homomor-
phism Pic(S")—Pic(S**?), satisfying d,,,d,=0, and we have the Pic-valued
Amitsur cohomology groups:

H"(S|R, Pic) = Ker(d,,)/Im(d,) .

In the sequel d, will be denoted as d, unless specific mention to the degree
n is needed.

1.2. We now proceed parallel with [9] §2 toward the definition of
groups H"(S/R). For any P& Pe(S"), we have a canonical isomorphism
d*P= S"*?, given by contracting all dual pairs appearing in the expression of
d?P. We use the notation ¢, or can to denote this isomorphism. For f: P Q,
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the following diagram is commutative:

Cp
d2P > Sn+2

(13) 1de€
d?‘Q—Q—> Sn+2

In particular, ¢gn: d2S* = S**2 coincides with the composite of dI ,,,: d2S"—dS"*!
and I,,,:dS** X .5"*2, and we use this isomorphism to identify d2S" with S**2

Let n>1. (P, p) denotes a pair of a module P& Pe(S") such that
|P|eZ*Y(S/R, Pic) and an isomorphism p: dP~X.S**!. An isomorphism
(P, p)S (P, p') is an isomorphism f: P~ P’ satisfying p=p’'df. We denote the
category of these pairs and their isomorphisms by $"(S/R). This is a category
with product defined naturally by (P, p)(O, ¢)=(PQsQ, pQsn+1q). The set of
isomorphism classes ((P, p)) of (P, p)€ P"(S/R) forms an abelian group, which
we write P"(S/R). We denote by Z"(S/R) the subgroup of P"(S/R) consisting
of all (P, p)) satisfying dp=c, (we are identifying dS" with S**! via I,,,,), and
by B"(S/R) the set of all ((dP, ¢;)) (P € Pie(S*1)). For n=1, we put B'(S/R)
={((S, I.))}. Since dcp=c,;p, B"(S|R) is a subgroup of Z"(S/R), and we have
the groups

H'(S[R) = Z"(S|R)|B"(S[R)

For n=0, we put Z°%S/R)={ucU(S)|du=u"'®Qu=1} and B°(S/R)={1}.
Hence H(S/R)=H(S/R, U).

There is another way to describe these groups H"(S/R). Let P;(S/R) be
the category of triples (P, f, Q) where P, Q € P%(S") and f: dP=dQ, and
isomorphisms (P, f, Q) X (P’, f', Q') which 1s a pair of isomorphisms p: P P’
and ¢: Q3 Q' satisfying f'dp=dqf. 'This is a category with product, and this
product induces on the set of isomorphism classes (2, f, Q)) the structure of
an abelian group. We write P}(S/R) the factor group of this abelian group by
the relation

(P, f, ON(Q; & R)) = (P, &f, R))
Then this group is isomorphic to P"(S/R), since the map ((P, p)— ((P, p, S™))

has an inverse given by
(B, f, N (PRs0%, 1)
where

=< Y(fR1): dPQsn+1dQ* — dQQgn+1dQ* — S+

In this correspondence, Z"(:S/R) corresponds to the subgroup Z7(S/R) consisting
of (P, f, Q) such that df=cg'cp, and B"(S/R) to BJ}(S/R) consisting of
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((dP, cq'cp, dO))(P, QO Pie(S*™ ")), Thus H"(S/R) is isomorphic to Z}(S/R)/
Bj(S/R). The subscript 2 means the homogeneons description.

1.3. This part is an adaptation of [9] § 3 to the present case. For details
the reader is referred to that part.

Every ue U(S**') determines a pair (S”, u) where u: dS"=S8""'— S+,
and ((S”, u))€Z"(S/R) if and only if uZ"(S/R, U). Since (S", dv)=(S", 1)

(=(dS™, ¢gn-1) if n=1), we have a homomorphism
a": H'(S|R, U) — H"(S|R); cl(u)— cl((S", u))

For n=0, a° is defined to be the identity map u—u.
The definability of the following map is clear.

B": H"(S|R) — H*(S|R, Pic); (P, p))— cl| P|.

Let |P|eZ*'(S/R, Pic), and take any p: dP~X S"**'. There exists a unit
ue.S"*? such that

Cp
42P > nt2

|
dZP _‘_]L Sn+2

(1.4)

is commutative, and we see easily that du=1"*3. Changing P to an isomorphic
module P’ does not affect the cohomology class of u. Hence we have the
following homomorphism.

v": H*Y(S/R, Pic) — H**}(S|R, U); cl|P|  cl(u).
Theorem 1.1. The following sequence is exact:

al B !

0— H'(S/R, U)—> H'(S/R) —> H°(S|R, Pic) —> ---

n-1 ” 7 n
Y HASIR, U)o HY(SIR) L H*Y(S/R, Pic)—T> H*(S|R, U)—>---

Outline of Proof. It is easily verified from the definition of maps that the
composite of any two consecutive maps reduces to 0. Let ¢/((P, p))=Ker(8").
We may assume that P=dQ with some Q& Px(S*"!). Then there exists
u€ U(S™*) such that p=uc,, and it must satisfy du=1. Since we have

(dQ) P) = (dQ! CQ)(S”J E) ’

(P, p))=((dO, p))= Im (a"). Here we treated the case n>1. But the case
n=1 is easy. If cl/|P|eKer(v"), we have dp=c, with a suitably chosen
p: dP3 8", This means that ¢/|P|eIm(B"). If cl(u)eKer(a"*'), there
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exists P € Pic(S*') such that (S", u)=(dP, cp). This means that there exists
p: dPX S" satisfying c,=udp. Hence u'Im(7"), and therefore u&Im(7").

2. Interpretation of H(S/R) and H'(S/R)
Proposition 2.1. If S is faithfully flat over R, then H°(S|/R)=U(R).

This is clear by [12] 11.2.2. We shall proceed to H'(S/R). We denote
the unit map R— S by &,.

Theorem 2.2. If S is faithfully flat over R, then H'(S|R)=Pic(R).
Proof. P, Pic(R) determines a pair (P, p) defined as follows:
P=¢gP,= SQP,
P: EPR2EP* X 8% EEXREELE - x, ED12
where we identified P* with §Py*. We shall compare dp with c,. The image of

(elloxl ®8120£1) ® (6210§2®8220x2) ® (8310x3 ®€320£3) € dZP ’
(where x;,E Py, £;EPy*, &;,,=E,£,6;, and @ =Q,?) by the map dp is

Koy, E <%y, By, ED 13,

while its image by ¢, is
oy, >y, E0<a, ED TP

But by the commutativity of (1.2) these two elements of S® are identical. Namely
(P, p) satisfies the Z'-condition. Clearly the correspondence P,i— (P, p) is
multiplicative and preserves the isomorphism of objects. Hence we have a
homomorphism Pic(R)— Z*(S/R)=H'(S/R). We shall show that this homo-
morphism admits an inverse mapping. To this purpose, let (P, p))€ Z'(S/R).
We convert p to the following isomorphism:

_ p®1
P: 6P~ 6, PR 6, P*R6,P —, &,P

Ex > 20 P(ExREE;)Exx;
where {x;} and {£;} are a pair of dual bases. On the other hand, the Z'-con-

dition dp=cp can be expressed as the commutativity of the following diagram

(where @=Q¢?):

1< >®1
(EEPREEPH)Q(GEPRESEPY) = &8 PREEP*
@.1) &p &p lezp
652 @ &S ~ £,5?

We examine the composite of maps & 7 and &p:
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& Eux = 2] E1P(Ex Q@ EE;)Ex;
&p: = 23 Ep(Enx@ERE) 23 E3P(E31%; REE j)Exn;

By the commutativity of (2.1), this last element is identical with

23 EP(Enx Q2] {Ea;y Eki>RERE;)Ex;
= 2V &EP(EnxREnE j)EZij
Thus we have §;p0&,p=&,p. It follows from the descent theory that there exist
P,= Pic(R) and an S-isomorphism p,: SQP, P such that HE; p,=&,p,, and the
pair (P,, p,) is determined up to isomorphism by the condition ([12]) II Theorem
3.2). Hence we have a well-defined map ((P, p))—P, which is the inverse of
the map defined at the first part of the proof.

3. Preliminary considerations on P(S/R)

3.1. From this section on, we deal with S?modules and S®-modules of
various type. Sometimes (but not always) we regard an S%-module X as a left
S- and right S-module. Then the notation ,X, means that s,Qs,& 5% acts on X
as s;x5,. Ends _(X) means the endomorphism ring of X regarded as 2 left S-
module. ,X;®js,,Y; means that we form the tensor product of X and Y satisfy-
ing the condition xs@®y=x®sy, and then regard it as an S*module under the
operation (5;Q5,Qs;, *Q y) - 5,%5,Q ys;. XS denotes the subset {x&X |sx=
xs, s€S} of X, which is isomorphic to Homg2(.S, X). Thus e.g. (.X,®s,:Y>)%
means that this is an S%-module consisting of elements >3 x;®y; of X Qs .Y
which satisfy 3 x;sQy,=>1x,Qy;s (s€S), with the S%operation given by
20 512, y:82.

We denote the twist map S?—S?: 5;Qs,+>5,®s, by 7. For an S?-module
M, we denote the module 7M by M?°, which is derived from M by exchanging
the left and right S-operations. We use the notation z:S"—S to denote
the map defined by §;®:--®s,+>s;:++s,. We further introduce the notations
72 S3—>S?% (i=1, 2, 3) to denote the contraction maps defined by

(5,8 5,@s3) = $1Q5,53
(5,0 5,85;) = 5,@s18
73(5:05;Q53) = 5,55,

The composite of z; with the &; is given by the following table:

& & &

(3.1) m | 1Qx 1 1
Ty 1 1®7E T

7y T T 1Qx
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Now an object (P, p) of P*(.S/R) consists of an S*-module P& Pi(S?) and
an S%-isomorphism p: dP~3.S®. The isomorphism p can be transformed to the
following form:

3.2) &PRgEP &P,

or in another expression to

(3-3) b: 1P2®sz Py 3 8,Q,P;
We introduce the notation
(34) B(x,5) = 3Bl 5)@B(x, 9)

to denote the image of ¥® y by the isomorphism (3.3). The relation with the
S3-operation is expressed as

D(s1%53, ys3) = P(s1x, 5,753) :(Igfz[’S(x: y)®szi~7p(x; Y)$s -

Conversely, any .S%isomorphism (3.3) gives rise to an S*-isomorphism p: dP=.S?
by putting

(3'5) P(51y®52§®53x) - <’ﬁ(x; y)) 82:> (x: yEP) gEP*) .

Proposition 3.1. Let P< Pic(S?) be such that |P|<Z'(S|R, Pic). Then
we have the following isomorphisms : '

(3.6) ZP=S,
(3.7) PPRgP =52,

Hence P° is isomorphic to the dual module P*.

Proof. Take any p: dP~3 .S and apply =, to both terms of the isomor-
phism (3.2). Then, in view of (3.1), we have

PRa(SQrP)=P

Multiplying P*, we have SQ#zP==.S? and the contraction z: S® yields the
first isomorphism zP=S. If we apply =, to the isomorphism (3.2), we get

P'QgeP = SQrP=SQKS.

These isomorphisms obviously depend on the choice of p: dP .53 We
denote the induced map P— zP— S by =,, whose explicit form is given by

m(y) = m 2] mp(x;, ¥), ED

where {x;} and {£} are a pair of dual bases of P and P*. Using this map
7,, the isomorphism (3.7) 1s expressed as
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(3.8) PRy Hcg)ﬁs(x, ¥)®,bp(x, ¥)

Lemma 3.2. Let P Piee(T). If an isomorphism f: XY of T-modules
1s derived from g: PQ XS PQ.Y by the commutativity of

1Qg
P*@Q,PR,X =5 P*QPR,Y
[¢ >®1 [<ver
X , Y

then conversely we have g=1Q f.

This follows immediately by tensoring P and applying the commutativity
concerning < > (1.2).
We apply this Lemma to the following maps:

[ SQnP X 8% sQry = sQm,y(y)
g: PRa(SQ7P) = P; xQ(1Qxy) — m p(x, y)

Then we get
(9 ) =mbsy) = Dhx )  (5yeP).
If we apply 7, to the isomorphism (3.2), we have the following isomorphism:
(S®R7P)QP° = P°; (1Q7x)Qy° > =3 (x, ¥)

Arguing as in the proof of Proposition 3.1, we obtain a new isomorphism
nP=S. For a moment we denote the map P—>zP— S thus obtained by 73,
i.e.

(%) = m(3 <mp(x, %,), D) -
Lemma 3.3. =} coincides with =,.
Proof. In view of (3.5), we can express 7, as follows:
7y (%) = 7 23 P(EXREE,QEx;)
where {x;} and {£;} are as above. Since Ex=37(1Q<x, £;>)éx;, we have
) = ks, £>7 T p(ew, @£ D)
= ; P(Ex;QE(Kx, EDE)REx)
A similar computation shows that

my(x) =7 ;P(elxj®82(<x) EDE;)R®Ex;)
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But, since <x, £,>&;=<x, £;>£;, we obtain that z,(x)==}(x).
Applying Lemma 3.2 to this z;=z,, we have

(3.10) m(®)y = (5, B0 3)) = 3 B, 9)Be(x, 9)

3.2. Now we shall make explicit what is meant by the Z2-condition dp=cp.
This identity may be read as the commutativity of the following diagram

(where @ =Q44):

(?)
(6.6:PRE,EP*RE,E,P)R (E,E,PREEP*REEP) = £,5°RE,S?
2 canonical Q canonical
(&6 PREEP*REEP)R(6£E,PREEP*RQELEP) = £,5°QE,S?

Tensoring &&P=&¢&,P to every term, and cancelling several pairs of dual
modules, we have the following commutative diagram:

&6, PREEPREEP = &E,P
A A
EEPRELPREEP = §&P

where the vertical isomorphisms are those derived from the identity (1.1).
The horizontal isomorphisms are given respectively by the following maps:

ELXREEYREE R H(Ig)ﬁs(y, 2),Q5(x, Pr(y, 2))ES;RS,QP
ELREE YR EE R H(Ig)ﬁs(x, N1LRD (D%, ¥), 2))ES.QS;QP
Therefore we have
Lemma 3.4. ((P, p))= Z*S/R) if and only if the following identity holds in
S, Q8;K P, for every x, y, 2= P:
51 32 B, Boly, NL@Foy, BBol, Be(y, 2)

P, 0P, P

= E Z Z’s(x: y)12®ﬁs(§P(x) _’V), z)13®ﬁP(ﬁP(x: y)) 2’)

P, 0 (P, 1)

Later, this identity will be interpreted as the associativity of algebras con-
structed using (P, p).

Next we shall prove a proposition concerning the splitting of Z?-elements.
Let R’ be a commutative algebra over R, and denote the R’-algebra R'®S by
Sk, or S’. Then the R'-algebra (Sg’)" is canonically isomorphic to (S")g,
for every n. Similarly, for an S"-module P, the S’"-module P’'=S"QgP is
isomorphic to Pp. An S"-homomorphism f: M—N yields an S’*-homomor-
phism f'=f/: M'—N’. For an S"-isomorphism f: M= N, we have (df)'=df":
dM’'=dN’. Hence a pair (P, p) P"(S/R) yields (P, p") e L"(S'|R"). (P, p)
is said to be split by R’ if (P’, p')=(dQ, co) with some Q& Pe(S"" ™).
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Proposition 3.5. Every element of Z*(S|R) is split by S. More precisely,
we have (Pg, ps)=(dP, cp) for every (P, p) satisfying Z*-condition, where P of the
right hand side is considered as an element of Pic(S) (not of Pic(S?).

Proof. We treat S%-modules as S°~modules via the canonical isomorphism
S¢=S5®S85?=S8% where we put R'=S as the first factor. Then P;=S,®
P3==&P. The isomorphism p is applied to yield

(3.11) Py = &P = PR3 EP*
On the other hand, we have for an S’-module M,
dM = (S1Qx M)Qsx(SiQy M*) = (S, M)Qs2(S,Q M)*
Adapting to the present case, we observe
(3.12) dP = (S,Q,P3)Q3(S:Q,P,)* = ,PREP*

Combining this to (3.11), we have an S3-isomorphism P;—~dP. Next we shall
show ps=cp. ¢p: d’°P(S5)*=S* is described, in view of the isomorphism
(3.12), as the following isomorphism which takes place by the canonical pairings
(where @ =@Q@5*):

(3.13) (£8P REEP*)Q (36, P* QEEP)Q(E£L,P*QEEP*) = S*

while ps: dP;= S* is the following isomorphism derived from p: dP=X .S3:

&6 PREEP*RQEEP = S*

which is converted to an isomorphism of the same type as (3.13) by applying
the isomorphism (3.11). Now the ZZ2-condition dp=c, can be expressed in
the following form:

(p)
SRR St == £,dP*REdAPRE AP*
2 ?canonical ? 2canonical
St - &,dP*

Multiplying three factors appearing in &dP on all the four terms, we obtain
the following commutative diagram:

(3.11)
&4, PREE P¥REL P — left hand side of (3.13)
‘ ‘ » 2 2can0nical
S
EEPREEPFREEP —— St
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This commutativity means that the maps ps and ¢, as expressed in the form
(3.13) exactly coincide.

4. The algebra (A, P, P)

4.1. In treating the crossed product-like construction, it is convenient
to call a pair of an R-algebra A and an algebra embedding ¢: S— 4 an S/R-
algebra. 1In this case A has a natural S2-module structure. An S-isomorphism
of S/R-algebras is an algebra isomorphism which preserves the embedding of S.
Let A be an S/R-algebra, and let (P, p)= P*S/R). We define a multi-
plication in D=AQg P by putting
(*1)  (2@x)(6®y) = 2 abs(x, y)b®bx(x, y)  (a, b4, %, yEP)

P, P

Lemma 4.1. If (P, p))=Z*(S|R), then the multiplication in D=AQ s P
defined above satisfies the associativity for amy S|R-algebra A. Conversely, if
End(S)Qs2 P satisfies the associativity and S is R-projective, then we have
(P, )€ Z*(S|R).

Proof. The first half follows immediately from Lemma 3.4. Now the equali-
ty of (1Qx)(a®¥))(1®=2) and (1Qx)((¢Ry)(1Q7)), where @ € Homg(S, R-1),
assumed to hold in End(S)®gs P, is expressed as (1Qa®1)(L—R)=0, where
L resp. R denotes the left resp. right hand side of the equality of Lemma 3.4.
But under the assumption of R-projectivity of .S, this certainly implies that
L—R=0, as desired.

Henceforth we assume that (P, p))= Z*(S/R). We define a map ¢,: S—D
by the commutativity of

SQgP t,p_@)l ARQeP

(4.2) Il

u ]

where the left vertical map is the isomorphism of (3.6). ¢, is a monomor-
phism of S%-modules. We shall show that this is actually an algebra homomor-
phism, and that the left resp. right multiplication of ¢x(s) in D yields the left
resp. right action of s&.S on the S*module D, namely that

4.3) ep()d = sd, diy(s) = ds (seS, deD)
Indeed, if e,& P be such that 7,(e,)=1, then ¢(s)=5Rep, and we have

(sQep)(6Qy) :(PZ} sﬁs(ep, y)b®ﬁP(eP) ¥)

X2

= sb®(§)j~75(ep, Y)Dr(er, ¥) = bQy
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in view of (3.10), proving the first half of (4.3). The second half is shown
similarly. In particular we have ¢y(s)ep(t)=>scp(t)=1,(st), which shows that ¢,
is an algebra embedding. Hence (D, ¢,) is an S/R-algebra, whose identity
element is given by 1®e,. We denote this S/R-algebra by D=(4, P, p).
Clearly if (P, p)=(0, q), then (4, P, p) and (4, Q, q) are isomorphic.

Lemma 4.2. If B=(4, P, p) and C=(B, Q, q), then we have C=
(4, PRs 0O, pQq). In particular, if B=(A4, P, p), then A= (B, P*, p*).

Proof. Clearly we have

PR®y, ¥’ ®y') = B, x)Qa(, ¥')
= SV 1 Bo(, #)7s(3, 7)) Q(Be(, #)RTa(3, ¥'))

2,0 QD

Hence the multiplication in (4, PQs 0O, pQq) is given by

(@Q(*R@y))(a’®(*'®y’))
=23 X abs(x, x)7s(y, y")a' @ (Da(x, x')@Fo(y, ¥"))

2,0 Q,9)

— 3 (@®@)(@:(9, )0 OOl ¥)
~(4@)®y)(@'®=)®y)  (product in (B, 0, 1)

A direct computation shows that 7,g,: PQ2Q— S is given by 7,g,(*® y)=
ny(%)m,(y). Hence epQeq serves as an epgq. It follows that the way of embed-
ding of S'in (4, PQ s O, pQq) agrees with that in (B, O, q).

By this Lemma, the set of isomorphism classes of S/R-algebras is partitioned
to orbits with respect to the operation of Z%(S/R). The following is the most
degenerate case.

Proposition 4.3. If S is central in A, we have (A, P, p)=A for every
(P, p))E Z*(SR).

Proof. In this case, the multiplication in (4, P, p) reduces to the form
(4.4) (a®x)(b® y) = ab@m,(x)y

Further, the isomorphism AQ(SQ2P)S AQsS may be expressed in the fol-
lowing form:

D=AQseP = A; aQx — ar,(x)

and the identity (4.4) shows that this map gives an algebra isomorphism.

This Proposition suggests that the opposite extreme case where S is maxi-
mally commutative in 4 will be most interesting.

In [15], Sweedler studied the multiplication alteration of S/R-algebras
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by U-valued Amitsur 2-cocycles. Namely, let 4 be an S/R-algebra, and u=
NuyyQueyQuipEZ(SIR,U).  Onacopy A= {a"} of 4, one defines a multi-
gl)ication by
a'b" = (Zuwaupbue)’

Then A™ becomes a new S/R-algebra. Now, « defines ((S?, u)) Z*(S/R), and
we have

Proposition 4.4. (A4, S? u) is isomorphic to Sweedler’s A™.

Proof. The isomorphism p associated with p=u is given by

(1% 13) = 1= é“-)' ) QU Qu)ESRS?
Hence the multiplication in (4, S?% u)=AQ2S*=AQ 1% is given by
(@@T)(bRT’) = 32 aupb®(uwuw) = 2> uapbum@1*

which coincides with that of 4™ given above.

ReMARK. Construction of an inverse isomorphic algebra. We define
the opposite pair (P°, p°) of (P, p) as follows. P°=7Pasin §3. p°: dp°~S3
is defined by

PUEXRELREY) = p(6,YRELREx)° (x, yEP, L= P¥)
where ® means the involution of S® defined by rQs®#—t®s®r. Then 2° is
given by
D00 2°) = B(x,3)° = 2] Bs(%, y)RBs(x, y)°

(P, 5

If z,(ep)=1, we have z(ep)=1. Now let 4 be an S/R-algebra, and A° its
opposite algebra. Then (4°% P p°) is an opposite algebra of (4, P, p). The
embedding of S is certainly preserved, since sQe, is mapped to sQe%.

4.2. Next we consider the case where ((P, p))E B*(S/R).

Proposition 4.5. For M € Pie(S), the S|R-algebra (A, dM*, c,+) is isomor-
phic to End (M QsA) in which S embeds as left operations.

Proof. We have dM*=M,QM¥, and Cp+: dM*QdM* ~ S QdAM* is
given by (xQE)Q(y®n)—<y, E>Q@x@7n. Hence the multiplication of D=
AQs2dM* is expressed in the following form:

[e@*REBR(y®)] = aly, E>bR (x@7)

Now we have an isomorphism
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A@#dM* =3 End (M @, 4)
aQ(xQE) — f, where f(2Q¢) = xQa<lz, E>c

and it is immediate to see that the composition in End,(M®QsA4) precisely
corresponds to the multiplication of 4QdM* given above. Next, the iso-
morphism z,,,: #(dM*)=.S is given by the map M M* > MR M*=S.
Hence an element ¢, such that z,,,(e,x)=1 is given by e;»=>m;Qu; where
{m;} and {u;} are a pair of dual bases of S-modules M and M*. Hence the
embedding S—D is given by s—s@> (m;®u;). Then the corresponding
embedding S— End (M Q4) is as follows:

s f; f(x®a) = 23 m;Q@s<x, p;ya
= 2Im;<{x, p,>Rsa = xQsa

which coincides with the natural embedding.

(4.5)

Proposition 4.6. If A=End;(N), where N is an S-module and is R-pro-
Jective, then we have

(A4, dM*, cy,) = Endx(MQsN)
Proof. It suffices to show that End,(M®sA4)=Endz(MQ;N) in view

of the preceding Proposition. This isomorphism is established by the follow-
ing correspondence:

fef' f(m@n) = fm@1)(n)

where we regard elements of M@ sEnd,(/N) as inducing maps N->M QN in
a natural way. Indeed, this is the composite of the following isomorphisms:

End,,(M®;A4) = Homg(M, M®; A) = Homg(M, (M®;N)QN*)
o= HOmR(M®5N, M@sN)

A simple culculation shows that the map fi— f’ is multiplicative, and it clearly
preserves the embedding of S.
The explicit form of the isomorphism of the Proposition is given by

End;(N)Qs2dM* — Endy(MQsN)
AQ(x*®E) — f, where f(2Qy) = xQMR, E>Y)

As a particular case, we have

(4.6)

Corollary 4.7. If S is R-projective, we have
(End,(S), dM*, ¢;») = Endz(M) .

Let R’ be a commutative R-algebra, and we use the notations such as
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Sy, My, to denote the change of the base ring (cf. § 3.2). Then we clearly
have (4, P, p)r =(4x’, Px’, pr’). 1If, in particular, R'=S, every 2-cocycle
splits (Proposition 3.5), and we can apply Proposition 4.5 to the extended
algebra Dg;. Fortunately several properties can be descended to D, and lead to

Proposition 4.8. Assume that the unit map R— S R-splits, and A is
finite projective and faithful as an R-module. Then D—=(A, P, p) is semi-simple,
separable or central separable if and only if A is so respectively. In the central
separable case, Dg belongs to the same algebra class as Ag.

Proof. In view of Lemma 4.2, it suffices to prove the if part. In the
split case where (P, p)=(dM, c;) we have D=~End,(M*®s4). By the as-
sumption on 4, M*®s4 is an R-progenerator, so that D is the commuter of
A° in the central separable algebra End,(M*®s4). Hence the result follows
from the commuter theory ([2] for central separable, [10] for separable, and
[6] [7] for semi-simple). In the general case, the above facts can be applied
to Dg, and we know that these properties of algebras are descended to D under
the assumption of R-splitness of R— S.

This assumption on S is equivalent to saying that S is an R-generator, and
is satisfied if S is R-finite projective and faithful as is well known.

RemaARk. In order to derive the splitting property of D, we can argue more
simply, without employing Proposition 3.5, as follows. We consider the case
A=Endg(S)=Homg (S, S;). Then SQA=End;(S® S). We express the
isomorphism p: dP7XS? in the form & P=—=Homg(E,P*, &;P*), and we have

S, Q(AQ ¢ P) = (S,04)Q(S,QP) = Homg(&,P*, Ends(SQS)R 2 E,P*)
= Homyg, g5, (P*, Homy, (S1Q S35, (810 S52) Q2 (S; Q%))
== Homg (P*, P*) = End(P¥)

5. H*S/R)==Br(S/R)

5.1. In this section we assume that .S is R-finite projective and faithful.
An S/R-algebra (4, ) is called a left (resp. right) S/R-Azumaya algebra, if A
is central separable over R, ((S) is a maximally commutative subalgebra of
A, and A is left (resp. right) S-projective. The set Br(S/R) (A(S, R) in the
notation of [4]) of all S/R-isomorphism classes of left S/R-Azumaya algebras has
the structure of an abelian group ([4] §2). An expression of the product of 4
and B is given by

(5.1) AxB = (14,5, 1B,)"

whose multiplication is the one naturally induced from that of AQB. (Notice
that in A®, B itself this natural multiplication can not be spoken of.) The
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embedding of S in 4B is given by s—>s®1=1®s. We know that by for-
getting the embedding of S we have an epimorphism Br(S/R)— Br(S/R), whose
kernel Pr(S/R) consists of Endp(M), M e Pi(S) ([4] §2).

Proposition 5.1. (4, P, p) is a left S|R-Azumaya algebra if and only if A is.

Proof. It suffices to prove the if part. Already we know that D=(4, P, p)
is central separable. 'The left S-projectivity of D=AQ P is clear. Suppose
d=3" a;Qx; commutes with every s(=sQep)=S. Then dRE(E< P*) commutes
with s(=sQepQep«) in (D, P*, p*). By Lemma 4.2, this means that ><x;, £>a;
€A commutes with every s&€S. Hence 23<x;, £>a;€S. Let {p;} and {£}
be a pair of dual bases of P and P*. Then we have

2 a,Qx; = ]E Z <x;, £0a,Qp,ESQs2 P(=S in D).

ReMARK. The part of proof concerning the maximal commutative embed-
ding of S is independent of the separability, and valid for general S/R-algebras.

5.2. We now argue in reversed direction. Let 4 be a left S/R-Azumaya
algebra. Since A is left S-projective, ¢4, is right SQA-projective by the
separability of 4. Hence the dual module

P = Hom_ sg,(4, SQA)

is a left SQA-projective module. Since the S*module S,®,4 is S?pro-

jective, P has the structure of an S?-projective module, and we are interested

in this S%-module P. An element f of P is determined by x=f(1)€S®A4

which should satisfy sx=xs (s&S). Hence P may be identified with (S,®,4,)%.
We begin by showing that an isomorphism of S*modules

(5-2) Z’: 1P2®52 P33 S,Q,P;
is established by the correspondence
(5.3) (2 s,~®a,~)®(§] t;Qb;) — 'Z}si®(12ti®a,.bj)

Since the canonical pairing
Homgg, (4, SQA)Qs A — SQA

is an isomorphism and 4 is SQ®A-finite projective, we have a series of isomor-
phisms of S3-modules as follows:
Hom_ sg4(4, $,R:4)®s, Hom—,s®A(A» S;RQ,4)
= Homg,g (4, S;QHomy,g (4, S,8,4)Qs,A4)
= H0m53®A (A! Ss®(82®A))
= S,QHom;g,(4, S;Q4) = S,Q,P;.
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An examination of maps shows that the isomorphism (5.2) thus obtained is
given by the correspondence (5.3).
Next we shall show that

(5.4) ”P = S®52P: S; 7[(2 S,-@a,-) [and E $:a;
This is verified as follows:
S®s Homgg (A4, SR A) = Homgg 4 (4, S®s2(SQRA)) = Homgg (4, A) =S

The isomorphism (5.2) may be interpreted as &PQRgpEP=E,P. So,
applying z, as in the proof of Proposition 3.1, we have (using (5.4)):

(5.5) P'®gP =S,

It follows that P& Pi(S?), and P°=P*. The isomorphism (5.2) then gives
rise to

p: 61P®5382P*®S3G3P: S3

Thus a left S/R-Azumaya algebra 4 determines a pair (P, p)€ P*(S/R). Clearly
any algebra S-isomorphic to A yields a pair isomorphic to (P, p).

Now we shall examine the algebra (Z, P, p), where E=End(S) and (P, p)
is the pair derived from 4. Since

EQs(S,®4) = (S1®S§‘)®51/1 = S¥®A == Homg(S,, 4)
we have

E®s Homgg, (4, S;®A) = Homgg, (4, EQ s2(S.Q4))
= Homyg 4 (A4, Homg (S, A)) = Hom,(S, 4) = A4

Namely we have

(5.6) (B, P, p) = 4; MQ(Z 5:Qa;) — 2 Msi)a;

This is actually an algebra isomorphism, since we have
St )ad; = SIMJault)b;  (n pEE)

in view of > 5;Qa,(S®A)S. Since (E, P, p)=—=A satisfies the associativity,
((P, p)) is contained in Z*(S/R) by Lemma 4.1. As an element e,& P such that
z,(ep)=1, we can take 1Q1&(S®A)S. Hence the embedding of S in (E, P, p)
is given by s> s®ep, and this corresponds to the original embedding S— 4.
Hence (5.6) is an isomorphism of S/R-algebras.

ReMARK. If S/R is a quasi-Frobenius extension, Endg(S) and 4 are S?%-
projective (cf. [17] Theorem 2.1). In this case, the situation is simpler, since
P=End;(S)*®s4=Homg(Endg(S), 4) works.
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We now start with a pair (P, p) satisfying the Z?-condition, and construct
A=(E, P, p). A,inturn, determines a pair, say (P’, p"), by the above procedure.
We shall show that this pair is isomorphic to the original (P, p). At first, we
observe

P’ = Homygg 4 (4, Sz®(S§k®s31P3)) = H0m52®33(283, ('S'2®‘S'>3k)®s3 Ps)
= H0m52®33(253, S2®S>3k)®53 Py = 2S3®53 WPy=P

In this isomorphism, x&P corresponds to >'s5;®(a;Qx)< P’, where {5;} and
{a;} are a pair of dual R-bases of S and S*. Next we examine p’. This is
defined by (5.3) as follows:

[ 5:®(,@%)]Q[2]5,0(2;@9)] = 22 5,:B(2] 5,8(: @) (8 y))
= Z s,~®(}2 sj®(§)ai[’s(x; y)a,-®ip(x, )
Since a;tar;=a(t)ar; for tE S, this is identical with

S5@(S 5,00,0 B Ml )

In terms of the above isomorphism P’ 73 P, this last element of S® P’ corres-
ponds to

Z S;Qg)ai(ﬁs(x: y))ﬁP(x) y) :(:,L:n)ﬁ?(x: y)®ﬁ1’(x’ y) = ﬁ(x: y)

Thus the isomorphism of (P’, p") with (P, p) is verified. Summing up, we have
established a bijective correspondence between Br(S|R) and Z*(S/R).

Finally we shall show that this correspondence preserves the product,
namely that, if 4=(E, P, p) and B=(E, Q, q) then A*B=(E, PQ 20, pQq).
By Lemma 4.2, it suffices to show that A«B==(4, Q, ¢q). Now, as S2-modules
we have

AReQ = AQ s Hom_ sg5(B, S,®@,B) = Hom_ sg3(B, AQ (SR B))
Since AQ s2(S®B) is isomorphic to AR, B as a left S?-and right S® B-module,
further we have

AQsQ =~ Homggp(B, AQs,B) = A*B
The explicit correspondence of this isomorphism is given by
aQy— 23 as;Qb;, where y=3>15,0b(SQA)°
The multiplication in (4, O, ¢) is given by
[a®(2)5;Rb))]-[a’ Q) t,Qc;)] = Z, as,-a’@%] (1;Rb;c;)
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which precisely corresponds to the multiplication in A*B:
XD as;56)( a’t;Qc;) =2} as;a't,Qbyc;

This verifies the assertion.
These considerations, combined with Proposition 5.1 and Corollary 4.7,
proves the following theorem.

Theorem 5.2. Assume that S is R-finite projective and faithful. Then
the correspondence (P, p)— (E, P, p), where E=End(S), yields an isomorphism
Z*(S|R)=Br(S/R). It induces an isomorphism H?*(S|R)==Br(S|R).

As will be shown in § 7, this generalizes [9] Theorem 3, which treats the
case of finite Galois extensions.

ReMARK. The opposite algebra of a left S/R-Azumaya algebra is right
S/R-Azumaya. The isomorphism classes of right S/R-Azumaya algebras form
an abelian group Br’(S/R) isomorphic to Br(S/R). If S/R is quasi-Frobenius,
they coincide; if not, they are two distinct orbits with respect to Z?*(S/R).

By this Theorem, the exact sequence of Theorem 1.1 yields that of Chase
and Rosenberg [4], [18]:

e 0 — HY(S/R, U) — Pic(R) — H°(S/R, Pic)
(5.7) — H*S/R, U) — Br(S/R) — H'(S|R, Pic) - H¥S|R, U) —

The assumption on S/R is satisfied, if R is a Dedekind domain and S is
R-finite and torsion-free. If, in particular, L/K is a finite extension of fields, the
homomorphism o?: H(L/K, U)— H*L/K) is actually an isomorphism. Hence
the isomorphism H*L/K, U)==Br(L/K) so far established in various context may
be considered as a special case of Theorem 5.2. An important general case
is the Hopf Galois extensions of Sweedler [14]. We briefly recall the relevant
part of his theory, adapted to the ring case [5], [17].

Let H be a finite cocommutative Hopf algebra over R which is R-projec-
tive, and let .S be a commutative R-algebra which is an H-module algebra. §
is called an H-Hopf Galois extension of R if S is R-finite projective and faithful,
and the natural map from the smash product S# H to Endg(S) is an isomor-
phism. The cohomology is defined with respect to a semi-simplicial complex,
composed of H* and the appropriate face operators. If S/R is H-Hopf Galois,
then S**! is isomorphic to Homg(H", S) and yields an isomorphism of U-valued
Amitsur cohomology with the Hopf Galois cohomology. Sweedler defined
the crossed product S jj:H with respect to a 2-cocycle o, and proved that if

L/K is an H-Galois field extension this construction leads to an isomorphism
H*H, L)=Br(L|K) ([14] Theorem 9.7). Now let u=S?* be the 2-Amitsur
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cocycle corresponding to o. Then a simple computation shows that S4H is

isomorphic to (S# H)® in the notation of [15]. Hence it is isomorphic to
(E, S? u) by Proposition 4.4. Therefore the present theory may be considered
as a natural generalization of his theory [14]. 'The Brauer group of Hopf Galois
extensions in ring case was dealt with by Yokogawa [17], where he considered
certain construction which generalised Sweedler’s crossed products, and em-
ployed it to a direct proof of Chase-Rosenberg exact sequence. Yokogawa
[18] then extended his theory further to the general case, and some constructions
of the present paper are anticipated by these works.

6. Homomorphism S/R— S'|R’

Let @,: R— R’ be a homomorphism of commutative rings and S resp. S’
be an algebra over Rresp. R’. By a homomorphism of algebras ¢: S/R—S’/R’
we mean a ring homomorphism @:S— S’ satisfying @(rs)=@(r)e(s) (rER,
s€S). ¢ induces a homorphism ¢@,: S*/R—S"|R’ for every n.

We introduce a complex Am(gp, Pic) as follows. Am”(@, Pic)=Pic(p,)
(n>1), which consists of isomorphism classes of pairs [P, f] such that P&
Pic(S*) and f: @, P38 (in Pie(S™) (cf. [9] §4). We identify &(p,P) and
@,+1(;P) canonically. Hence we can define &;f: @,4,§;P=E¢9,P— S, and
thereupon

df: ¢n+1dP = d¢n g S"IH
Hence we have a homomorphism
d,: Pic(p,) = Pic(p,u); [P, f1m [dP, df]  (a=1)

For convenience, we put d,=0. The commutativity of

Pui2d’P ——d’p,P
Prn+2Cp lcv,,P:dzf
Pria S*E—— 5"

means that ¢,: d2P =3 S**2 defines an isomorphism [d?P, d?f]=[S**? 1]. Thus
Am(ep, Pic)={Pic(p,), d} constitutes a complex, and we shall denote

H"(@, Pic) = Ker(d,,,)/Im(d,)  (n>0)

Pic(e,) can be treated homogeneously as the group of isomorphism classes
of triples [P, f, O], where P, Q€ P%(S") and f: ¢,P= 9,0, subject to the
condition [P, f, O1[0, g, R]=[P, gf, R] (cf. [3], [9]). In this description, the
coboundary operator is defined by d[P, f, Q]=[dP, df, dO).

Now, @,: S"— 8" induces a homomorphism of Amitsur cohomology groups,
and also of our groups:
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®": H'(S|R)— H*(S'|R’); cl((P, p)) = cl((PsPs Pui1D))

For n=0, ¢° is defined to be the restriction of @ to H’(S/R) (c U(S)). The
kernel and cokernel of this map are connected with the relative Amitsur groups
H"(p, Pic) defined above, and what follows proceeds completely parallel to [9]
§4. We say that @ satisfies the U,-injectivity resp. the Pic,-surjectivity, if
U(S")—U(S") is injective, resp. if Pic(S")—Pic(S") is surjective. Notice that
if @ satisfies the Pic,-surjectivity for some 7, then @ necessarily satisfies the
Pic,-surjectivity for every k<r, since the homomorphisms &-:-&;: S¥—S" and
S"— 8" are simultaneously split by contraction homomorphisms S"— S¥,
S”"— 8", Similary for the U-injectivity.
First, we assume the Pic,-surjectivity, and define the following map:

x*: HY(S'|R') — H*(@, Pic); cl((@,P, p)) > cl[dP, p]

For n=0, X’ is defined by u"—[S, u'] where »'€ U(S") and satisfies 1Qu'=u"Q1.
The definability of this map (n>1) is verified as follows. Since dp=c, p, We
have d[dP, p]=[S**%, 1]. If (®,P, p)=(®.0, 9), there exists f: @, P= 9,0
satisfying p=gqdf. The equality [dP,p, S**']=[dP, df, dO][dO, q, S**'] shows
that [dP, p, S**'] and [dQ, ¢, S**'] are cohomologous. Hence the corresponding
non-homogeneous objects [dP, p] and [dQ, q] are cohomologous. Finally,
(94dP, cy,p) corresponds to [d?P, ¢, p] =[S™*!, 1].
Next we assume the U, s-injectivity, and will define

" H(@, Pic) = H""'(S|R); cI[P, f]— cl((P, p))

Let [P, fl€ Pic(p,+1), and assume that d[P, f]=[S**?, 1], i.e. there exists
p: dPX 8™ satisfying @,.,p=df. Such p is unique by the U,.,-injectivity.
We compare dp with ¢,. We observe @,,dp=dp, ., p=d’f=cy , p=Pr+sp
whence follows dp=c, by the U,.sinjectivity. Hence (P, p))=Z"(S/R). A
simple computation using U-injectivity shows that isomorphic [P, f]’s yield
cohomologous ((P, p))’s. Since d[P, f] yields ((d*P, c;)), we have a well-defined
map " as above.

Theorem 6.1. If @: S/R—S'|R’ satisfies the U,.sinjectivity and the
Pic,-surjectivity, then the following sequence is exact :
0 XO 0
0 — HY(S|R) -2 HY(S'[R') ——> H(p, Pic) > -
" P o X N P s
-« = H"(S|R)—> H"(S'|R")— H"(p, Pic)—> H"***(S/R)— H"*'(S’[R’).
Proof. We reproduce the proof of [9] Theorem 2 almost word by word.
1) Clearly X°¢°=0. If [S, u']=[S, 1] for u'€ U(S’) such that du'=1,
then there exists u€ U(S) such that ¢(u)=u'. By the U-injectivity, dp(u)=1
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means du=1, i.e. #’'€Im(¢°). For n>1, X"@" maps ((P,p)) to [dP, ¢,‘+1p]£
[S**1, 1]. Assume for ((p,P, p))=Z"(S’|R’), there exists [0, q] such that
[dP, p]==d[Q, q]. This means that there exists f: dP = dQ satisfying p=dqp,., f.
In homogeneous description of P*(S’/R’), we have

(@uP, £, 8) = (PsP Pus]s 2, O)(240Q, dg, S™))

From ¢y p=dp =d?’qp,,df and the U-injectivity, we deduce cp= codf, which
means ((P, f, Q))€ Z;(S/R). Since {g, 1} gives an isomorphism (¢,0Q, dg, S’") =
(8™, 1, 8™, we have cl((@,P, p, S”"))EIm(p"), which also means c/((@,P, p))E
Im(o").

2) ¥*X%u')=((S, 1)). Let [P, fleKer(y°). There exists g: P~ S satis-
fying dg=p, where p: dP~= S?is defined by the condition ¢,p=df. Put f=u'pg
with '€ U(S’). Then we have duw'=1, since df=g¢,dg, and g provides an
isomorphism [P, f]=[S, #’]. Hence [P, fl€Im(X’). For n>1, 4"X" maps
((@.P, P)) to ((dP, cp)). Let [P, fleKer(y"). There exist Q& Pe(S") and
g: dO X P such that pdg=c,e. Since @,.,p=df, we have dfdp,.,g=cyqo. It
follows that ((9,Q, fP.+18))EZ"(S’/R’), and X" maps this pair to [dQ, f®,+.g]
=[P, f].

3) @' maps [P, f] to (@pirPs Pusrad))=((S""", 1)) (cf. definition of
maps). Let ((P, p))EKer(p*™?). If n=0, there exists f: PSS’ satisfying
df=@,p. This means ((P, p))=v°[P, f]. If n>1, there exists Q& Pic(S")
such that (@, P, @,1:p) =(d@,Q, ¢s,q). Hence there exists g: @,.,.PSdp,Q
satisfying @,,p=cy odg. Then {p, co} defines an isomorphism (dP, dg, d*Q)==
(S**%, 1, S**?), and we have [P, g, dQ]€ Z"(p, Pic). 'This means [PQ ¢, dO*, g*]
€Z"(p, Pic), where gt={ >X(g®1): 9,1, PR »+1dp,0* - dp,0Q s»rdp,Q* —
S""!.  Since the commutativity of

dg®1 < >

d(pn+1P®S”'+2d2 nQ* —_— d2¢nQ®S'”+2d2¢nQ* - S’”+2
Pur2p®1 Co,0®1 c
g, 0* — PpQr S

shows dgt=(dg)*=@,+2p@cy o+, We have
V'[P Qgr+1dQ*, g1 = (PQsw+1dQ¥, pQcor) = ((P, p))(dO*, cov))
Hence c/((P, p))Im ().

Proposition 6.2. If S resp. S’ is faithfully flat over R resp. R’ we have
H(p, Pic)=Pic(p,).

Proof. Let [P, f]EPic(p) satisfy d[P, f]=[S? 1]. Namely there exists
p: dPX8?% such that @,p=df. By Theorem 2.2, (P, p) determines up to iso-
morphism a pair of Py& Pi(R) and p,: SQP, P satisfying p&;p;=E,p,. df
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is converted to 37: & PP E@P, and the commutativity of

EpP R s2E,pP*Q s2EpP ——> EpP
1 15
oo 10e; 47
S”" R s2E,pP — S

shows &, f=¢, f¢27=82 f¢’:j; Put P{=R'®P,. Then we have the following iso-
morphism f’ in Pie(S’):
’, 12 ’ ’ ¢P0 ’ f ’ ’
[ SQrPt=SQI(SQP;) — S'Q@sP—— S'QrR
Since we have
&f = & fepp, = ezfé’zgppo = &fEppy = & f

S is descended uniquely to f,: P{=3 R’ such that f'=1® f, ([12] IT Proposition
2.5). Thus [P, f] is descended to [Py, f,], and an isomorphism H%¢p, Pic)==
Pic(gp,) immediately follows.

Combining Proposition 2.1, Theorem 2.2 and the above Proposition, the
initial part of the exact sequence of Theorem 6.1 reduces to the following basic
sequence:

0 — U(R) — U(R') - Pic(@,) — Pic(R) — Pic(R’) —

in case S/R is faithfully flat. (If we assume the exactness of Theorem 6.1, the
above proposition can easily be proved by the 5-lemma technique. But the
direct proof given above will be of some interest in itself.)

The following proposition is a generalization of [9] Proposition 5.1 (cf. § 7).

Proposition 6.3. Let S/R be an extension of integral domains, and L|K the
extension of the respective quotient fields. We assume that S is finite projective
and faithful as an R-module. Then we have the following exact sequence :

0 — H(p, Pic) — Br(S/R) — Br(L|K) — H*, Pic)

This is immediate applying Theorems 2.2, 5.2 and 6.1.

7. Galois extensions

Let S/R be a Galois extension with a finite group G as the Galois group.
In this case the Amitsur cohomology is naturally isomorphic to the group
cohomology, based on the isomorphism S**"'=C"(G, S) (n-th cochain group)
(cf. [12] V). In particular it induces an equivalence of Pe(S"*!) to the category
C" of the maps P(c"): G"— Pic(S) introduced in [9] § 2, in which an isomor-
phism dP =5 .S**? corresponds to 8P(c"*') X S. It follows that H"(S/R) is iso-
morphic to H"(S, G)=H"(S/R) defined in [9], and the exact sequence of
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Theorem 1.1 agrees with that of [9] § 2 in case S/R is a Galois extension. The
isomorphism of Theorem 5.2 extends that of [9] Theorem 3.

Moreover, in this case the algebra (E, P, p) can be described as a generalized
crossed product A(J, j) of Kanzaki [11] in the following manner. Let e=
>3 u4,;@v; be the separability idempotent of .S and put e,=3] o(¥;)Rv,(c G) as
in [8]. 1*)=3Ve, gives a decomposition of the identity of S? into orthogonal
idempotents. If we regard S* as ,S7Q®s,,5% it yields a decomposition 13=
GZT} e;Qe,. When we regard $°=,S1®j5,,5%, we have ¢,Q5,6,=€,Q5, €, Now

P& Pie(S?) has a decomposition
P=11J,, J.=eP (€P(S, s)in the notation of [8])

and the isomorphism p: dP =3 S? expressed in the form

1P2®s, 2P5 = (Sl®Sz)®s1 s
decomposes into

eP®s,e.P = ¢,5,@s, e P

x Q@ y =eQj.x7)
Hence we have, for x& J,, ye J.,

B(x, y) = 2 ;@0 (u;)js +(*, 3)
Kanzaki’s construction is A(J, j)=1I J,, with j, . as multiplication, while

D = (E, P, p) = End(S)®¢ P = II S¥Q@s,e.P =11 ],

where S*=S is given by tre>1. The multiplication of D is given as follows:
forxeJ,, yeJ.,

(tr@x)(tr@y) = 23 tr+v;-tr Qo (4)j s (%, ¥)
= tr@2) r(v:)o(4;)jo,q(%, 3)
= 1rQ®Jo%, ¥)

This shows the coincidence of the multiplication of D and that of A.

If S/R and S’/R’ are Galois extensions both with G as the Galois group,
and @: S— .8’ is a G-homomorphism, @ is a homomorphism of algebras in
the sense of §6, ¢, being the restriction of @ to R. The equivalence of
Pic(S**1) resp. Pic(S™") with C"(S, G) resp. C"(S’, G) then gives rise to an
isomorphism of H"(p, Pic) to H"(G, Pic(p)) for every n. Thus the exact
sequence of Theorem 6.1 coincides with that of |9] Theorem 2 in this case of
Galois extensions.
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