<table>
<thead>
<tr>
<th>Title</th>
<th>Formation of Functional Ceramic Films with Ultrafine Particle Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsukamoto, Masahiro; Abe, Nobuyuki; Miyake, Shoji; Fujihara, Toshiaki; Umemura, Shogo; Nakayama, Takeyoshi; Morimoto, Junji</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 29(2) P.107-P.108</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/7514</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
Formation of Functional Ceramic Films with Ultrafine Particle Beams

Masahiro Tsukamoto*, Nobuyuki Abe**, Shoji Miyake***
Toshiaki Fujihara****, Shogo Umemura****, Takeyoshi Nakayama******, Junji Morimoto*****

KEY WORDS: (ultra fine particle beam) (functional ceramics) (lead zirconate titanate) (titania)

1. Introduction
Piezoelectric lead zirconate titanate [PZT : (Pb(Zr0.52Ti0.48)O3)] is utilized for sensors and actuators in micro electromechanical systems1. Anatase type titania (TiO2) is a photocatalyst2 and has antibiotic and deodorization properties. In this study we have developed deposition technology for these functional ceramics on stainless steel plate using ultrafine particle beams3.

2. Experimental conditions
As shown in Fig. 1, a film fabrication system for ultrafine particle beams is mainly composed of an aerosol chamber and a processing chamber connected by Teflon tube. There is a pressure difference between both chambers since the processing chamber is pumped down with a mechanical booster pump and a rotary pump. Helium gas flows from the aerosol chamber (higher pressure) to the processing chamber (lower pressure). Ultrafine particles of functional ceramics are set in the aerosol chamber. They are accelerated by the helium gas flow and carried to the processing chamber through the Teflon tube and nozzle. After the ultrafine particles are ejected from the nozzle, they impact the substrate and deposit on the surface of the substrate. Functional ceramics film could be produced by this deposition process. Average diameters of PZT and TiO2 particles we used were 420nm and 250nm, respectively. Each particle cohesion was modified with a ball mill machine prior to the experiment. The nozzle employed in this experiment was made from stainless steel (SUS316) pipe and had an opening of 5.7mm x 0.5mm. Substrate material was stainless steel (SUS304). The distance between nozzle and the substrate surface was 5mm. In each experiment, using PZT or TiO2 particles, the pressure difference was 0.6atm and ultrafine particle beams were scanned across the surface of the SUS304 plate in an area of 5.7mm x 5.0mm for 5minutes.

Fig. 1 Schematic configuration of the material processing system for ultrafine particle beams

†Received on January 29, 2001
*Research Associate
**Associate Professor
***Professor

****Student of Kinki University
*****Professor of Kinki University
Transactions of JWRI is published by Joining and Welding Research Institute of Osaka University, Ibaraki, Osaka 567-0047, Japan.
3. Experimental Results

Typical films fabricated by ultrafine particle beam irradiation are shown in Fig. 2. Figures 2(a) and 2(c) show the surface of PZT and TiO₂ films, respectively. These photographs indicate that each film was produced in the nozzle scanning area. Cross sections of both films are shown in Fig. 2(b) and 2(d).

Each image was observed with a scanning electron microscope. As Fig. 2(b) and 2(d) show, the thicknesses of PZT and TiO₂ layers were circa 10 μm. To investigate the adherence strength between PZT or TiO₂ and SUS 304 plate, tensile tests were performed. Results of this test indicated that adherence strength was circa 10MPa at least for PZT or TiO₂ case.

4. Summary

We have developed for PZT and TiO₂ films a fabrication system using ultrafine particle beams. Experimental results indicated that 10 μm thick layers of PZT and TiO₂ were produced in the area of 5.7mm x 5.0mm on the stainless steel plate in 5 minutes.

Acknowledgement

The authors wish to acknowledge the helpful comments by Dr. J. Akedo of Mechanical Engineering Laboratory, AIST.

Reference