

Title	On a generalization of the ''div-curl Lemma''
Author(s)	Gasser, Ingenuin; Marcati, Pierangelo
Citation	Osaka Journal of Mathematics. 2008, 45(1), p. 211-214
Version Type	VoR
URL	https://doi.org/10.18910/7516
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON A GENERALIZATION OF THE “DIV-CURL LEMMA”

INGENUIN GASSER and PIERANGELO MARCATI

(Received July 22, 2005, revised March 13, 2007)

Abstract

We present a generalization of the div-curl lemma to a Banach space framework which is not included in the almost existing generalizations. An example is shown where this generalization is needed.

1. The div-curl lemma and its generalization

In this note we present a generalization of the famous “div-curl lemma”, which was first formulated by [1] in a Hilbert space setting. This lemma is widely used in the analysis of nonlinear partial differential equations. In [5] the result was generalized to an Banach space framework.

Here we present a further generalization to a setting, where on allows every component v_i^k, w_i^k of the vectors v^k, w^k to lie in different L^{p_i} spaces (for details see below). This is of special interest in problems arising from limiting procedures in the hydrodynamic equations for plasmas and semiconductors [3], where both the original version and the version presented in [5] are not sufficient for the analysis.

We denote by

$$(1) \quad (\operatorname{curl} w)_{i,j} = w_{i,x_j} - w_{j,x_i}$$

the curl (matrix) of a vector field. The superscript $(\cdot)'$ indicates the conjugate index with $1 = 1/p + 1/p'$. Then, the generalized version of the “div-curl lemma” reads

Theorem 1.1. *Let $U \in \mathbb{R}^n$ be a bounded, open, smooth domain. Let $1 < p_i < \infty$ for $i = 1, \dots, n$ and let us denote $p_{\min} = \min_{1 \leq i \leq n} p_i$ and $p_{\max} = \max_{1 \leq i \leq n} p_i$. Let $v^k(x), w^k(x) \in \mathbb{R}^n$ for $k \in \mathbb{N}$ satisfying*

- $\{v_i^k\}_{k=1}^{\infty}$ and $\{w_i^k\}_{k=1}^{\infty}$ are bounded sequences in $L^{p_i'}(U)$ and $L^{p_i}(U)$, respectively, with $1/p_{\min} - 1/n < 1/p_{\max}$.
- $\{\operatorname{div} v^k\}_{k=1}^{\infty}$ lies in a compact set of $W^{-1,t}(U)$, where $t \geq \max_{1 \leq i \leq n} (p_i') = (p_{\min})'$.
- $\{(\operatorname{curl} w^k)_{i,j}\}_{k=1}^{\infty}$ lies in a compact set of $W^{-1,s_{i,j}}(U)$ for $1 \leq i, j \leq n$, where $\min_{1 \leq j \leq n} s_{j,i} \geq p_i$ for $1 \leq i \leq n$.

Then, the following convergence holds in $\mathcal{D}'(U)$

$$(2) \quad v^k \cdot w^k \rightharpoonup v \cdot w,$$

where v, w denote the weak limits (of subsequences) of $\{v^k\}_{k=1}^\infty$ and $\{w^k\}_{k=1}^\infty$, respectively.

REMARK 1.1. Note that in the case $n \leq p_{\min}$ the condition $1/p_{\min} - 1/n < 1/p_{\max}$ is always satisfied.

REMARK 1.2. The classical “div-curl lemma” is obtained by setting $p_i = p'_i = 2$ for $1 \leq i \leq n$. Then $\{\operatorname{div} v^k\}_{k=1}^\infty$ and $\{(\operatorname{curl} w^k)_{i,j}\}_{k=1}^\infty$ have to be in a compact set of $H^{-1}(U)$.

REMARK 1.3. As already mentioned in [5] a Banach space framework of the “div-curl” lemma is given. There, the case of $p_i = p$, $1 \leq i \leq n$ is covered.

Proof. The proof follows the ideas of the proof of the “div-curl lemma” given in [2].

In a first step we define functions u_i^k , $1 \leq i \leq n$ as (unique) solutions of the problem

$$(3) \quad -\Delta u_i^k = w_i^k \quad \text{in } U, \quad u_i^k = 0 \quad \text{on } \partial U.$$

The u_i^k are uniformly bounded in $W^{2,p_i}(U)$ for $1 \leq i \leq n$.

In the second step we define the functions

$$(4) \quad z^k = -\operatorname{div} u^k, \quad y^k = w^k - \nabla z^k$$

with

$$(5) \quad y_i^k = w_i^k - z_{x_i}^k = (u_{(j,x_i)}^k - u_{i,x_j}^k)_{x_j} = ((\operatorname{curl} u^k)_{j,i})_{x_j}.$$

Therefore, $\{z^k\}_{k=1}^\infty$ is bounded in $W^{1,p_{\min}}(U)$ and compact in $L^r(U)$ with $1/p_{\min} - 1/n < 1/r \leq 1$. The sequence $\{y_i^k\}_{k=1}^\infty$ is on one hand bounded in $L^{p_{\min}}(U)$ (second derivatives of u^k), on the other hand compact in $L^{\min_{1 \leq j \leq n}(s_{j,i})}(U)$. Indeed, according to the assumptions $(\operatorname{curl} w^k)_{j,i}$ is compact in $W^{-1,s_{j,i}}(U)$. Therefore, $(\operatorname{curl} u^k)_{j,i}$ lies compactly in $W^{1,s_{j,i}}(U)$ according to the results in [4] (at this point the smooth boundary (C^∞) is required).

Then, the limits z, y, u of z^k, y^k, u^k satisfy $z = -\operatorname{div} u$, $y = w - \nabla z$ and

$$(6) \quad -\Delta u_i = w_i \quad \text{in } U, \quad u_i = 0 \quad \text{on } \partial U.$$

Finally, using a testfunction $\Phi \in C_0^\infty(U)$ we obtain for $\min_{1 \leq j \leq n}(s_{j,i}) \geq p_i$, $1 \leq i \leq n$

$$(7) \quad \int_U v^k \cdot y^k \Phi \, dx \rightarrow \int_U v \cdot y \Phi \, dx.$$

Similarly, for $t \geq (p_{\min})' = \max_{1 \leq i \leq n}(p'_i)$ we have

$$(8) \quad \int_U \operatorname{div} v^k z^k \Phi \, dx \rightarrow \int_U \operatorname{div} v z \Phi \, dx.$$

Due to the assumption $1/p_{\min} - 1/n < 1/p_{\max}$ there exist always values of r such that (where r is the parameter used above)

$$(9) \quad \frac{1}{p_{\min}} - \frac{1}{n} < \frac{1}{r} < \frac{1}{p_{\max}}.$$

Then, the second inequality (in (9)) guarantees the convergence

$$(10) \quad \int_U v^k \cdot \nabla \Phi z^k \, dx \rightarrow \int_U v \cdot \nabla \Phi z \, dx.$$

Combining (7)–(10) we obtain

$$(11) \quad \begin{aligned} \int_U v^k \cdot w^k \Phi \, dx &= \int_U v^k \cdot y^k \Phi \, dx - \int_U \operatorname{div} v^k z^k \Phi \, dx - \int_U v^k \cdot \nabla \Phi z^k \, dx \\ &\rightarrow \int_U v \cdot y \Phi \, dx - \int_U \operatorname{div} v z \Phi \, dx - \int_U v \cdot \nabla \Phi z \, dx \\ &= \int_U v \cdot w \Phi \, dx. \end{aligned}$$

This ends the proof. \square

EXAMPLE. Suppose $n = 2$ and $p_1 < 2$ ($p'_1 > 2$), $p_2 > 2$ ($p'_2 < 2$). The curl matrix has two (nonvanishing) elements $(\operatorname{curl} w^k)_{1,2} = -(\operatorname{curl} w^k)_{2,1}$. Then $t > p'_1$ and $s_{1,2} > p_2$ are required in order to apply the theorem. This is an example where the results in [5] do not apply.

References

- [1] L. Tartar: *Compensated compactness and applications to partial differential equations*; in Non-linear Analysis and Mechanics: Heriot-Watt Symposium **IV**, Pitman, Boston, Mass, 1979, 136–212.
- [2] L.C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics **74**, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1990.
- [3] I. Gasser and P. Marcati: *A quasi-neutral limit in the hydrodynamic model for charged fluids*, Monatsh. Math. **138** (2003), 189–208.

- [4] C.E. Kenig: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics **83**, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1994.
- [5] J.W. Robbin, R.C. Rogers and B. Temple: *On weak continuity and the Hodge decomposition*, Trans. Amer. Math. Soc. **303** (1987), 609–618.

Ingenuin Gasser
Fachbereich Mathematik
Universität Hamburg
Bundesstraße 55, D-20146 Hamburg
Germany
e-mail: gasser@math.uni-hamburg.de

Pierangelo Marcati
Dipartimento di Matematica Pura e Applicata
Università degli Studi dell'Aquila
I-67100 L'Aquila
Italy
e-mail: marcati@univaq.it