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For the equivariant bordism groups of C*-manifolds with differentiable
actions of S'=U(1) and its subgroups Z,, the cases of free actions have been
studied by Conner-Floyd [3], Conner [2], Su [11], Uchida [13], Kamata [5, 6]
and others.

The purpose of this note is to study the ring structure of bordism for the
cases of semi-free actions (cf. Alexander [1], Miscenko [8]).

The authors express their thanks to the referee for his advice and careful
reading of the manuscript.

1. The ring structure of .H.(S?) (i=1, 3).

It was shown by Conner-Floyd [3] and Uchida [12] that the following
sequences are exact (and also split):

A1) 0= Iu(Z) > HulZ) > T(Z) >0,
(12) 0 Ox(S) 2 Hu(S) > (S =0,
(13) 0 Ou(SY) > Ha(SY) 2 0u(S) >0,

where J4(Z,) is the bordism group of unoriented manifolds with involution and
O«(S?) (i=1, 3) are the bordism groups of oriented manifolds with semi-free
Si-action. Corresponding to these bordsim groups, the cases of free involution
and free S’-action are denoted by Jl4«(Z,) and Q(S?) respectively. And My
(Z)= Sk, Tl BO(K)), Ml S) =Sy Qa(BU(R)) and Ha(SY)=Zun Qu(BSp(R)).

The above three exact sequences are apparently analogous, and in fact we
can study them under a uniform argument.

Let F denote either one of the fields of real numbers R, complex numbers
C, or quaternions H. Let d=dimy F, and let FP(n) denote the n-dimensional
projective space.

*¥)  The second author was supported by the National Science Council of the Republic
of China during the preparation of this paper.
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Proposition (1.4) (cf. Ossa [9]) (1) The bordsim groups Jl(Z,) and Qi
(847" (d—1=1, 3) are free modules over Jly and Q4 respectively with generating
set {®gn,=[S"7", T,]; n>1} where T,: S¢7'x S ' — 84" (S4*'C F", the
unit sphere), is the usual scalar multiplication.

(2) The bordism groups Mx(Z,)~T1x[0,, 6,, ---] and M(S*)~Qx[6,, 0,, -]
(=1, 3) are the polynomial algebras in 0, 0,, -+ over the Thom bordism rings Jly
and Qy respectively, where 0,—=[71,—~FP(n)), and 1, is the canonical line bundle.

Proof. (1) is well known (cf. [3]). For (2), we shall only show the case of
Mx(S"). The other cases are analogous. The weak direct sum 5 Hy(BU(k);
Z) and Mx(S")=Z4>, Qx(BU(k)) can be given the structure of graded rings.
The multiplications are given by

H(BU(k); Z)QH (BU(!{); Z) - H,, (BU(k+{); Z)
and
QBU(k))RQ(BU(Y)) — Q4. (BU(k+Y))

which are induced by the Whitney sum map: BU(k) X BU({)—BU(k+).

The natural map u: 3Qu(BU(k)) —SH(BU(k): Z) (Conner Floyd [3]) is
then a ring homomorphism.

Let a,= u(0,)={CP(n)} € H,,(CP(); Z)=H,,(BU(1); Z)for0,=[n,—CP
(n)]€ Q(BU(1)). Then {a,; n>0} is an additive base of Hy(BU(1); Z).

To show Mx(S)~Qx[6,, ,--+], it suffices to show that {0; ---0;,; 0<i, < -+
<iz} is an Qu-base of Qu(BU(K)). To see this, it is only necessary to show that
{u(0:,++-0;)=a;,---a;,} is an additive base of Hy(BU(k); Z) (Conner-Floyd [3],
Theorem 18.1). On the other hand. the map f: (CP(0))*—BU(k) induces a
monomorphism f*: H¥(BU(k); Z)— H*(CP(c0))*; Z) whose image is the ring
of symmetric polynomials in x,, -++, x; where H¥(CP(o0))*; Z)=Z[x,, -+, x;] with
deg x;=2. Let s,=3x{1---xf+ (the symmetric sum without repetition) where
0=ty I,y **, 1g)y 0<E,<--<ip. Then {s,; 0=, -+, %), 0<7, <+ <4y} is an
additive base of f*(H*(BU(k); Z)~H*(BU(k); Z). Since a,=a;-a;,=f+{CP
(,) X +-- X CP(i;)}, we can easily obtain the following (Milnor [7]):

8oty @y = <ty {CP(E)}> <k, {CP(in)}>
_ i 0(o'+w),
1 (o'=w).

The assertion thus follows.

12

2. The ring structure of O4(S’) (i=1, 3)

Alexander [1] studied the ring structure of J4(Z,) by using the exact sequence
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(1.1). If we make further use of Proposition (1.4), the ring structures of J4(Z,)
and O4(S?) may be determined in a definite form. We shall treat the case of
Ox(S") in the following.

In the exact sequence (1.2)

v 0
0 —> O*(Sl) —_ j}’l*(S‘) e Q*_l(Sl) - 0 5

v is a ring homomorphism defined by v [M", T]=Z=,[v,— F;] where F}; is a con-
nected component of the fixed point set F- of T and itself an oriented closed
submanifold of M”, and vy, is the normal bundle to F;in M”. Also 3[¢—M"]
=[S(), T] where S(£§)=0D() is the boundary of the disk bundle D(§), and T
is the standard fibre-preserving U(1)-action. We then have

(21) 00, = [S2”+1) To] = Qs 005 = Qlpy_,

Now, let
o, = [CP(n+1), T], n>1, with T'(s, (2, ***, 1)) = (520 ***5 52y Zpyr)-
Then

(2.2) v(o,) = 0,— 0" (n>1)
holds.

Next, we define an Qy-map
(2.3) T': Ox(S") = Ox(S?)

as follows (Conner-Floyd [3], p.119). If T, is the standard S'-action on D7
then for a manifold (M”, T) with a semi-free S'-action T, we form a manifold
(M2, T) from (—D*x M”", T,x 1) and (D*x M*, T,x T) by identifying the bo-
undaries via the equivariant diffeomorphism ¢: (S'XM", T,x1)—(S'x M™,
T,x T) which is defined by @(s, x)=(s, sx). We then define T" by

(2.4) T(M* T)= (M™* T)= (—D*xM*, T,x1), g (D*xM", T,xT),.
Since the fixed point set of T is Fz=((0)x M"),U((0)x Fz),, we have
(2.5) v[M™?, T = v[M", T]-0,—[M"]-6,.
By using the following notations
t: Mu(S?) = Mp1o(S7), (%) = x-6,,
&: 0,4SY) — Q,, §M*, T] = [M"],
T Qp = Muio(SY), T[M™] = [M7]-6,.
we can express (2.5) in the form

(2-6) vID = w—7€.
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Lemma (2.7). (cf. Alexander [1])
T'(ab) = T'(a)b+E&(a)T(h),
= al'(b)+&(b)T(a) for a, b Ox(S").

Proof. It follows easily from (1.2) and (2.6).

Theorem (2.8). The bordism group Ox(S") is a free Qy-module with gene-
rating set {T%(a; - 0;,); {>0,1<j, < <j} U{1}. Its ring structure is then
given as the quotient of the polynomial algebra Q[T(o;); >0, j > 1] by the ideal
generated by

(o) T™(08)—T"(o4)-T" (o) —ET*(0;)- T (a4)
FED™(0) T(a ) (4, m>0; j, k>1).

Stmilarly for Ox(S®).

Proof. Turning our attention to (2.6), we see that if the monomials of My
(S") are given a suitable order, then

v(T¥ (o j, 0 j,))=080;,--0,+lower terms

holds. Since {0§0,,---0;,} is an Qy-base of Hy(S"), the first half of the theorem
follows.

For the second half, we first observe that {I'%(s;); />0, j>1} forms a
generating set of the Q4-algebra O4(S") in virtue of (2.7). Then the assertion
of the theorem can be verified easily by comparing the ranks of the associated
graded modules of the suitably filtered modules in question.

3. On the ring structure of 0(Z,)

Let p be an odd prime. We treat here the case of Z ,-action, particularly the
case p=3, in this section. We already have the following exact sequence

(Conner [2], Wu [14]):

Z v o _
(3.1) 0 = Qi 5 OL(Z,) > H(Z,) > Du(Z,) > 0

where O«(Z,), similarly in the previous section, denotes the bordism group of

semi-free Z -action, and Hx(Z,)= JM*(S‘);@ e (? Mx(S*) ((p—1)/2-fold tensor

product over Q) The reduced group O*(Z,)=Ker & where Qy(Z,) is the
bordism group of frec Z,-action, and &:Q4(Z,)—>Qx is defined by &[M", 7]=
[M"[r]. The homomorphism ix: Qx—>Ox(Z,) is defined by ix[M*]=[M"]+ p,=
[M*x Z,, 1 Xca], where u,=[Z,, c]€O0(Z,). And the homomorphisms » and 3
are to be analogously defined as in the previous section.
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For the sake of simplicity, we consider only the case of p=3 in the following.
We have the following commutative diagram (Wu [14]):

0
0 > Ox(SY) = Hx(S") — Qu(S?) — 0

(3.2) ) ~|A lx
i* 14 0 ~
0 = Qy = O(Z,) > Mx(Z,) = Ox(Z) = 0

where each vertical map A is the natural map obtained by restricting the cor-
responding S'-action to its subgroup Z,, We then have the following results
(Conner-Floyd [3], §36 and §46):

1) The map \: Qu(S*) — Q4«(Z,) is an epimorphism.

2) Qu(SY)~Qy4_(CP(<)) is a free Q4-module generated by {a,,.,=
[S**7, T]; n>1}.

3) 'There is a sequence of oriented closed manifolds, M*, M?, .-, M*, ..
such that if we put

(33) 182n—1 = 3a2n—1+[M‘]azn—s'l_[MB]azn_g‘}‘"‘, (nZl) 5

then {8,,._,; #>1} constitutes a generating set for K=Ker .
Now, put

(34) B = 300+ [M"05*+[M°)05 '+, (n21),

and identify HMx(Z,) with HM(S") by the isomorphism X. Then B, is in the
kernel of 8: Mx(Z,)—>0x(Z,) for each n>1:

(3.5) 8(B.)=0.

Therefore, from the exact sequence (3.1), there exists u,& Ox(Z,) such that v(u,,)
=, for each n>>1. We thus obtain the following theorem (Wu [14]).

Theorem (3.6). O«(Z,) is isomorphic as a free Qy-module to the direct sum
of Qse{or pase+} and MOx(S")).

We go on to study the multiplicative structure of Ox(Z;). It is evident
from the previous arguments that {ux(k>0), I''(c;) (/=>0, j>1)} can be taken as
a generating set of Qy-algebra O4(Z,) where M(T"(a;)) is simply denoted by TV
(0;). The map A :04(S*)—>0x(Z,) is a ring isomorphism of Ox(S") into O«(Z,),
and Im A~(0O4(S") is a subalgebra of Ox(Z,). Also, Im iy=Ker v=Q4- p,(p,=
[Z,, o]) is an ideal of Ox(Z,). In fact, if we let &: Oy(Z,)—>Q4 be defined by
E[M”*, T]=[M"], we have

(3.7) pora = &), for acO«(Z,).
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We next have to appropriately choose and fix p,(n>1) so as to study the
relations among them. First, let

(38) H = [Mz: Tl] ’

where M? is the algebraic curve 23+23+23=0 in CP(2) which is non-singular
and of genus 1. The action 7, is defined by 7,(2,, 2, 2,)=(,, 2,, p%,) with p=
exp (27i/3). The fixed points of 7, are (1, —1, 0), (p, —1, 0) and (p?, —1, 0),
(Conner [2]), so we have

(3.9) v () = 30,
Next, let
(3.10) . = [CP(2), 7]

where 7, is defined by 7,(z,, 2,, 2,)=(2,, P21, P°?,) -
Since the fixed points of 7, are (1, 0, 0), (0, 1, 0) and (0, 0, 1), we have

(3.11) v(pg) = 363.

Before determining appropriate u,(n>3), we need some preparation.
First note that for an oriented closed maifold (M”, T) with any S*-action T, not
necessarily semi-free, we can define also the T'-operation just as in §2;

(3.12) T[M", T] = [#1*, T]

which is an operation on the bordism group of all S*-actions.
We may also define the manifold with Z,-action A(T') (the restriction of an
S*-action T) as follows:

(3.13) MM*™, T) = (M*, M(T)).

Since the fixed point set of X(T) for (W% A(T) is Facr=((0)x M"),U
((0) X Facry),, we have

(3.14) v[M2, M(T)] = v[M”, M(T)]-0,—[M"]-6,,
or equivalently,
(3.15) VAT = wA—TEN .
We thus have, by induction, the formula
(3.16) A" = wyx_gw-'—wam .
Consider now the manifold

(3.17) (CP(2), T)
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where T, is an S'-action defined by T,(e%, (2,, 2., 2,))=(3,, €%2,, €*2,). Itis
seen that

(318) X[CP(Z), Tz] = [CP(Z)’ Tz] = M2
We then define
(3.19) e = A" [CP(2), T,), (n>=2).

It now follows from (3.16) that
(3.20) V(i) = 3032 E(1us2)05 7

- 393—2 ()0 .

This may a little differ from the condition »(u,)=@, of (3.6). However, it

does not matter, because {3,; n>1} is still a free base of the kernel of 3: Q4[6,]

—04(Z,) when we take for 3, the right-hand side of (3.20) instead of (3.4).
From the above definition of u,, we first obtain the following relations,

pi = 3p—E(po)tto s papts=3pa+E(s) s »
(321) Byl = 3ﬂ'n+1+e(ﬂ’n),u’1—8(”’n+l)#’o ’ (nZl) ’
Potin = 3piniot E(n) ot E(Bns) t1—E(Rni e s (n=2)

which can be proved by operating » and € on both sides of the equations.
Here notice that &|Ker » is a monomorphism, &(u,)=0 and &(u,)=0.
Moreover, we have

I (o) = 3T (o) +E(T (o)) s — ET* " (01) 2o »
(3.22)
1T (0;) = 3077 %(0))+E(T () o t-E(T (o)) pr— E(T *(05) 2o

We have finally the relations among u, for >3 and I'%(c;) as follows:
Halbm = l‘n—ll‘mH+8(ll’m)llm_8(,u'n—1)ﬂ'm+1 ’

(3.23)
1T = pon T ()6 ) pu—E(pin )T (), (123).

The relations (3.23) could be also derived from (2.7), if we formally put u,=
T'(n-,). Hence the multiplicative structure of Ox(Z;) is essentially ruled by
(2.7), except for (3.7), (3.21) and (3.22).
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