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Supplements and Corrections to my paper ;
«“On Algebras of Bounded Representation Type”’

By Tensho YosHII

In the present paper we give supplements and corrections to the
paper mentioned in the title. We abbreviate this paper by [A].

Supplements

In [A] we showed the proof of the “if” part of Theorem 2 in
outline because it was quite long but we are afraid that it is too rough
to be understood. Therefore in this supplements we shall show it in
some detail and moreover we are going to clear the proof of my paper

[1].

1) Let A be an associative algebra over an algebraically closed field
k, N its radical and >3} Ae,,, the direct decomposition of A into directly
KA

indecomposable left ideals where Ae.,=~Ae,= Ae,. Moreover we assume
that N*=0 and A is the basic algebra.

If Ne, where e is a primitive idempotent, is the direct sum at most
two simple components an A-left module m =31 Aem; is the direct sum

of direct components of the type Aen;. Next' if Ne=i:, Au; an A-left
module m=>1Aem; is the direct sum of direct componer‘lgs of the follow-
ing types; ’
(1) Aen;
(2) Aen;+Aen;., where wumn;=0, un;=0, un;=un;,,,
un;n =0, un;, =0,

These proof was shown in detail in [A]. Hence we shall use these results
without proof.

Now let m=2§ Ae;m; ., be an arbitrary A-left module and {Ne,,

-+, Ne,} be a chain of A From the results of [A], we have to prove
it in the following four cases:
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(1)

(2)

(3)

(4)
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{Ne,, ---, Ne,} is such a chain that each Ne; is the direct sum
of at most two simple components.

{Ne,, ---, Ne,} is such a chain that either Ne, or Ne, is the
direct sum of three simple components and all other Ne; are
the direct sums of at most two simple components.

{Ne,, Ne,, Ne,, Ne} is such a chain that Ng, is the direct sum
of three simple components, Ne, is the direct sum of two
simple components and Ne, and Ne, are simple.

{Ne,, Ne,, Ne,} is such a chain that Ne, is the direct sum of
three simple components and NNe, and Ne, are the direct sums
of at most two simple components.

[The case Il Suppose that {Ne,, ---, Ne,} is such a chain that

Ne, = Aut’ + Auti+@ where Auit’~Ae,, and &;4=§,,,. Then it is clear
from the proof of [A] that an arbitrary A-left module m=>313" Aem, »,
ix;

is decomposed into directly indecomposable components M; of the follow-
ing type;

M, = Aem,, ;x Aemn, ;* - x Aen, ;

where Aemn; ;x Ae;.m;,,,; means that Aem, +Ae, . m;,,; and Aemn, ;N\
. — CE.
Ae; iy ;= Augtivon,; ;= Au&{l)”iﬂ.j .

If we express it by the matrix form we have the following form ;

3) R(a)= [%( 19] for an arbitrary element a of A where X and Y

are the direct sums of Is;xx; and I:;xy;» and

2
x£1.1 xel.z >

xéz,z xfz.a

x§3.3

Xe, v

r:

From now on we have only to consider about the form of Z.
[The case II] {Ne,, -+, Ne,} is supposed to be such a chain that

1) Is,'Xx,'= x’ 0 }
N %

—_—
Si

2) See [A], [1], [2] or [3] for =g, ;.
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Ne, = AuEP D AuEPP Aufs? and Ne; = Au{t’>P Auti+’ where i==1 and
Au,‘,'-fx’erg,..
Now we put m=3>m; where m;=3>1Aem;,.,. From the result of

[A], m, is the direct sum of Aen,; or Aem, ;+ Aemn, ;,, which have the
type 1) or 2). Then we may arrange m, in the following way ;

Z Aeln‘” &) Z‘ Aeln‘” &) Z Aeln“) D 2 Aeni B 2 Aens;
EB 2 Aens D }] Aem, ; EB Z (Ae,n*)+ Ae,ns%)

where Nenl; = Auitns}), Nen’ = Auton®), Nen?)= Au’n), Neni"; =

AuEn®) @ Au2nsy),  Nen®)= Aultrn®) P Aut2n®), NenS)= AuErn®) D
AuEons), Nemn, ; Ne1 and (Aeln“”+Aen‘5>) have the type 2).

It is clear that ZAe ni% EBEAeInP; EBZAeln“) is the direct summand

of m. Such a components is called the trivial component. Now by the
D
same way as the case I we have m,+m,+---+m,=>1(4em,, ;% ---x Ae,n, ;).

i

Moreover we put #,; N"’) if Ae,n, ;* ---x Ae,i,; where Ne,f, ;= Auitrn,
and n, ;= N{%; if Aem, ;x---x Ae,n, ; where Ne,n, ;~Ne,. Other components
are the direct summands of m and need not be deliberated. Now suppose
that 2,8 uEPny + E «yju‘§2’n(‘“+ NS uEPny + > pusErn, + 3 puEPny =
2,3§1)u§§2’N§§) +2,8§,2’u§£2’]\72‘f’+2 Bgsm;g@ﬁf;?) + +2 BEUEIND, Then in
the left hand side one of #, is replaced by N,;=3> 8NP +> yni} if
p;=+0, and one of #{y is replaced by N{P=31Bn{+> yn$ and one of
ny is replaced by NP =263 +> pu3 if p,=0. Next in the right
hand side one of N5 is replaced by ‘”=E,8‘”f\7‘2)+ +3IBPNY
vx/z\here t is the mimmur? of all p of N“’) or, if B’ = 0 for all N one of
N§p is replaced by M“" 233“N§%’+ N ;;’) where s is the
maximum of all » of N‘"’.

Moreover suppose that (Ae,N,;* Ae, M} - x Aegn,,) + Ae, NP + (Ae, My

-k Ae,m,;) where r<Us and u M) = nu>N,;+nu?N». Then 1f
M, is replaced by Ni=nN,;+7N{? and M) is replaced by M, =

1 1
M — o, e, ng by ng—— p n,; we have (Ae, Ni;x Ae, M ---x Ae,n, ;)

EB(Ae,N Yx Ae, M % -+ x Aeny;).
In this way m is the direct sum of directly indecomposable com-
ponents of the following types;

2,1) AeNPx Ae,MPx ---x Aen,;

3) @ denotes the direct sum.
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2,2) AeN{PxAe,MPx ---x Ae ng;

2,3) Ae, NPxAe,MPx---x Aen,;

(2,4) AeN,;xAe, M - Aeng;

2,5) (Ae, N+ Ae,N3)x Ae, My x -+ x Aen;

(2,6) (Ae NP Ae, My * - x Aeng;) + Ae,N¥j, + (Ae, MY x -+ x Ae,n,,)

where w2 M = nuEP NS + 9uE2? N5}, and »==s.

AN
(2,7) (Ae.N{Hx Ae,M{)x - x Aen, ;) + Ae, N1+ (Ae, M} x - x Ae, 7, ;)
where ##M" = nuEP N +9u NG, and r<s.

If we use the matrix form (3) these types are as follows;

%, O
%en O 0
1 x '2
@1)  z=|TE e
0 xga,z.
0 .
Xess

This is the type 2,4) and contains 2,1), 2,2) and 2,3).

xglfl 0 0
Xy Xepo O 0
0 Xepz Xy
2,2 7 — 2 20
( ) 0 0 Xen
0 .

xfs.s,

This the type 2,5).

%, O 0 0 0
0 Z,, O 0 0

Xe,n 0 xgo X, O
0 &, 0 %, O
0 0 2. 0 x,
0 0 0 Z,, O

2,3 Z =

Xegr

This is the type (2,5) and contains the type (2,7).
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[The case III] Suppose that {Ne,, Ne,, Ne,, Ne,} is such a chain
that Ne,= Au>, Ne,— Auf>D Auit?, Ne,— Auf> P AuE> Aulf and Ne, =

Au§§3)-

Moreover in this case and the next case we shall consider the

proof by the matrix form. Hence we have only to considera about Z of 3).
Generally Z has the following form;

ZE] 1

No
Yo

0

7 =

|
L

ZE1.2

0 Zg’z.z Zsz.a

0
0

Z€1,1
0
0
0

Zeo O
Zﬁg,z Z§2'3
0 Z,
0

0

ZSO,S
Z£3n3

from the result of the case II.

0
0
0
0

0
0
G 1) 0
0

Xe1
0
0
0

(3, 4)

(3, 6)

3,8)

O O O O o O © O O

S O O O

xfg,z
xlﬁz,z
0
0

0

xEZ,s
0

x£3,3

xﬁl,z

x§2,2
0
0

x£1»2

0
x$2:3

Xty
0

x82.3

ng-S

0
xgg 2

0

0

, (32

oS O O O

0
xfz 3
0 ’

x§3-3

0 0

0
x,§2,3 ’
’
Xg53
0

0
0

0
0

/
x 50-8

)

Xty

0
0
0

\

|
1
.

Zg3,3 253,4 )

0

xfz.a
0

x63.3

3,9)

37

3,9

is the direct sum of the following components

0 x,, O
0 Xep2  Xeya
» 3,3 . ouP
©:3) 0 O 0
0 0 xga_a J
0 O 0 0
0 xgz,z Xt,.3 0
0 i xlﬁz.z O x’§2,3 ’
0 0 0 x,go_a
0 0 xgs'a 0
x§1,1 xfl.z O 0
0 x, %5, O
0 x,gz,z 0 x,gz,a ,
0 0 0 %,
0 0 X3 0
0 0 0 0
0 xEZ,z x£2-3 0
0 0 Xeq3 x’go,a ’
00 0 o,
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(3, 10)

(3,12)

3, 13)

(3,14)

(3, 15)

3,17

(3, 19)

o O O O oS O O O oS O O O

0 ., O 0
0 x,, %, O ‘
0 0 g, ¥ 1’
0 0 0 =,
0 xgl,z x,gl,z 0 0
0 0 A, &¢s O
0 x,, O 0  A'g,s
0 O 0 0 ¢,
0 0 0 ¢, O
Xeo X Xg, O 0
0 0 ¢, &g, O w
0 x,, O 0 g,
0 0 0 0 e,
0 0 0 ¢y 0 )
Xe,, Xg. O 0 0
e 0 xg, O 0
0 x5, 0 x,, O
0 0 . 0 Ag,
0 0 0 0 X
0 0 0 x, O

0 0

0 x,.s

0 x¢5 )

0 x,,

xe,.. O

Xty2 Xty

0 5|

0 e

0 O

0 O

0 xg |

0 %,

Tensho YosHII

3,11)

3, 16)

(3,18)

' Xe 1 KE2 0 0
Xty Xeya 0
0 0 x€0’3 _x,::’o.3

0 0 0 xp,

0 0
Xty Xy
)
0 X3

S O O O

0 Xe,3

Xe1 Xepe 0
0 Xty2 Xty3
0 0

0 0

’
x£0,3
Xtya

b
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Now let Z°° and Z” be the components of the type (3,7) and (3,7).
Moreover we put

. VAN e, j
0 Zw» x'g3,4

where Z° is on the different rows and columns from those of Z“° and
Xg,. is on the same row as x¢,, of Z% and x'y, is on the same row as
%¢,, of Z9, Then if R(a) is not decomposed into at least two direct com-
ponents,® Z> and Z‘” are said to be unseparated. Then if there exists
a group which contains at least four unseparated components, we can
construct an arbitrary large directly indecomposable representation by
the same way as Lemma 6 or Lemma 7 of [A].

But if not, it is proved by the same way as Theorem 1 or [ A] that
an arbitrary representation is decomposed into directly indecomposable
components of finite degrees. Hence we have only to show that there
is no group which contains at least four unseparted components.

Now suppose that {1)—2), 3)} denotes that the components of the
type (3,1) is unseparated from the component of the type (3,2) or (3,3).
Then

{ 1) —16), 17), 18), 10)}
{ 5 —>14), 19)}

{ 6) — 16), 18), 19)}

{10) —> 13)}

{12) — 18), 19)}

{13) — 19)}

{14) —> 16), 19)} .

Hence the groups of unseparated components are as follows :

(1,16), (1,17), (1,18), (1,19), (2,8), 2,10), 2,11), 2,19), (3,5, B,7),
3,8), (3,16), (3,18), (3,19), (4,5), (4,8), (4,10), 4,12), (4,16), (4,19),
(6,15), (5,19), (6,16), (6,18), (6,19), (7,16), (7,17), (7,19), (8,12), (8,13),

4) We denote the representation which has Z in the left lower corner by Z.
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(8,14), (10,13), (12,18), (12,19), (13,19), (14,16), (14,19), (3,5,19),
(3,7,16), (3,7,19), (4,5,19), (4,8,12), (4,12,19), (5,14,19).

From these groups we have indecomposable components of different
types from above and if we repeat the same process as above we have
the following types of indecomposable components and an arbitrary
representation is the direct sum of these components. (3,1%), ---, (3,19)
are obtained from (3,1), -+, (3,19) such that Z; ,==x: , is on the same

row as x¢ ., and to the right of it.

Ze,s O 0 0 0
X8 0 0 Xtaa
0 ¢, %, O 0
(3, 20') fos T8
O 0 x,€2.2 x/ljg,s O
0 0 0 x¢s O
0 0 0 Xy, ..
where if ¥ ., &'t,, and «'t,,=0, x’;,,=0.
x£2,2 x£2x3 0 0 O 0 0
0 2, O 0 0 g,
0 0 e . Xe, O 0 0
@, 21) Foa Do
0 0 0 xlgz,z xlgz,a 0 0
0 0 0 0 x5 %'gs O
0 0 0 0 0 x’53_3 x/§3,4
where if x,gl,l, xlgl,z and x/52‘2=0, x'£2'3=0 and x’EO.3=O.
¥t O 0 0 0 0 0
Xes Xbs O 0 0 0 0 0
0 #%s O 0 0 0 0 2,
0 0 g %, O 0 0 0
322) | 0 0 &gy, O %, 0 0 O
0 0 0 Xt,2 0 Xty .3 0 0
0 0 0 0 %, 0 gy O
0 0 0 0 0 0 a4 O
0 0 0 0 0 x,. 0 g,

where «'y,; may be zero.
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Xt O 0 0 0 0
X2 Xe O 0 0 0
0 x,. O 0 0 .,
(3, 23" 0 0 x'gn ¥'ge O 0
0 0 0 x'gz,z x’gz,a 0
0 0 0 0 ¢ O
0 0 0 0 g 2,4

where #'¢, .40 and if x'¢,,=0, &'t ,=0.

Xt1 Xe2 0 0 0 0 0 0
0 x, %,s O 0 0 0 0
0 g, 0O s O 0 0 0
0 0 0 x'¢s O 0 0 0
(3, 24') 0 0 x¢s O 0 0 0 x.
0 0 0 0 4, #'%. O 0
0 0 0 0 0 ', 2L, O
0 0 0 0 0 0 x%, O
0 0 0 0 0 0 %, %'t

where if x¢,=0, x¢,,=0 and if x; ,=0, x¢ ,=+0.

Ko %, O 0 0 0 0 0
X, O %y O 0O 0O O O
0 %, O x, 0 0 0 0
0 0 &g, 0 %y O 0 O
32) | 0 0 0 0 xg, O 0 0
0 0 0 x, 0 0 0 x,
0 0 0 0 0 #f,xh, O
0 0 0 0 0 0 %, O
0 0 0 0 0 0 &%, &,

where %'y .\, ¥'¢.., ¥'t,., ¥, and &'y, may be zero.

75
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Xe,n Xge Xp, O 0 0 O 0O O
0 ¥¢, 0 x,, O 0 O 0 0
0 0 ', 0 gy O 0 0 0
0 0 0 0 %¢,s O O O O
(3, 26" 0 O 0 x, 0 0 O 0 x,
0 0 0 0 0 #., 0 0 O
0 0 0 O 0 xt,2,s O O
0 O 0 0 0 0 i, 2g, O
0 O 0o 0 O 0 0 s %4,

X Xy, 00 0 0 O O
%, 0 4, O 0 0 O O
0 ¢, 0O g O O O O
0 0 0 ¢ O O O O
3, 27) 0 0 x, O O 0 0 x,
0o 0 O 0 ¢, 4. O O
0 0 0 0 0 %, 2t O
0o 0 0 O O 0 «%, O
0 0 0 0 0 0 i, 4.
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X%, 0 0 0 0 0 O
0 0 4,0 0 0 0 O
0 #,, 0 0 0 x,, 0 0 0
0 #¢,.0 0 0 0 4,0
0 0 %#4,,0 0 0 O #(,,0 0 0 0 0 O
0 0 0 %¢,0 0 0 0 %¥£,0 0 0 0 O
0 0 0,0 0 0 0 0=x,0 0 0 0
0 0 0 0 % 0 0 0 0 0 x5 0 0 0
328) | 0 0 0 0 0 0 4,0 0 0 0 0 0 O
00 0000 0 0 0 =x, 0 0 0 0
0 0 0 0 0 0 x2% 0 0
0 0 0 0 0 x 0 0 O
%, 0 0 0 0 0 0
0 0 0 0 «¢,0 0 0
0 0 0 0 0 x4, 0 Ze
0 0 0 0 0 0 x
0 0 24,0 0 0 0 )
where
X, O 0 0 %, 0 0 0
0 0 0 0 0 0 0 0
Zea=| 0 0, |22 0}, 0 0 |, |« 0 |,
xgu O xg, O Kios Ko X, X
X0 0 2t 0 0 x'¢,. 0 .
Xegq Xy X, O }
0 0 0 %,
0 x££, or 0 O
%, 0 X8, E

x’éad 0 x,é3.4 0



78 Tensho YosHII
XEa 0 Xt.2 0 0 0 0 0
0 #¢, 0 x¢,,0 0 0 O
0 4,0 0 #%,0 0 0 0
0 0 Xtz 0 0 0 Xt,.3 0
0 0 0 #4%,.0 0 0 «¢,, 0 0 O O O
0 0 0 0 #4,.0 0 O x¢4,0 O O O
0 0 0 0 0 %, 0 0 0 x 0 0 O
329 | 0 0 0 0 0,0 0 0 0 x 0 0
6 0 0 0 06 0 0 O #,,0 0 0 O
0 0 0 O «, 0 O
0 0 0 O 0 x2 O
X, 0 0 0 O O
0 0 %, 0 0 0 0
0 0 0 #, 0 O
0 0 0 0 0 =«
where
x§3,4 0 Xtqa 0 0 0 0 0
0 O 0 O X0 0 X, O
Z§3.4 - ’ - ’ : _
0 A A 0|
%, 0 0 £ x 0 0 £
Xtqs 0 0 Xeqa
0 x’£3.4 4 £3.4 0
N or
x5, %D, 2, 0

(5)

2%, 0

Ko TE)s

S O O O O o o
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Xe. X, O 0 0 0 0
0 0 xp, %4, O 0 O
0 x,, 0 0 x, 0 O 0
0 0 g, 0 0 &y, O
0 0 0 4, 0 0 &,
(3, 30) 0 0 0 9, % 0 0
0 0 x, 0 0 0 O
0 0 0 0 % 0 0
0 %, 0 0 0 0
0 o 0 o 0 Pt
0 0 0 -0
where
( Xe,a O X, O
Zga_4= x'53_4 0 or x’§3,4 .76’53,4 .
20, 0 0

[The case IV] Suppose that {Ne,, Ne,, Ne,} is such a chain that
Ne,= AuPP Auie?, Ne,= Aust? D AuECD AuE> and  Ne, = AuE> P Ausss.
Now by the same way as above we use the matrix form. Then Z has
the following forms;

Zeg, O 0
Zﬁz,l Zéz,z 0
Z=|0 Z., 0
0 Z£3,2 Z-S3,3
0 0 Zs
Z§3'3 . o
and z is assumed to have the following form ;
54:3
Z’g‘3,3 Z’ES,S ,23.3 Xt,.3
= where Z; , = Oxlgfa.. 0
Zg4,3 0 ZE4-3 xéi%
Zy, 000
Zeo Zt, o . .
Now 52'1 Zﬁz- , is the direct sum of the components of the
£o2

0 Z£3'2 Z/£3'3
the following types;
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4,1)

4,4

4, 6)

4,8)

4, 10)

(4,12)

(4, 14)

Tensho YosHII

0 0 O 0 0 O
0 0 0 0 %., 0
) 4)2 z b
0 x,, O A
0 x,, O 0 x, O
Xg 0 0
Xtp1 Xiyoo 0
) 4,
0 0 01 *5)
0 X,z 0)
Xt 0 0 0
Xep1 Xey2 0 0
xlé‘zd 0 xléz,z 0 ’ (4, 7)
0 0 ¢, O
0 Xtq,2 0 0
0 0 0 0
Xe,,1 Xt xlg 2 0
2 2 2 , 4 9
0 0 1z, OJ @9
0 Xtg.2 0 0
Xt x’gl,l 0 0 0
Xty 0 Xty,2 0 0
0 4y O Ay, OF, 4,11)
0 0 0 #, O
0 0 x, O 0
0 0 0
X1 Xy 0
, 4,13
0 xgo,z 0 ( )
0 Xeg2 0,
Xtz 0 0
Xy.2 0 X3
: =, 4,15
0 %, 0 (4, 15)
-0 x,ga,z x’§3,3

0 0 O
X,y Xg,0 0

0 0 0

0 Xtg,2 0,

4,3)

‘X, Xge O

0
Xy 2. O
0 x’go 2 0 ’
0 xg. O 0
0 0 0 0
0 x. ¥, O
0 0 ¢, O ’
0 Xeg,2 0 0
‘%, O 0 0
Xtpr Xey,2 x'gz,z 0
0 0 g O
0 . O 0
0 0 0
0 x,, O
0 x,, O ’
0 x,, O
xe,: O 0
X, Xgo O
0 %, O
0 x,., O

Xt).2 0 0 0

Xeg.2 0 0 Xt,.a
0 x,gz,l Xt .2 0
0 0 ¥eo e
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. O 0 0 0
Xeg,2 0 0. O 73
0 gy &g, O 0
0 x4, 0 %%, O
0 0 0 &%, O

/

X, O 0 0
xg,. O 0 x,,
4, 16) 0 g, O o |, 417
0 gy ¥, O
0 0 Xgo Xeg

0 0 . 0 A,
Xg,, O 0O 0 O X, O 0O 0 0 O
xg,. O 0 0 =, X, O 0 0 0 =x,
0 #¢,, 0 0 O 0 ¢ #4,0 0 O
4,18)| 0 /¢, &¢,, 0 O y 4,19 0 &y, 0 4,0 O
0 «¢. 0 %, 0 0 0 «(.0 2,0
0 O 0 #%.,0 0 0 0 0 #%.0
0 0 Ay, 0 ag, 0 0 0 xe. 0 e

Xey1 Xey2 0 0 0 0
0 Xt,,2 0 0 0 Xt
0 0 #,, 0 0 0

Xe,1 Xg,e O 0 O
0 x;s,z 0 0 Xtq.3
4,200 0 O &, 2.0 |, (421)
0 0 0 4,0
0 0 . 0 .

0 0 &gy ¥t L. O
0O 0 O 0 #%.0
0 0 0 x/53,2 0 Xt, 3

%, 0 O 0 O
0 Xe,q Xg,. O 0 O
0 x,, O 0 x4
0 0 #, 8,0 |
0 0 0 #%.0
0 0 x/gz,z 0 x’53,3

4,22)| 0 0 ¥, e, O O |, (4,29

%, 0 0 0 0 0
%, 0 0 0 0 %, %,, 0 0 0 0
Xty Xgy oo 0 0 0 x/,gz'l 0 xlgz,z 0 0 0
0 x,, O 0 x,., 0 0 «¢,0 0 0

(4, 24) ,  (4,25)

0 0 ', %%,.0 0 x,, 0 O 0 x,q
0 0 0 «%.0 0 0 0 «%, 2%, O
0 0 0 W&o, - 0 0 0 0 4. O
0 0 0 0 b, &k,
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(4, 26)

(3,27

(3, 28)

Then

X, .2
X,z
0
0
0

Tensho YosHII

Xty 2 x’,gz,z 0 0
0 gy, O O

X, 0 0 O
0 0 h, ¥,
0 0 %, O
0O 0 0 ¢,
0 0 0 0
0 0 0 0

2%, 0 0 O

Xgp1 Xgy2 0 0
0 %, 0 0
0 0 i, &,
0 0 . O
0 0 0 0
0 0 0 x/ga,z
0 0 0 0
0 0 0 0
0 0 0

0 0 g,

¥epn ¥ O ’

0 ¢, O

/
0 x’;_.-a.z Xt,3

0 0 0
0 0 0
0 0 s
0 0 0
2t,. O 0
0 «%, O
0 %, O
Xt 0 X,
0 0 0
0 0 0
0 0,
0 0 0
%, O 0
2t 0O 0
0 0 A,
0 «¢, O
0 ¥ ¥
Xty
Xtz
0
(3, 29) 0
0
0

0 0 o0
0 0 s
¥ea O 0
Ye,n e O
0 g, O
0 .7/,53_2 x’;a,a

1)——>2), 3), 4), 5), 6), 10), 22), 24), 25), 27), 28), 29),
2)—12), 13),
3)——7), 9), 14), 16), 17), 18), 19), 23), 26),
4)—5), 7), 12), 14), 17), 18), 25, 27), 28),
5)—>14), 16), 18), 24), 27),
6)—->12), 14), 28),
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7)——10), 15), 16), 19), 22), 24), 27),
9)——15), 20),

10)——14), 16), 17), 18), 23),

12) —29),

14)——22), 24), 25),

15)——22), 23), 26),

16)——17), 22),

17)—22), 23), 24),

18)——22), 24),

19) ——>22), 23).

Hence the groups of unseparated components are as follows ;

1,2, @,3), 1,4), 1,5), (1,6), (1,10), (1,22), (1,24), (1,25), (1,27), (1,28),
(1,27, (2,12), (2,13), (3,7), 3,9), (3,14), (3,16), (3,17), (3,18), (3,19), (3,23),
(3,26), (4,5), (4,7), 4,12), (4,14), (4,17), (4,18), (4,25), (4,28), (5,14), (5,16),
(5,18), (5,24), (5,27), (6,12), (6,14), (6,28), (7,10), (7,15), (7,16), (7,19),
(7,22), (7,24), (9,15), (9,20), (10,14), (10,16), (10,17), (10,18), (10,23), (12,29),
(14,24), (14,25), (15,22), (15,23), (15,26), (16,17), (16,22), (17,22), (17,23),
(17,24), (18,22), (18,24), (19,22), (19,23), (14,25), (1,5,24), (3,7,16), (3,7,19),
(3,7,19), (3,17,23), (3,19,23), 4,5,14), (4,5,18), (5,18,24), (4,14,25), (5,14,24),
(7,10,16), (7,15,22), (7,16,22), (7,19,22), (10,16,17), (10,17,23), (16,17,22).

From these groups we have different types of indecomposable com-
ponents from above types and if we repeat the same process we have
a finite number of types of indecomposable components and an arbitrary
representation is the direct sum of these components. Now we shall
omit to arrange all the types, because the number of them is large and
they are also obtained by the same way as the case III.

2) In [1] we showed that if k is algebraically closed and N?=0
the class of algebras of bounded representation type is that of algebras
of finite representation type but the proof was rough and was hard to
be understood. But from the above results it is clear that we have
only to show the following lemma. Namely

[Lemmal] Let R(a) have the following type;
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Ao %,, 0 0 O 0O O 0 O 0 0 0 O
0 %, 0 0 0 O 0 O 0O 0 0 0 O
%,, 0 0 0 0 0 0 0 0 0 0 0
0 0 %, 0 0 0 0O 0 O 0 0 0 O
0 0 %, %¥,.0 0 0 0 0 0 0 0 O
0 0 0 ¢, 0 %, 0 0 O 0 0 0 O
0o 0 0 0, 0 0O 0 0 0 O 0 0
7|0 0 0 0w, 2,0 0 0 0 0 0 i
0 0%, 0 0 0 0 0 O

0 0 #¢, #¥#,0 0 0 0 O

0 0 0 #¢,0 0 0 %, ¥,

0 0 0 0 x % 0 0 O

0 0 0 0 0 &b 0 %2 0 0

0 0 0 0 0 0 x% 0 O

0 0 0 0 0 =z 0 x2 0

0 0 0 0 0 0 0 0 =,

Then there is a non-singular matrix P such that PR(a)=R’'(@)P where
R(a) and R'(a) have Z and Z' of the above type.

Because the indecomposable components of other types have the
same constructions as this and the number of different types are finite.
The proof of this lemma is clear from [1] or [A].

Corrections

The following corrections should be made in the paper [A].

1) In Lemma 2 of [A], if e=e¢;, the form of R(a) is not used.
But it is shown by the simple computation that this lemma is true.

This correction should be made to other lemmas.

2) InTheorem 2 we showed the types of indecomposable components
of the case 3 but they do not include all the types. Now we shall omit
to show all the types but they are obtained from above results.

3) In Theorem 2 the form of @’;; or D’;; are not complete.

x
Generaly I, must be 1

Xt
4) Errata; p. 104, line 21. For 8 read 14.

(Received April 6, 1957)
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