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1. Introduction

It has been known for some time that the socalled Hilbert’s 3rd problem
which deals with equidecomposability of polytypes (“scissors congruence’) is
related to homological algebra (see e.g. Jessen-Karpf-Thorup [14]). Recently
C.H. Sah in his book [19] has demonstrated the close relationship between
this problem and the group cohomology of the relevant Lie groups considered
as discrete groups. The present approach carries this idea further and is actu-
ally dual to Sah’s. It starts out from the observation that for any subgroup G
of the group E(n) of isometries of Euclidean space R", the scissors congruence
group P(R", G) is a homology group to begin with (Theorem 2.3). (Although
much of what follows is valid for more general fields, we shall throughout re-
strict to the ground field being R.) For G=T(n), the group of translations,
Jessen and Thorup [15] (see also Sah [19, chapter 4]) has shown that P(R", T(n))
is separated by the Hadwiger invariants, and using their result we show
(Section 3):

Theorem 1.1. Let I(R") be the Tits complex of flags of proper linear
subspaces of R". Let g be the local coefficient system given by @y o.-v,= U,
and put

DR") = H, . (A(R"), AKE)), ¢=1,2,,n.
Then there is a natural isomorphism
h: P(R", T(n) —> b DY(R").
Furthermore h is equivariant with respect to the natural action of E(n)|T(n)=O(n)
on the left and the action on the right induced by det(g)A’'<(g) for g=O(n).

Here H denotes the homology of the chain-complex augmented to A%(R")
in degree —1, so in particular 9"(R")=AR(R") corresponding to the Hadwiger
invariant given by the volume. In general
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DPRIS T AL,
Ug22Uy-g-1
where the summation is taken over all strict flags (i.e. codim U;=i-+1), and
the injectivity of % is just the theorem of Jessen and Thorup. The surjectivity
expresses the precise relations between the Hadwiger invariants (Proposition
3.16 below; see also Sah [19, chapter 5]).

The problem of determining P(R")=P(R, E(n)) is thus a. matter of com-
puting the 0-th homology groups of the discrete group O(z) with coefficients in
the modules 9(R")" (where the index ! indicates that we have twisted the
natural action by the determinant). For this we use (in Section 4) some exact
sequences due to Lusztig [16] to set up a spectral sequence converging to zero
and with H(O(n), 9°(R")") in the E'-term. The differentials are thus separat-
ing invariants and some of them can be interpreted as generalizations of the
classical Dehn invariant. In fact

Corollary 1.2. a) There is an exact sequence
D
0 — H,(SO(3), R?) - P(R)Z(R*) — RQ(R|Z) — H,(SO(3), R?) — 0
zZ

where SO(3) acts in the natural way on R3, D is the Dehn invariant, and Z,(R®)
15 the subgroup generated by all prisms.
b) In particular Hy(SO(3), R®)=0 by Sydler’s theorem and H,(SO(3), R?)

is a vector space of dimension as the continuum.

For the definition of D and Sydler’s theorem see e.g. Jessen [12]. Apart
from the identification of D, the above exact sequence is dual to Sah [19, chapter
5, proposition 7.5]. It would be nice to have a direct algebraic proof of b)
thus proving Sydler’s theorem via a).

In the case of spherical geometry which we consider in Section 5, the Stein-
berg module St(R")=H, ,(I(R"), Z) plays a role analogous to 9‘ above.
The analogue of Corollary 1.2 for $(S®) reads

Theorem 1.3. a) There is an exact sequence
D
0— 4 — Hy(SUQ2), Z) — L(S%|Z— RQ(R|Z) — H,(SU(2), Z) — 0.
z

Here D is the Dehn invariant, ZS P(S°) is generated by the class of the total
sphere [S°®] and A is an abelian group satisfying 2¥Y A=0 for some integer N.
b) Let «: P(S*)—R be given by «[P|=Vol(P)/Vol(S®) where Vol is the
volume. Then the composite map
H(SU(2), Z) ~ P(S")|Z —— E|Z
is the evaluation of the Cheeger-Simons class C,eH ¥SU(2), R|Z).
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For the definition of the Cheeger-Simons class, see Cheeger-Simons [6].
According to Cheeger [5], Hs(SU(2), Z ) has infinite rank but it is not even
known if C, evaluated on a homology class can be irrational. In any case it
follows from Theorem 1.3 that Vol and the Dehn invariant are separating in-
variants for P(S?) iff the kernel of C,: Hy(SU(2), Z)—R|Z is a 2-torsion group
of finite exponent (see also Jessen [11]).

Similar remarks hold for the hyperbolic space 4* where we obtain

Theorem 1.4. There is an exact sequence
D
0—-B—H(S1(2,C), Z) - P(H)—> RQI(R|Z)— HySl(2,C), Z)” — 0
z

where D is the Dehn invariant, B an abelian group with 2YB=0 for some integer
N, and ~ indicates the -1-eigenspace for the automorphism induced by complex
conjugation.

Notice that H,(SI(2, C), Z)=K,(C) (see Sah-Wagoner [20]) and so in
particular the sequence in Theorem 1.4 answers a question raised in Sah [19,

chapter 7, p. 148].

Acknowlegement. 1 would like to thank several people who have contri-
buted to this paper: D. Sullivan for the original inspiration a few years ago,
and C.-H. Sah for valuable comments and suggestions during the preparation
of this paper. Also his book [19] is a useful general reference for the entire
subject.

Most of this paper was written during a stay at Osaka University and I
want to thank everybody there and especially Prof. M. Nakaoka for their hospi-
tality and interest in this work. Finally thanks are also due to The Japan So-
ciety for the Promotion of Science which supported my visit in Japan.

2. Preliminaries

Algebra of polytopes.

Let X be either the Euclidean space R", the sphere S” or the hyperbolic
space H". A k-simplex o in X is just an ordered set of points o=(ay, a,, ***, a;),
a;€ X, where in the spherical case we assume the distance between any two of
these points to be less than =. The underlying geometric simplex |o| is the
geodesic convex hull (in the spherical case of diameter <z) and for k=n |o|
is said to be proper if it is not contained in a (n—1)-dimensional geodesic
subspace. A polytope PS X is a finite union P= |} |o;| of proper geometric

n-simplices such that any two intersect in a common face of dimension less
than z.
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Now let G be a subgroup of the group of isometries of X and define P(X, G)
to be the free abelian group generated by all polytopes P modulo the relations

(1) [P]=[P']+[P"] if P=P'UP” and P'NP”
2.1) has no interior points,
(i) [P]=[gP], gsG.

P(X, G) is called the polytope group or scissors congruence group for (X, G), and
the general problem is to determine the structure of this group.
For any group G and M a (left) G-module the coinvariants of G is the

group
M=ZQM=M|I,

zt
where I is generated by all elements of the form gx—x, with geG, x&M.
With this notation we clearly have by relation (2.1) (ii):

Proposition 2.2. a) For HS G an invariant subgroup

g)(X, G) = G/HQD(X, H)
b) In particular
P(X, G)=cP(X, {1}).
Thus it is no wonder that the calculation of P (X, G) is related to homology
of groups since after all Hy(G, M)=;M and the higher homology functors are

the derived of this functor in M (Cartan-Eilenberg [4, chapter 5]). However,
also the relation (2.1) (i) can be expressed in terms of homology as follows:

The Etilenberg-MacLane chain complex.

Let Cy(X) be the chain complex generated by simplices o=(ay, ***, a;) as
defined above, with the usual boundary homomorphism

0(ay @) = 23 (—1)(a, -+ &y, @)

and for any p let Cy(X)? be the subcomplex generated by all simplices o lying
in geodesic subspaces of dimension at most p. Notice that a group G of iso-
metries of X acts on Cy(X) by

g(ay, -+, a,) = (ga,. -, gay)

and that Cy(X)? is stable under this action. Finally if M is any G-module we
let M*=Z*®M, where Z" is the integers with the action for g € G given by
z

multiplication by +1 or —1 depending on g being orientation preserving or
reversing. With this notation we have:



ALGEBRA OF PoLyropes AND HomoLoGY OF FLaG COMPLEXES 603

Theorem 2.3. Given an orientation of X there are canonical isomorphisms

P(X, G)=H,([Cx(X)[Cx(X)"T)
== H,(Cy(X)[Cy(X)" )" .

Proof. The second isomorphism is obvious from the fact that every n-
chain in Cy(X)/Cy(X)"! is a cycle. By proposition 2.2 it suffices to exhibit
an equivariant isomorphism

(2:4) @: H,(Cy(X)/C(X)™) = P(X, {1}):

Given an orientation of X, ¢ is simply defined by sending a proper n-simplex
o=(a,, -, a,) to p(c)=E,|a| where &,=-+1 or —1 according to whether the
orientation of X agrees with the ordering of the vertices (a,, :*+, a,) or not.
To see that @ vanishes on boundaries is easiest using a topological argument:
Let A*S R**' be the standard k-simplex Af=(e,, :**, €;); then any k-simplex
o=(ay, ***, @;) gives rise to a continuous map f: A*—|s| S X constructed induc-
tively by considering |o| as the geodesic cone on [(ay, -**, @;)| with top point
a,. In particular for any (n+1)-simplex o=(ay, ***, a,+;) We get that

froam o | |n|SX
=

is a map of degree 0. If 7,=(a,, ***, d;, =+, a,,,) is proper then &=(—1)' or
(—1)"** depending on f||(ey, -+, &, ***, €,+1)| beeing orientation preserving or
reversing. 'Therefore if we subdivide any proper simplex |7;| by the bound-
ing hyperplanes of the other ones, then every piece in the resulting subdivision
occur in the sum

2 (—1)e,l7i] = p(ds)

T proper

with multiplicity zero. It follows that ¢ is well defined, and obviously ¢ is
surjective.
Now we want to construct the inverse map

(2.5) ¥ P(X, {1}) = H(Ci(X)/C(X)") .

For this first recall the well-known observation that P (X, {1}) is generated by
all convex polytopes (again in the spherical case of diameter <<z) subject to
the relations

(2.6) [P] = [P\]+[P],

where P=P, U P, is a simple subdivision, i.e. The convex polytope P is divided
into the convex polytopes P, and P, by a cutting geodesic hyperplane (c.f. Sah
[19, chapter 1]). Next it is easy to see (by induction on #) that a convex polytope
P can be triangulated as a simplicial complex P=|K| such that all #-simplices
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in K are proper. Therefore in any such simplex o=(ag, -+, ay) we can order
the vertices compatible with the given orientation of X and we want to associate
with P the chain

[K] =02K ceC,(X).
To see that Y(P)=[K] gives a well-defined map in (2.5) we must prove.

Lemma 2.7. Let P=|K |=|L| be two triangulations of the convex pvlvtope
P. Then

[L]—[K]=0c+d =zith c=C, (X), d=C,(X)" .

By this lemma +r(P) only depends on P and also 4 is compatible with
the relation (2.6). In fact if P is simply subdivided into P, and P, it 1s easy to
construct a triangulation of P such that P, and P, are subcomplexes hence
clearly Y (P)=+r(P,)+(P;). Hence +r in (2.5) is well-defined and is clearly an
inverse to @.

Proof of lemma 2.7. For this we shall again use a topological argument:
Let K’ be the barycentric subdivision of K. ‘Then it is easy to see that [K]—[K']
is homologous to a chain in C,(X)"™. Therefore by possibly replacing K by a
suitable subdivision we can choose a simplicial approximation f: K—L to the
identity: |K|=P=|L| (see e.g. Spanier [23, chapter 3 section 4]). That is,
f is a simplicial map such that for every vertex a in K the image f(a) is a vertex
of the smallest simplex of L containing a. Notice that if U is a supporting
geodesic hyperplane for P then both K and L induce triangulations K N U and
LNUof PNU and f clearly maps KNU to LNU. In particular f maps the
boundary 0K to the boundary dL. Topologically P is a ball so

H,(K, 0K)=~H/(L, 0L)~Z ,

and since |f]| is homotopic to the identity it is a map of degree one, so it
follows that

(2.8) FlK] = [L]+a

where d’ consists of degenerate simplices (i.e. simplices with repetions among
the vertices). On the other hand consider the “mapping cylinder”

o) =2 2 1(a, /@), - fla)

where o=(as, -+, a;) as above. Then

(29) F+[K]=[K] = 0c(f)+e(f|9K) .
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Now observe that if o=(ag, **, a;-1)E0K then |o|E U for some supporting
geodesic hyperplane U to P and so all simplices of the form

(@, -+, ai, fai), -+, flan-1))
liein U. Therefore

d=¢(f|0K)—d' €C,(X)"!
and so the lemma follows from (2.8) and (2.9).

ReMARK 1. The content of theorem 2.3 has probably been known for a
long time. Thus A. Thorup has given a completely combinatorial proof
(unpublished) of an essentially equivalent result. See also Sah [19, chapter 2,
proposition 2.2 and chapter 1, lemma 2.2] (however Sah has informed me that
this last mentioned lemma is probably stated in too wide generality).

ReEMARK 2. Theorem 2.3 suggests generalizations of P (X, G) in at least 2
directions:

1) For X any Riemannian manifold it makes sense to consider the com-
plex Cy(X) of “small geodesic simplices” (simply determined by their vertices)
and also the filtration Cy(X)? defined using geodesic subspaces makes sense.
For G a group of isometries one should investigate the homological properties of
¢C«(X) and the induced filtration. This seems to be of particular interest in the
case X is a symmetric space and G the group of isometries (c.f. e.g. Dupont
&)

2) For k any field and X=k", again the right hand side of the isomor-
phism in theorem 2.3 makes sense as long as G is a group of affine transforma-
tions with determinant 4-1.

3. Translation equivalence

In this section we shall prove theorem 1.1, that is, we take X=R" and
G=T(n) the group of translations of R". This group is naturally isomorphic
to the additive group R". Let us write V'=R" and T=T{(n) for short and we
want to calculate

PV, T)=H,(:C+«(V)[:Cx(V)* ™) .
First notice
Lemma 3.1. There is a natural isomorphism
H (;Cx(V))=AZ(V)

Proof. The chain complex C4(V) is just the usual “bar resolution” for
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computing homology of the additive group V (see e.g. MacLane [17, chapter
IV, §5]). Hence Hy(;Cy(V))==H4(V, Z) in a canonical way. Here at least
H\(V, Z)=V and we also have a natural map of ¢ factors

V@ QVa=H\(V)Q--QH(V)—> H(VX-XV)—Hy(V)
V4 Z zZ Z

where the last map is induced by addition of the components. This product is
clearly anti-commutative, hence induces a natural map r: ALV)—H(V).
Every finitely generated subgroup 4 of V is a free abelian group and the restric-
tion of 4 to A is just the Kunneth isomorphism. Hence the result follows
by writing ¥ as a direct limit of such groups.

ReEmMARK. Notice that the isomorphism in (3.1) can be made explicit using
the Eilenberg-Zilber map (see e.g. MacLane [17, chapter VIII, §8]). Geome-
trically for oy, «-,v,€V, Y(v; A+ Av,) is represented by a triangulation of
the “g-cube” with vertices {8,0,+:++8,7,}, 6;=0 or 1, i=1, -+, q.

Flags of linear subspaces and a double complex.

Now consider the category of linear subspaces UC V (U % V) and let (V)
be the nerve of this category, i.e. the simplicial set where a p-simplex o is a
flag o=(U,2U,2---2U,). Here the face and degeneracy operators are given
by

&o) = (U2 2U;

18]
18]

(V]

U,
and
7o) = (U,2--2U,2U,2--U,),

i=0, -, p. Also let I(V)SI(V) be the subcomplex (the Tits complex) of
flags of proper linear subspaces, i.e. U =0.

For UCV let ;C4(U) as before be the coinvariants of the bar-resolution
for the group T(U) of translations of U. Then we have a double complex
Ay x=Ay 5(V):

o’ o o o’ o
PP pe— AP:*_) Ap—l,*-—_) “en __)AO,* —.—)A_I’*
given by
(3.2) p(V) = LIl LCuU),  p=0,1,-.
o=""="p

Here i?’:éo (—1)¥(&;)x for p>0 and 9": ]_[VTC’*(UO)—»TC*(V) is just induced
i= T,C

by the natural inclusions U,cCV. The “vertical” differential 0” in A, , is
given by (—1)? times the usual boundary map in the complex rCy(U,).
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Lemma 3.3.

T q( V)/ch( V)”_l’ p=— 1

1Ay 1), 0) = {7 -

Proof. Let o be any affine g-simplex in ¥ which lies on an affine subspace
of dimension strictly less than n. If we replace a by a translate then the affine
subspace can be assumed to pass through 0, which shows the statement for
p=—1. In general for a a simplex as above let U,CV be the unique linear
subspace of smallest dimension which contain a translate a’ of . Then we
define

U AP.II(V) -_)AP‘H.q(V) ’ p= O’ 1) °tty

by
s a(Up2-+-2U,)) = (—1)Ya’(U,2--2U,2U,),
a a simplex of U, .

Similarly define s_; on the subgroup C, (V)" by s_(a)=—a’'(Us). Then it
is easily checked that
3.4) 0'0s,4-s,_100" =id, p=0,1,-.
This proves the lemma.

It follows that the spectral sequence for the “‘second filtration” of the total
complex A4(V) collapses (see e.g. MacLance [17, chapter XI, §6]) and so we
have a natural isomorphism

(35)  H{AdV)=HulcCxDLCAVY™),  k=—1,0,1, .

For the “first spectral sequence” (E} ,, d,) we have using lemma 3.1 a natural
isomorphism

(A, p=—1
(36) Ep.q= ’ HU A%(UP)’ p= 0,1, 2’
0220

and the differential d' beeing induced by 9’ is the obvious differential in the
chain complex
dl 1 dl
3.7) = I ALU,) — - ——= LT ALU,) — AYY)
Uo220p Yo
for the local coefficient system A%(g) on the complex J(V), where

gUog-"gUp = Up .

Notice that (3.7) is augmented to AYV) sitting in degree —1, so
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(38) Elz"q = p(‘CI(V)’ A%9), p=-1,0,1,2, -

by definition. In particular

(3.9) o= AUV S AT, dim Up<n.
OC

Now

Lemma 3.10. a) E} =0, Vp.
b) E},, are vector spaces over Q for r=2, 3, -+
c) d"=0 for r=2.

Proof. a) For ¢g=0 the local coeflicient system is constant (=Z) but
clearly 9(V’) is contractible so H,(I(V), Z)=0.

b) For ¢>0 allready E} , are Q-vector spaces by (3.6).

c) Choose any positive integer A>1 and let p,:V —V be given by multi-
plication by . Now for v €V let ¢, be the corresponding translation of ¥ i.e.,
t(x)=x+v, x€C. Then clearly p,ot,=t,,ou,. It follows that u, induces an
operation of the spectral sequence which on E}, is given by A%(w,), i.e. by
multiplication by A’. Since

d: E; = E} ;00

commutes with y, it follows that d,=0 for r=2. -

Thus we have proved that Ejy,=E}, and it follows from the proof that
E}, can be naturally identified with the A’-eigenspace of p, acting on
H,,(A«(V)). We collect these observations in the following

Proposition 3.11. a) H(;Cy(V)[:Cx(V)"™") and in particular PV, T) are
vector spaces over Q.
b) There is a splitting into eigenspaces for the operator u,:

PV, T)== @ H,- - L(V), AYS))
c) H(I(V), AY8))=0 for for p<n—q—1, ¢>0.

Proof. a) clearly follows from (3.5) and lemma 3.10 b). For b) we have
by the above remark

PV, T)a<H, (A= @ H, o (A(V), AY9)
= S B, (d(V), AY(g)),
where the last isomorphism is obvious from the definitions.

c) Since Hy(Ay)=Hpi(zCx(V[rCsx(V)*)=0 for k<n—1 we get that
E} ,=0 for p+y<<n—1 which gives the result.
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RemaRrks. 1. Notice that the isomorphism in proposition 3.11 b) depends
on the given orientation of ¥ as in theorem 2.3.

2. By Jessen and Thorup [15] one can identify the A’-eigenspace for the
dilatation operator u, with the quotient Z,(V, T')/Z,-(V, T), where Z,(V, T)<
P(V,T) is generated by all g-cylinders, i.e. polytopes which are products
(relative to some splitting V=V P---@V,) of lower dimensional polytopes.
We shall however not use this geometric interpretation in any essential way.

Homology of the Tits complex and the Hadwiger invariants.
We can now state the main result of this section:

Theorem 3.12. Let p: H(I(V), A%(8)—>H(I(V), AL(9)) be induced by
the natural map AL(U)—ALU), USV. Then

a) HI(V), A(@)=H,d(V), Ak@)=0 for p<n—q—1,

b) the map

(3'13) p: Hn—q—l(g(V)’ qu(g)) - Hn—q-l(g(V)v A;,(g))
is an isomorphism for g=1, 2, -++ n.

Before we prove this theorem let us note the relation with the Hadwiger
invariants as defined is Jessen-Thorup [15]. '

A Haduwiger invariant Hy is defined for a strict flag ®=(U,DU,D:+D
U,_,-1), that is codim U;=i+1, together with an orientation of each of the
spaces U_,=V, U,, -+, U,_,_;. Now let P be a polytope and suppose that A=
(A1 DAyD-+DA,_4-1) is a string of geometric simplices of P (in a given tri-
angulation) such that A; spans an affine subspace parallel to U;, i=—1,0, ---,
n—q—1. for such a string we write A||® and we let &;, 7=0, -, n—q—1, be
the sign +1 depending on whether the given orientation on U, agrees or not
with the induced orientation on A, considered as a face of A;_; (with the orien-
tation from U,_,). With this notation

(3.14) Ho(P) = 3 6y+6y-y-1V0l (By--)

where Vol is the volume in the affine subspace containing A,_,_; (and hence
parallel to U,_,_,). Notice that change of orientation of U, «-+, U,_,_, does
not change Hy(P), whereas change of orientation of V or U,_,_; change Hy(P)
by a sign. Therefore if we let oy, _,_ € AR(U,_,-1) (which is 1-dimensional) be
the volume element determined by the given orientation of U,_,_, (and the
Euclidean inner product induced from V) then

(3.15) ho(P) = Ho(P) wy,_,_, EARU,-4-1)

only depends on the choice of orientation of V. This all works for ¢=1, -+,
n—1. For g=n we shall think of the volume Volin V" as Hy for ® the “empty”
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flag, and again %(P) given by (3.15) depends on the choice of orientation of V.
We now observe

Proposition 3.16. a) The vector space
DV) = H,,(A(V), A9))
is given by D" (V)=ALV), and for g<n D'(V) is naturally identified with a
subspace of the direct sum 1o AR(U,_,-1)(®), where &=(U,D--DU,_,_,) runs

through all strict flags. Here a formal sum x=2) xo(®) lies in D'(V) iff for all
i"_"O’ "')n_q—ly and all _ﬁxed (UO) ) Ui—l’ Ui+l) ) Un—q—l))

(317) ; X(UgDDUiDDUp-gq-1) — 0

where this sum takes place in AR(U,_,_\) CARV) (respectively AR(U,_,_5)) for
i<n—q—1 (respectively i=n—q—1).
b) For a fixed orientation of V, the homomorphism

PV, T)= @ B, ((I(V), AY(e) ——  D(V)
S 6 I AHU,-0-)(@)

agrees with the map given by the set of Hadwiger invariants
PHZh@(P)(q))’ )= (UyD+-DU,_;1), g=1,-n.

Proof. Since the homology of S(V) can be computed using only non-
degenerate “simplices”, i.e. flags of the form (U;,DU, DD U,) (see e.g. Mac-
Lane [17, chapter VIII, §6]) a) clearly follows from the definitions. For b)
consider an element cEH,(;C4(V)[rCs(V)"™") which is of filtration n—gq in
the spectral sequence for the double complex (3.2). Then ¢ is represented in
A 4-q-1,4 bY

cl — sn_q_2°6/,° vee osooallos_loallc
where s, are the homomorphisms considered in the proof of lemma 3.3. Now
for U ¢g-dimensional the natural map

H,(:C(U)=AYU) —2> AY(U)

is clearly the oriented volume in U and so b) easily follows from the definition of
Spe

Proof of theorem 3.12. The injectivity of p in b) now clearly follows
from Jessen-Thorup [15, theorem 2] and proposition 3.16. For a) and the
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surjectivity of p in b) we consider the exact sequence of local coefficient systems

on 9(V):
(3.18) 0 — A%(g) > A%(g) > Ak(g) — 0
where for USV a linear subspace we define
AYU) = Rer(AL(U) — A%(U)).

We shall prove

Lemma 3.19. Both

H(9(V), A%(@)) =0 and H(I(V), AKg)) = 0

for —1=i<n—q—1, ¢>0.

From this lemma and the long exact homology sequence for the sequence
of coefficients (3.18) we clearly get the surjectivity of p. For the proof of
lemma 3.19 we follow the ideas of Lusztig [16, chapter 1]. Let 8 denote the
local coefficient system defined by the exact sequence

0-g—->7V—->8-0

where V is the constant coefficient system with group V at every simplex. Fur-
ther let 7, -++,7, be some set of non-negative integers, and write for short

AGrr) = Aji@ - QAL
z z
and
A(él,...,r,) —_ A1721® “ee ®AZ'S
R R
Then we have in analogy to (3.18) an exact sequence of local coefficients
(3.20) 0 — (AY(Q)RAL™7(8))” — AZ(B)QAG)(8) —
zZ
— AHORAG(8) = 0
R
and so lemma 3.19 is clearly a special case of

Lemma 3.21. Let AY(@Q)QArs)(8) denote any of the 3 coefficient systems
in (3.20). Then

H(9(V), A(8)@A+"7(8)) = 0
for —1=i<n—q—1, ¢=0.

(Notice that again the change from I(V) to J(V) makes no difference for
¢>0.) For the proof of this lemma we need the following lemma which is a
trivial extension of Lusztig [16, §1. 12, Proposition]:
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Lemma 3.22. Let F be any functor from the category of vector spaces to
the category of abelian groups satisfying F(0)=0. Then

H(G(V), F8)) =0, 0<i<n—1
Proof of lemma 3.21. Let us show the lemma for AYg)QAZr"s)(8). For
z

the other two systems the proofs are similar. Let us write A’=A% for short
and let us filtre the constant coefficient system A‘(V) by
AV =A(V)2--2A(V)'2-- 2A (V)" = A'(g)

where AY(V)" at the flag (U,2-:-2U,) is generated by
by elements of the form v;A--- Av, with v,,--,9,€U,. Then we have exact
sequences

0— AYV) - A (V)= A(V)|A'(V)' =0
0 — AT7(@)®8 — AY(V)/AY(V)! = A'(V)A (V)1 -0
0 AT NS — A VYAV — AV)A(W) =0
0 > gRATI(8) — AXV)AY(V): — AY(V)AY(V) — 0
where

A(V) = A%g) and AYV)/AY(V) = A'(3).

We get similar exact sequences after tensoring with A“r™+)(8) and we can
now show the lemma by induction in ¢: For ¢=0 it is clear from lemma 3.22,
and if we assume the lemma for A¥(g), j<<g, ¢>0, then both
H(G(V), M(@@A I 75(8) =0,
H(3(V), M(@@A7717(8)) = 0
for —1=i<n—j—1.

Hence from the exact sequences above we obtain

H(G(V), A(@)@Ar7:)(8))
=H, (A(V), (N(V)|A(V))QAv"(8))
=H, (I(V), (A (V)|AY(V) HYQA+7)(8))

=H;(A(V), AB)RA""(8)) = 0

as long as 7<n—g—1. 'This proves the lemma and so ends the proof of theorem
3.12.

Proof of theorem 1.1. The first statement clearly follows from theorem 3.12
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and proposition 3.16 b) once we have chosen the natural orientation on R".
The second statement follows from the fact that the action of g&O(n) on LP(R",
T(n)) clearly commute with the dilatation operator p, in the proof of lemma
3.10.

Remarks. 1. Notice that H(I(V), A%@)=0 for i>n—qg—1 since
clearly the local coefficient system vanishes on the non-degenerate simplices in
these dimensions. Thus H,_, ((9(V), Ak(g))=9D'(V) is the only non-trivial
homology group for A%(g).

2. Notice that theorem 3.12 a) and the surjectivity of p in b) are valid
more generally for V a finite dimensional vector space over any field & (even of
finite characteristic) if A% is replaced by Af. The injectivity of p however
depends on the results of Jessen-Thorup [15] which requires & to be an ordered
field. Probably one can show the injectivity of p for more general fields (in-
cluding char k=0). Thus for g=n

B_(9(V), Afg)) = AYV)/[Z ALU)]
is easily seen to be isomorphic to AR(V) (by use of the equation
VANV, — ANV N\ Ty = (‘01+‘Uz) /\X(7)1+7)2)“"U1/\7\W1“‘7)2/\7\'712

for v,,v,€V, AEk). Otherwise at the moment I can only prove the injectivity
of p directly for the cases dim V<3, char k=2, and dim V' =<4, char k%2,3.

Let us end this section by an example:

ExampLE 3.24. Consider h': P(R% T(3))— D(R®) in theorem 1.1 and
let us calculate A'(A) where A=(a,,4a,,a5,a5) is a simplex. The natural orien-
tation in R? induce orientations on the faces as indicated by the arrows in fig.
1. Let Uy, i=0,:--,3, be the plane (through the origin) parallel to the face

opposite a;, let Uy, j<<k, be the line (through the origin) spanncd by the
vector ;j;z:, and let ®;;, i=j,k be the strict flag ®,;,=(U»DUp). Then
h'(A) is given by the formel sum
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(3.25) R(A) = 23 €148 Pisn)
iti

where &;;,=-+1 depending on the direction of the arrow on fig. 1 corresponding
to the pair U} DU(;p. Notice that the relations in (3.17) are immediate from
the figure. Thus it follows from corollary 3.23 that any element >lxo(®)E

U\(®) satisfying (3.17) is a linear combination of elements of the form
&= >

(3.25).
4. The Euclidean case

We shall now apply the results in the previous section to obtain information
about P(R"). For this we shall use homological algebra in a similar way as
Sah [19, chapter 5] and in fact many of our results are exactly dual to his.

Homology of groups.

For G any group and M a (left) Z[G]-module H(G,M), i=0,1,2,-:-, are
the derived functors of the right exact functor M— M=H(G,M). Explicitly
H,(G,M) can be computed as the homology of the standard “bar complex”
C+«(G,M), where a g-chain is a formal sum of elements of the form (g,,--,g,)x,
& 8,E€G, x€M and where

(4-1) a(gl’ ""gq)x = (gz, ""gq)x+

+ 'AS_J: (_l)i(gh 5 8ifi+1s "')gq)x+(_1)q(g1) "')gq—l)gqx .
We shall need the following easy fact (see Cartan-Eilenberg [4, chapter X, propo-
sition 7.4]):

Lemma 4.2 (Shapiro’s lemma). For K G a subgroup and N any (left) K-
module there is a natural isomorphism

H*(G,Z[G]§N)QH*(K,N)
Also we shall use the following lemma (cf. Sah [18, proposition 2.7 c] or Cartan-
Eilenberg [4, chapter X, exercise 6]):

Lemma 4.3 (“Center kills”). Let M be a G-module and o =G an element
in the center such that ox=—x, Vx&M. Then 2H (G, M)=0.

The modules D°(V') and the Lusztig exact sequence.

Now let us return to P(R"). As in section 3 let us consider ¥V a real vector
space of dimension z with Euclidean inner product, and let O(V) be the asso-
ciated orthogonal group. Again let (V') be the Tits-complex of flags of proper
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linear subspaces of V' with the local coefficient system g. Then clearly O(V)
acts on (V) and g and we define

DeFINITION 4.4. For g=1,--+,n, let 9%(V) be the O(V)-module given by

DV) = H,_,(A(V), AK(9)) -

Here 9"(V)=AR(V) and D" Y(V)=Ker(Hy(I(V), A% (8))—=Ax (V).
Notice that the element —id=O(n) acts on the “twisted” module 9(R")*
as multiplication by (—1)¥(—1)"=(—1)""% Therefore by Theorem 1.1

Corollary 46. P(R)=_& H(O(n), D'(R"))

For the study of these homology groups we shall use the following exact
sequence which for ¢g=1 is due to Lusztig [16]:

Proposition 4.7. Let V=R" and let V'SV run through all i-dimensional
subspaces, i=1,2,+--,n—1. Then for q=1, ---,n there is an exact sequence of O(n)-
modules

an 6;;—1 8q+1
0— g)q(V) — H Qq(V"_l)——" H g)q(VqH) —_
yr—1 ya+l

— IT ALV > AK(V) =0

where 3,: D' (V?)— I D(V*) is induced by sending a flag (UyD - DU,_,_,) in
14

-1

V? to the flat (U,D-+-DU,_,,) in V*7'=U,.

Proof. For g=1 this is just the sequence in Lusztig [16, §1.13(c)] and
for g>1 the proof is similar: Let J(V)*S9(V) be the subcomplex of flags
U,2--2U; with dim Uy<p. Then by Lemma 3.19 and Lusztig [16, §1.6,
lemma)] we get H(I(V)?, A%(8))=0 for i%p—qg—1. Furthermore from a chain
description involving only non-degenerate flags it is readily seen that there
is a natural identification

11 9(V?), i=p—q—1,
H(GV), 4(V); Ag(a))= p=q;
0 otherwise.

The exact sequence now easily follows from the spectral sequence for the filtra-
tion on the chain complex Cy(9(V), A%(g)) correspondong to the filtration of
simplicial sets

aqW)y =9y 2910294V’ =0
(cf. MacLane [17, chapter XI, §3]).
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The Lusztig exact sequence links the homology of O(z) for the module
DY(R™* to the homology for the module A%(R") through homology groups of
smaller orthogonal groups. In fact

Lemma 4.8. For n=I=gq:
a) Hy(O(n), [IVII DV
=H,(0(l) D(R))QH.(O(n—1), 2
b) In particular
H (O(n), [H DVHH =0 if lEnmod?2.

Proof. Clearly
q N ___ q !
H @ (V) B Z[O(n)]o(l)ﬁ(n—l)@ (R )

where O(n—I) acts trivially on the module 9(R'). Twisting the action with
the determinant we get

[ D'V = 2[0m)] @ (D(R)®Z).

OUIxOMn-1)

Then a) clearly follows from lemma 4.2 and the Kunneth formula (MacLane
[17, chapter X, §7]). b) now clearly follows from Lemma 4.3.

P(R") in low dimensions.
ExampLE 4.9. n=1. By corollary 4.6,
P(R)=HO(1), D(RYY) = H(O(1), (R) = R
and the isomorphism is clearly given by ‘“Length”.

ExampLE 4.10. n=2. By corollary 4.6,
P(R")=Hy0(2), D(R?)") = Hy(O(2), Ax(R?)")
=R
and the isomorphism is clearly given by “Area’.
ExampLE 4.11. n=3. By corollary 4.6,
P(R)=HyO(3), D(R))DH(OQ3), DHR’)).
Here again
Hy(O(3), DAR°)') = Hy(O(3), Ax(R))=R

and the isomorphism is given by ‘“Volume”. For the computation of H(O(3),
D'(R?") we split the Lusztig sequence in two exact sequences
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(i) 0— D(R) - I D(V) — Z, >0
(i) 0> Z, >V >R —0.

From (i) and lemma 4.8 b) we obtain
Hy(0(3), D(R))=H,(0(3), Z)
and
H(0@3), Z}) =0.
Furthermore by lemma 4.8 a)
H(03), [ILV'T) = Hy(O(1), (R))QH(0(2), Z°)
e R%)H*(O(Z), zY).
As in lemma 3.1 it is easy to see that
H,(S0(2), Z)[Torsion==A%(SO(2)/Torsion)

and here the action of O(2)/SO(2)=Z/2 is induced by g—g™! in SO(2). In
particular

H\(003), [IIVT) = RQSO(2)
and
H,(0O(3), [q V1) =0.
From the exact sequence (ii) we thVen get
Corollary 4.12. There is an exact sequence
0 — Hy(0Q3), (R)) —~ Hy(O(3), D(R)) > R®SO(2) ~
— H,(0(3), (R%)") — 0.

Furthermore if SO(2) is identified with the additive group R|Z in the usual way,
then the composite

D: P(R) » 00 D(RY) —~ RR(R]Z)
is the classical Dehn-invariant.

Proof. It remains to identify D with the Dehn-invariant. Consider the
simplex A as in example 3.24 and let us first determine the image of A'(A)
under the isomorphism o3 D' (R?)'=<H,(0(3), Z}) using the standard complex
C4(0(3), Z%) as in (4.1): Let s; be the reflection in the plane Uy, and let us
write for short
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(4.13) h'(A) =i;.".¢ ViiPijes  Vije = Eijn@ja -
Then as an element in Cy(O(3), [IT D(VH)]")
Vz
hl(A) = %igkvijk(q)ijk_}—siq)ijk)
1
== 6[2'. (s:) (% ;55 Pijr)]

where 0 is given by (4.1). Therefore the image in H,(O(3), Z}) is represented
by
0 I((A) = - 32 (5) B v U]

where Z,S [TV, and so the image in H,(O(3), [ITV"]* is represented by
v vt

1
(4.14) E > (G55 )vi s+ (5,)21,58) (Uism)
where 7,7, are the two indices #+j,k. Clearly v;,;,=—v; ; s0

OL(8i58:)) Wiy k) = (8:,)0s, 50— (8i,8:) Vs, jwt(8:,) Vige -

It follows that the element (4.14) is homologous to

(4.15) P % (8:25:,) €140

i<k
in H,(0(3), [q V']"). Here sy, is the rotation around U by twice the angle
0 ;. between tlile planes Uy and Ug). The isomorphism
H,(0(3), [g V‘]‘)QRQESO(Z)QR%(R/Z)
therefore clearly takes the element (4.15) to
sz &ijelajar| @027
which is just the classical Dehn-invariant for the simplex A (cf. Jessen [12]).

Proof of corollary 1.2. Since the element —id€O(3) has det(—id)=—1
it follows that

H,(SO(3), R*)=H ,(0(3), R%).
The exact sequence in corollary 1.2 therefore clearly follows from corollary

4.12 and the remark 2 following proposition 3.11. From this sequence and
since
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D: P(R¥)|Z4R?) — R?(R/Z)
is injective by Sydler’s theorem [24] (c.f. Jessen [12]) it follows that

(4.16) Hy(SOQ@3), R?) = 0.
Furthermore
(4.17) H,(S0(Q3), Ra)—&—[R§>(R/Z)]/D(9’(R3)) .

Now the image of the Dehn invariant has been described by Jessen [12, §12—
14], and it is easy to see from this description that the cokernel has dimension
as the continuum.

Applications to homology of SO(n).
Corollary 4.18. n=3. Then
H\(S0(3), R¥), n+4
a) Hy(SO(n), A?e(R"))g{ HO0) 3) N g
H,(SO3), R)®H,(SO3), B), n=4

are real vector spaces of dimension as the continuum.

b) HSO(n), AR(R") =0.

Proof. The corollary is allready proved for n=3 since AR(R®)=R*® as
SO(3)-modules. For n=4

H(SO(4), AR(R")=H 4(Spin(4), AR(R")).

Here Spin(4)==S, x S_ with S.=Spin(3), and AL(R)=A,PA_ with A,=R*
in such a way that S, acts trivially on A _(respectively S_ acts trivially on A.)and
via SO(3) on A, (respectively S_ acts via SO(3) on A_). By Kiinneth’s theorem
and since H,(S.,Z)=0 we have for 1<2:

H(Spin(4), AL(RY))=H/(S,,A,)DH(S_,A_)
~H(SO(3), R)DH(SO(3), R°).

This takes care of n—=4. Notice that change of orientation in R* interchanges
the factors of Spin(4)==S, xS_. Therefore

H,(0(4), AR(R")=H,(SO(3), R?), i=1,2,
and it follows that the natural map
SO@3) - SO(4) - O4)
induces an isomorphism

H(SO(3), AR(R%)) —=> H(O(4), A(RY), i=1,2.
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It remains to show that for #=4 the map
(4.19) H(O(n), AR(R")) = H(SO(rn+1), AR(R")),
induced by sending g€O(n) to the matrix (5 dgt g) is an isomorphism for

i=1 and a surjection for i=2. Equivalently consider the exact sequence of
SO(n+1)-modules

(4.20) 0— K, — IT AR(V") = AR(R*) — 0
b4l

we must show that H,(SO(n+1), K;)=0, i=0,1. For this consider the diagram
of Lusztig exact sequences:

0 0 0

1 1 1
]_E DV3) — ]_! AR(V?) — AR -0

t i 1
.@Z(V“) — I_[ AZ(VZ) —> ]_[ AR(V")—0

ol ¢ 1
K, — K, — K, —0

t 1 1

0 0 0

Here it suffices to show

(4.22) HySO(n+1), K;) =0
and
(4.23) H,(SO(n+1),K))=0, i=0,1.

Let us show (4.23) ((4.22) is similar but easier). By Shapiro’s lemma and
Kiinneth’s theorem
(4.24) Hy(SO(n+1), HAR(VZ))_ZIZ[H*(SO(Z) ARR)®
QH(SO(n—1), Z)]

where the covariants are with respect to the involution which changes the
orientation on both factors. Similarly
(4.25) Hy(SO(n+1), 11 Ax(V?))=H(0(2), Ax(R’))®

T @HL(0(m-2), 2).
Both (4.24) and (4.25) are zero in dimension 0 and are equal to H,(SO(2),
A%(R?) in dimension 1, so

(4.26) H(SO(n+1), IT AR(V?) = H(SO(n+1), II AR(V?)

VCV



ALGEBRA OF PoLyToPEs AND HomoLoGY OF FLAG COMPLEXES 621

is an isomorphism for 7=0,1. It remains to see that the map (4.26) is surjective
for i=2, i.e. that the map

H(O(n—2), Q) — H(O(n—1), Q), n=4,

is surjective. For small 7 this is true by a theorem of J. Mather (see Alperin-
Dennis [2]) and then it follows by induction using a diagram similar to (4.21) of
Lusztig exact sequences for the Steinberg module (c.f. section 5 below or Al-

perin [1]).
P(R") in higher dimensions.
In general for n=3 there is a Dehn invariant
D: P(R") = AZHR")Q(R|Z)

(cf. Sah [19, chapter 7, §2]) and similar to corollary 4.12 there is an exact se-
quence for =3 (cf. Sah [19, chapter 5, proposition 7.5]):

(4.27) 0 — HO(n), A} *(R")) - H(O(n), D" *(R"))'2
L A (R )QR|Z > HO@), A (RY) -0
z
Here as O(n)-modules A% %(R")!=~A*(R") so in particular we obtain from
corollary 4.18:

Corollary 4.28. For n=3, the Dehn invariant D: P(R")—>A7*(R"%)Q
z

R|Z induces an injection on the component oy D" *(R") of the decomposition of
corollary 4.6.

ReMARKs 1. In particular for =4 this corollary contains the result of
Jessen [13] that also in this dimension the volume and the Dehn invariant are
separating.

2. There is a “generalized Dehn invariant” (cf. Sah [19, chapter 7, §2]
and Hadwiger [10, kap. 2, §2)]

(4.29) . P(R" - P(R*)QR|Z

such that with respect to the decomposition of czrollary 4.6 \If‘z)zg v with
VP oD (R) = o-0 D (R")'QR|Z

and ¥@?,=D considered above.

The exact sequence of corollary 4.12 generalizes in higher dimensions to a
spectral sequence:

Theorem 4.30. For integers 1 <q=<n with g=n mod 2 there is a spectral



622 J.L. DuproNT

sequence {E1 .}, q—1=1=n, m=0, satisfying

2) E3.—0

b) Hy(O(n), AR(R")"), 1=g—1

E} == {H,(O(l), D(R))QH(O(n—1I), Z), q=i<n,
\H,(O(n), DYR")), I=n

c) Here E} +=0if ¢g<I<n and ln mod 2.

d) If r is odd then d’=0 except possibly on Ej., . x. In particular d'
vanishes on Ey o==H,(O(n), D'(R")").

e) E,_;1=HyO(n—2), g)"(R"’Z)‘)QZQR/Z and dy: E; o—E;_», is identified

with the component VP of the generalized Dehn invariant (4.29).

Proof. The spectral sequence is just the hyperhomology spectral sequence
in the sense of Cartan-Eilenberg [4, chapter XVII] for the Lusztig exact sequence
(proposition 4.7 above). Explicitly it is the spectral sequence associated with
the double complex 4, ,, defined by

- {Cm(o(”)’ ARR")"), I=g—1
" lewom), (1T DV, g=l=n

where C4(O(n), —) is the standard bar complex for computing group homology
(cf. (4.1)).

a) is obvious since the Lusztig sequence is exact. Clearly

Hy(O(n), ARRT)),  I=¢—1

E},*g{H o DU o<l<
+(O(n), [I; vy, gq=l=n,

and hence b) and c) are just lemma 4.8.
d) is obvious from c), and e) is similar to the proof of corollary 4.12.

ExampLE 4.31. P(R°). Here
P(R°) = H(O(5), 9'(R*)*D IR DI(R)") .
Again the isomorphism Hy(O(5), 9% R®)")=R is given by ‘“Volume” and also
according to corollary 4.28 the Dehn invariant
D: 0o DR > AYR)DRIZ

is injective. It remains to investigate Hy(O(5), 9(R®)") for which we have
the spectral sequence in theorem 4.30. Here d, is again a generalized Dehn
invariant, but we also have a d, and d;. We shall in the next section (example
5.39) consider a slightly different spectral sequence for this case in which d,
and d, above are replaced by a single generalized Dehn invaiaint.
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5. The spherical case

In this section we shall study L(S")=%(S", O(n+1)) and again we shall
use theorem 2.3 as starting point. So we want to study the O(zn+1)-module

G-1) P(S”, {1})=H,(Cx(S")/Cx(S")"™)"

(using the standard orientation of S"S R"*'). Again it turns out that the Tits-
complex of flags naturally occurs:

The Steinberg module.

This time let V' be an (n-}-1)-dimensional real vector space with Euclidean
inner product and let S(V) be the unit sphere. Notice that the geodesic sub-
spaces of S(V) are all of the form S(U), USV a linear subspace, except that
for U aline S(U) is a pair of antipodal points. As in section 3 let (V) denote
the Tits-complex of flags of proper linear subspaces of ¥V (i.e. subspaces di-
fferent from 0 and V).

DeFINITION 5.2. For dim V=n-1=2 the Steinberg-module St(V') is the
O(¥)-module given by

Sy(V) = H,_(9(V), Z) .

For dim V=1 define St(V)=Z with the trivial action.
For completeness we include a proof of the following wellknown

Proposition 5.3. If V has dimension n+1=2 then

a) H/(9(V), Z)=0 for g=n—1.

b) Furthermore H, (I(V), Z)=St(V) is the following subgroup of 11 Z(®P),
[

where ®=(U,D++-DU,._,) runs through all strict flags: x=2xs(D) lies in St(V)
iff for all i=0,--,n—1, and all fixed (Uy,D--DU;.,DU;,D--DU,_))

(54) AUY‘_I XUy DUiD DU p—y) = 0

Proof. b) clearly follows since H,(9(V), Z) can be computed by the
normalized chain complex. Also H,/(Y(V), Z)=0 for ¢>n—1 for the same
reason. For the vanishing of H(9(V), Z) for g<n—1 we use a double com-
plex argument similar to the proof of proposition 3.11:

First define for any set Y the standard chain complex Cy(Y) over Z where
a k-simplex is just a k-tuple (ay,ay, **,a;), @, Y and where the boundary homo-
morphism is given by the usual formula

6(aOy "')ak) = 2(—1)"(‘10) "'1di: "':ak) .
C4(Y) is always acyclic and Hy(Cy(Y))=Z.
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Now for the vector space V consider the double complex 4, ,, £=—1, ¢=0:

Aj‘p = {cq(S(V))’ P=—‘1 ’

5.5 )
( ) 7, D:I';'[DU C"(S( Ul’))’ Pgo ’
?

where as usual (U,2:--2U,) runs through all flags of proper subspaces of V.
The differentials 9’ and 9" are defined by the same formulas as in section 3
for the complex (3.2). Again if we put
Cu(SMY™ = 3 Cu(SWUNS Cul(S(V))
we obtain
- C.(S(V)C(S(V)) Y, p=—1
HP(A* q):{ 4( ( ))/ q( ( )) ’ P ’
<o, $20,

so the total complex A, satisfies

(5.6) Hy(A,)=H,(C(S(V))[C(S(V)) )

which in particular is zero for k<n—1. On the other hand H (4, ,)=0 for
¢>0, and

_ Z, =—1
Ho(Ap,*)z{ o z 1;20

v om0
is just the augmented chain complex fot;r ;Z(ﬁV), hence
H(4(V), Z)=H(4y)
and the result follows from (5.6).
The polytope module.

In view of (5.1) we now make the following

DeFINITION 5.7. For dim V=n+-1=1 define the polytope module Pt(V') to be
the O(¥)-module
Pt(V) = H,(CK(S(V)C(SV))*™)
where C4(S(V)) is the chain complex of simplices of diameter <z as in section
> Hence for GEO(n+1)
(5.8) P(S"", G)=H(G, Pt(R"")).

Also let us use the notation Q(V’) for the orientation module, i.e. (V)<
AR (V) is the lattice of elements with norm an integer (with respect to the
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metric in V). Thus Q(R"*")=Z"* as O(n-1)-module for =0 and Q(0)=Z.
With this notation we prove

Theorem 5.9. For dim V=n+1=1 we have
a) H(Cx(S(V))IC«(S(V))")=0 for gn
b) There is a filtration of O(V)-modules

QV)=F_SF<S-SF,S-SF,=Py(l)
such that
F‘,/Fp_lgy!_LSt(V/V”“’)@Q(V"""), »=0,1,2, -
where V* runs through all q-dimensional subspaces of V.

Proof. This is another double complex argument: This time let

h = (OO =
1 I, CUSU), p20,
and again B
C,(S(V)[C(S(V)*, p=—1
B = {CASENCST =

so for the total complex 4, we have
(5.10) Hy(Ay)=Hy (Co(S(V))[C(SV))™), VE.

Thus the double complex gives rise to a spectral sequence converging to H(A4,)

and
(5.11) El,= {Hq(c*(S(V)))’ p=—1,

U QHQUF‘I(C*(S(UP)))$ P;O .

Now the complex C4(S(V)) is chain equivalent to the singular complex C¥®
(S(V)) of the topological space S(¥). In fact as mentioned in the proof of
theorem 2.3 every simplex o=(a,*:*,a;) of diameter <<z gives rise to a con-
tinuous map f: A*—S(V) defined by geodesic arcs and thus there is a natural
inclusion

CH(S(M)SCE(S(V))

which is easily seen to be a homology isomorphism (cf. Dupont [8, chapter 1,
exercise 4]). Hence also for US V' a subspace

(5.12) H,(Cx(S(U)))=H,(S(V))

which is zero except for g=0 or g=dim U—1. Notice that
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Him y-(S(U)) = V).
Therefore for p=0 and ¢>0 we have

l = q+1
Bho=11, I .00

where V**! runs through all subspaces of dimension ¢+1. Also the differential
d' is easily identified with the direct sum of the boundary homomorphisms for
the Tits-complexes I(V/V**"). Hence

B}y = TLH, (I(V[V*), Q7*), p20,4>0,
which by propositionV4.3 is zero for p=n—g—1 and
(5.13) E} = J_;[lSt(V/V"“)@)Q(V"“) for p+gq=n—1.
For ¢g=0 and p=0 th:: augmentation
C(S(U,) - Z

gives rise to an exact sequence

0— 1;[1 U‘og~~-gfp=Vln(Vl) - E}, ﬁvogggupz -0
and hence to an exact sequence
(5.14) 0— q St(VIVYQUVY) = E}_1o — St(V) — 0
whereas E} =0 forjb=kn—1. Finally E%, ;=0 for ¢=n and
(5.15) Zia=H,(S(V))=Q(V).

It follows that E} ; is concentrated along the counter-diagonal p-+g=n—1 and
hence the theorem follows by (5.13)—(5.15).

The suspension homomorphism.

Geometrically the relation between the modules Pt and St can be described
in terms of the suspension homomorphism:
For WCV a hyperplane there is a natural map

(5.16) Zy: CSW)@UV W) — Cpi(S(V))

defined for a given orientation of V/IW by sending a simplex o=(ay.-:+,a;) of
S(W) to the chain

(5’17) 2W(ao’ '"aak) = (e,ao, "',ak)_(_e:ao’ "')ak)

where e S(V)N W+ is positive with respect to the given orientation of W-.
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Notice that 3y, maps Cy(S(W))’QUV W) to C4(S(V))**! and in particular we

obtain
St Pt QQUV W) — Py V)

Corollary 5.18. a) There is an exact sequence of O(V')-modules

p h
I Pt(V") —> Pt(V) — St(V) — 0
v
where 3, is the sum of all Zy»’s, V" running through all hyperplanes.
b) In particular there is an exact sequence
p h
P(S* ) — P(S") —> H(O(n+1), St(R*')") = 0

where 3, is the suspension map sending a polytope in S"™' to its join with the north
and south pole.

Proof. D) clearly follows from a) and (5.8). For a) we proceed as follows:
We shall use the notation A4, (V) for the double complex considered in
the proof of theorem 5.9 and similarly E} (V) for the associated spectral se-

quences etc.
Now fix a hyperplane WSV and let the line L=W+ be oriented by the
vector e. Then for o a simplex of S(W) we clearly have

0, dim a>0 )
(5.19) (00 —Zy00) (o) = (e)—(—e), dim o=0.

More generally we extend the definition of 3 to a map
S = 3¢ A, (W)QUVIW) — 4, (V)
by sending a simplex o €C,(S(U,)) (U,2---2U,) to
2u,(0)EC,L(S(U,DL)) (UDL2+-2U,DL)
and here 3" satisfies

(5.20)  (37o%/—5"00") (a(Up2-2U,)
_ {0’ dim >0,
~ =)0 —(— ] (UDL2 -+ 2U,BL), dim o=0.

On the other hand we can define a map
3 =3 A, (W)QUVIW) = A, (V)
by
2 (e(Uy=2---2U,))
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_ {0, dim ¢>0,
~ i(©— (-] (UPL2--2U,BL2L), dim ¢=0,
and this time
(5.21)  (870='—3'00") (o(U, 2+ 2U,))
B {0, dim =0,
(=1 — (=N UDL2-+- S U,DL), dim ¢=0 .

It follows easily that the map of total complexes
Sy = Sh+3H: AW)QQUVIW) > (V)

commutes with the total differential 3’+9”. Now checking through the spectral
sequences one sees that 3 induces a map of filtrations

Zy: F(W)QUVIW) = Fyp(V)

such that there is a commutative diagram

(F(W)[F, (W)RUVIW) —> F, (V)FV)

- -

ISt/ W™+ )@+ )@Q(V W) — IT S(V/V* )@V~

Wn—p—l

where the bottom map is induced by sending a flag WO U,2---2U,=W""?"'to
the flag VO U,@L=2-2U,HL=W""?"'PL=V""? (together with the isomor-
phism

QW HQQL)=Q(W* *71pL)).

This map is clearly an isomorphism onto the sum

]__[: St(V/V*)QV*"?).

v
Hence by induction over the filtration F,(V) it follows easily that every element
of F,_(V) is a sum of suspensions, and hence a) follows from

PU(V)/F,o(V)=St(V)
Remarks. 1. The map
h: P(S", {1}) = Pt(R")* — St(R"*)

can be explicitly described similarly to the Hadwiger map in section 3: Thus
let ®=(U,D---DU,.,) be a strict flag (so in particular dim U,_,=1; then the
component ky(P)E Z for P a spherical polytope is given as follows: Give U_;=
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R"! the standard orientation and choose orientations of U,,+-+,U,_;,. Now for
any sequence of geometric simplices in a triangulation of P, A=(A_DA,D--+
DA,_) (so that A,_, is a point) for which A,€S(U)), i=—1,--,n—1, define
&=1 as in (3.14) for =0, :-,n—1 and &,=--1 depending on whether the
point A,_, is the positive or negative vector in U,_;. Then the integer

ho(P) =23 &€,

Alle
is easily seen to be independent of choice of orientations of U, -+, U,_;.
2. For n even the element —ideO(n+1) acts by multiplication by —1 on
St(R"*')t. Hence by corollary 5.18 b) the cokernel of

(5.22) S: P(S"1) — P(S"), n even,

is annihilated by 2, and since by a classical argument P(S") is 2-divisible (see
Sah [19, chapter 1, proposition 4.3]) we have thus reproved the result of Sah
[19, chapter 6, proposition 2.2] that = is surjective in this case. It has recently
been proved by Sah [20] that (5.22) is actually an isomorphism.

The Lusztig exact sequence.

Corollary 5.19 suggests an inductional proceedure for calculating %(S") by
calculating Hy(O(n+1), St(R"™")"). For this we can use the Lusztig exact
sequence (Lusztig [16, §1.13 (b)])

(5.23) 0 — St(R"*") — II St(V") = =+ — ]_! St(VhYy—>Z -0
as in section 4. However it i: just as convenientvto use the module Pt directly:
Proposition 5.24. There is an exact sequence of O(n+1)-modules
0—Z*— Pt(R"™) — I Py(V") — o — ]_'[l Pt(V)—Z—0.
% v
Proof. Consider the first quadrant spectral sequence for the chain complex

C4(S™) with the filtration C,(S")? (see MacLane [17, chapter XI, §3]). Now
there is a natural isomorphism of chain complexes

Cy(S"Y[Cx(S7) 7 == T Co(S(PP))[Co(S(VFH)P
ppt+1
Now by theorem 5.9
0, i¥p,
H(C (S(VP))Ck(S(V YY) =
(CHSTMCST N =y 2
Hence for the spectral sequence we have

) _{O, q+0,
ba — H Pt(Vp+l)’ q=0 R
p+1

v
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and it follows that the only non-zero differential is d'. On the other hand the
spectral sequence converges to H(C4(5")=H(S") by (5.12). It follows that
the spectral sequence reduces to an exact sequence

dl dl dl
0 — H”(S") — E,lt.o P — Eflz—l,o —_— et —> E(1),0 — Ho(Sﬂ) - 0
which for #>>0 is just the sequence (5.24). For n=0 (5.24) is simply the se-
quence

0->Z'-P(R)Y—>Z—0
which is obviously exact.
The Serre class C,.

Before we start using the exact sequences in concrete cases it is convenient
to introduce

DerFINITION 5.25. Let C, denote the Serre class (see e.g. Spanier [23,
chapter 9, §6]) of abelian 2-primary torsion groups of finite exponent, i.e.,
A e, iff for some integer N, 2¥ A=0.

Remarks. 1. Observe that G, is an ideal of abelian groups.

2. If A—»B—C is exact mod C, and A=~A’, B~B’, and C~C’ mod C,
then there is an exact sequence mod C,: A’—B’'—C".

3. If B is 2-divisible and f: A—B is surjective mod C; then clearly f is
surjective. Similarly if A is 2-divisible, B is 2-torsion free, and f is injective
mod C,, then f is injective. These remarks are particularly useful in connec-
tion with P(S") since this group is 2-divisible (Sah [19, chapter 1, proposition
4.3]).

We now have as usual by Shapiro’s lemma and “center kills” (lemma 4.2~

4.3):
Lemma 5.26.
a) Hy(O(n+1), [g Pt(V?)])=Hy(O(p) X O(n—p+1), P(R)'®Z")
b) If p=nmod 2 then
H,(O(n+1), []_} Pt(V #)*]=0 mod C,

With this lemma we obtain from the exact sequence in corollary 5.24 a
hyperhomology spectral sequence as in section 4 relating P(S") to H,(O(n+1), Z).

P(S™) in low dimensions.
For n=1, 2, P(5") are of course well-known (cf. Sah [19, chapter 6]), but
we include these cases as an illustration:
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ExampLE 5.27. P(S'). From the exact sequence
0—Z — Pt(RY)' — [q Py(VH]*—Z*—0
and lemma 5.26 b) we immediately concqude
P(SY)Z=H,(0(2), Pt(R?"/Z)~H,(0(2), Z*)~R|Z mod C,

where ZS P(S?) is the subgroup generated by the class [S*]. From this it is
easy to deduce the expected conclusion that P(S')=~R with the isomorphism
given by “Length”.

ExampLE 5.28. (S%). By the remark 2 following corollary 5.18 it now
clearly follows that “Area” induces an isomorphism P(S?)=R.

ExampLE 5.29. P(S°). Split the exact sequence (5.24) into short exact
sequences

(i) 0—-Z'—Pt(R")—Z,—0

(ii) 0—>Z3-—>]_! Pt(V3)—Z,—0

(i) 0—Z,—II Pt(V)—>Z—0
(iv) 0—Z—TI Pt(V)—>Z—0.
Vl

By (i), P(S%)|Z=H,O(4), Z}) where ZS P(S°) is the subgroup generated by
[S*]. Furthermore by lemma 5.26 we conclude from (ii) and (iv):

(5.30) H(O(4), Z§)~H,,(O(4), Z$) mod C,, Vi,
(5.31) H(O4), Zt)~H,,(0(4), Z*) mod C,, Vi.

Also using the splitting Spin(4)==S, X.S_ with S.==Spin(3)=SU(2) as in the
proof of corollary 4.18, it is easy to see that the natural inclusion SU(2)—0(4)
induces an equivalence

(5.35) H(SU(2), Z)~H,(04), Z)mod C,, i=1,2,3.
Finally by lemma 5.26 a)

H,(O(4), [1] P(V))])=H(0(2) X O(2), P(R?)'®Z").
Here as in example 5.27V

H(O(2), Pt(R*))=R,
H\(0(2), Pt(R?)")~H\(0(2), Pt(R*)/Z)
~H,(0(2), Z)~0 modC,.

Hence by Kiinneth’s theorem
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H\(0(2)x O(2), Pt(R*)'QRZ)~RRH(0(2), Z")
~RQR|Z modC(,,
H,(0(2)x O(2), Pt(R*)*Q Z*)~0 mod G, .

The exact sequence (iii) together with (5.30)—(5.32) thus yields

Proposition 5.33. There is an exact sequence mod C,:

D
0 — Hy(SU(2), Z) > P(S%)|Z —> RQR|Z — HN(SU(2), Z) — 0.
Here Z< P(S?) is generated by [S®] and D is the spherical Dehn invariant.

RemMARK. The identification of D in the above sequence with the Dehn
invariant is completely analogous to the proof of corollary 4.12.

Proof of theorem 1.3. a) It is easy to see that the last map in the sequence
factorizes as

(5.34) RQR|Z — R|ZQR|Z — AYR|Z) — H,(SU)(2), Z)

f~—4

HU(1), Z)

where U(1)—>SU(2) is the inclusion as diagonal matrices. This map induces

a surjection by a theorem of J. Mather (see Alperin-Dennis [2]), and hence also

the composite map (5.34) is surjective (not just mod ;). Since RQR/Z is

divisible and torsion free and since %(S%) is 2-divisible it follows easily that

exactness mod C, implies actual exactness at the places P(S°)/Z and RQR/Z.
b) The map

(5.35) H(SU(2), Z) > P(SY)/Z

can be described on the chain level as follows: Let Cy(SU(2)) denote the
homogeneous bar complex. For i=0, 1, 2,3 one .can construct by successive
choices a SU(2)-equivariant homomorphism

@: C(SU(2)) — C(S?)

which commutes with the boundary maps. It is easily checked that the map
(5.35) is induced by @. On the other hand the Cheeger-Simons class C,&
H*SU(2), R|Z) can be represented by the SU(2)-invariant homomorphism

C(SUR) 2> Cy(S) —> R - R|Z

where «: Cy(S*)—R is given by integration of the volume form divided by the
volume of S (c.f. Cheeger-Simons [6, § 8] or Dupont [8, chapter 9, exercise 3]).
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This proves the statement.
In the following let AS Hy(SU(2), Z) be the subgroup in C; as in corollary
1.3.

Corollary 5.36. a) A spherical polyhedron P in which all dihedral angles
are rational multiples of = determines a homology class PeHy(SU(2), Z)|A.
Furthermore

Cy(P) = Vol(P)/Vol(S?) .

b) Let KS P(S° be the kernel of D. Then K has infinite rank.

c) The restriction of Vol: K— R has countable image.

d) Vol and D are separating invraiants for P(S?) iff the evaluation LGy, =
Hy(SU(2), Z)—>R|Z has kernel in C,.

Proof. a) is obvious since D(P)=0 when all dihedral angles are rational
multiples of 7.

b) is a restatement of the result of Cheeger [5] that Hy(O(4), Z) and
hence also Hy(SU(3), Z) has infinite rank.

c) By the rigidity of the class ¢, (Cheeger-Simons [6, proposition 8.10])
it is easy to see that the evaluation on Hy(SU(2), Z) only depends on the alge-
braic points of SU(2) (considered as an algebraic group over R), and hence
has at most a countable image (cf. Cheeger [5]). On the other hand Q/Z is
contained in the image of the evaluation of C,.

d) The “only if” part is obvious. Now assume that <éz, —> has kernel
in C,. 'Then also the kernel of «: K/Z—>R|Z is in C, and let 2" be the exponent.
Now suppose x< P(S°) satisfies Vol(x)=0, D(x)=0. Since L(S°%) is 2-divi-
sible, x=2"y and clearly Vol(y)=0, D(y)=0. Therefore ye KX and «(y)=0,
hence

x=2%=0 mod [S7]
by assumption, and hence x=0 since Vol (x)=0.

Remarks. 1. Corollary 5.36 a) generalizes a theorem of Thurston (see
Cheeger-Simons [6, theorem 8.18)) associating homology classes to “‘almost
all” spherical simplices with rational dihedral angles.

2. As mentioned in the proof of b), Hy(SU(2), Z) contains a copy of
Q/Z. Here the cyclic subgroup generated by 1/k, k= Z, is the image in H;
under the inclusion of the cyclic subgroup of U(1)C SU(2) generated by a k'th
root of unity. As an element of K& P(S%)/Z the generator is represented by
the double suspension of an arc of length 2z/k. One can actually show that
every polyhedron which is a fundamental region for a finite subgroup of O(4) is
scissors congruent to one of these double suspensions.
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3. The volumes of spherical polyhedra, especially simplices, has been
studied by Schlifli [22] (see also Coxeter [7] and Aomoto [3]). However, it is
difficult to see from his formulas whether the volume of a polyhedron with
rational dihedral angles is a rational multiple of Vol(S®) (=2#%) or not except
in the obvious cases of a fundamental region for a finite group.

4. Corollary 1.3 also gives a presentation of H,(SU(2), Z) as a quotient of
AZ(R|Z) by the image of the composite

(5.37) P(S) R RQR|Z - AYR|Z),

thus answering a question stated by R. Alperin [1, p. 284]: Since P (S%) is gene-
rated by orthoschemes (cf. Schlafli [22, p. 229]) we must compute D(A) for A
being such a simplex in which 3 of the dihedral angles are right. If a, 8, 7 are
the remaining angles at the edges of length a, b, ¢ respectively, then by Schifli
we must have sin % sin 2y >cos? 8 and
sin ¢ cos Y cos ¢ sin Y
cosa = Viita—cod B’ cosc =
cos o cos B cos Y

Vsin? ¢—cos? B V/sin® y—cos? B

\V/sin? y—cos 2B

cos b =

Therefore the image in AZ(R/Z) of the map (5.37) is generated by all elements
of the form

a a b B, c Y
. Pt — P bl _|_ — 4
27t/\27t+27t/\27l‘ 271'/\27:
where «, B3, v and a, b, ¢ satisfy the above conditions.

Relation with Euclidean case.

We end this section with an application to the Euclidean case. Recall
from Sah [19, chapter 7, § 2] that there are generalized Dehn invariants

WO: PR") — P(R*)QP(SP)SP(SP?).

Via the isomorphisms of the corollaries 4.6 and 5.18 b) this decomposes into a
sum of homomorphisms

vP: Hy(O(n), D(R")") -
— Hy(O(n—p), D'(R"*))QH(O(p), St(R’)).

In particular for p=n—gq this map is easily seen to be induced by the first homo-
morphism in the following exact sequence:

Proposition 5.38. Let V=R"and 1<q=mn. Then thereis an exact sequence
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of O(n)-modules :
0= D(V) = L ARV)®SU(VIV?) > 1T AR(V)QSt(V[V*H) —
= = ILAKV™) = AY(V) 0.

Proof. The maps in this sequence are rather obvious, e.g. the first one is
defined by sending a strict flag (U,D+-DU,_,_;) to the flag Uy/V*---U,_,_,[V*
where V'=U,_,_.;. To prove the exactness we use induction on n=>q: For
n=gq the sequence reduces to D (V)=A%(V). In general the sequences for
V, V"7, etc. fit into a diagram

0 0
! !

0> (W) - MAVIRSVIVY — — -
¢ A

0= ILOW) = T AIISSV™ ) = -

"t ! iy~

where the vertical sequences are the Lusztig exact sequences (4.7) and (5.23).
The exactness of the top row now easily follows from the exactness of the other
rows.

Again this exact sequence gives rise to a hyperhomology spectral sequence
which can be used for studying P(R"). Here we just consider the following

ExampLE 5.39. P(R°). In example 4.31 we were left to study Hy(O(5),
D(R®)?"), and for this we now consider the spectral sequence corresponding to
the exact sequence in proposition 5.38 for n=5, g=1. The differentials d’,
r=1, -+, 4, defined on subgroups of H,(O(5), 9*(R®)") lands in subquotients of
H,_(O(r)xO(5—r), (R")*QSt(R*"")"). For r=2 and 4 this group is clearly zero
by “center kills”. For r=3 it is also zero since H,(O(3), (R%'=0 (corollary
1.2 b)) and since

H(O(2), (St(RY))~H,0/(2), Z)~0  modC,.

Now clearly d' coincides with the generalized Dehn invariant W{* and the
only other possibly non-zero differential is d° landing in a quotient of H,(O(5),
(R%Y. Thus we obtain

Proposition 5.40. The subgroup of P(R°) of elements in the kernel of
“Volume” and the Dehn-invariants ¥® and W®, is isomorphic to the quotient
H,(O(5), (R®)")[], where ] is the subgroup generated by the images of the two maps
1) RQH(O(4), Z)=H,(0(1)x O(4), (R")'®Z")—H,(0(5), (R)")

i) H(O(3), (R))QH(0(2), 2)~H,(0(3) x O(2), (R} ®Z")—~H(O(5), ().

In i) and ii) R'— R® and R®*— R® are the inclusions on the first coordinates
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of R Proposition 540 shows that Hilbert’s 3rd problem in R® is more or
less equivalent with the calculation of the homology group H,(SO(5), R®), a group
which however seems rather out of reach with the present knowledge.

6. The hyperbolic case

We now come to the scissors congruence group for the hyperbolic space
H". Let us write G(n) for the group of all isometries. Thus if as a model for
H" we take the hypersurface in R**' given by O(x)=—1, x,>0, with O(x)=
—x§+xi+---+x;, then G(n)=O0(1,n)* is the subgroup of the orthogonal group
for Q stabilizing the halfspace x,>0. Again we want to study

P(AH) = s P (A", {1}).

Not surprisingly we shall use the Tits-complex J(9(") of flags of proper hyper-
bolic subspaces (including the zero-dimensional ones, i.e. the points), and
exactly similar to proposition 5.3 we have

Proposition 6.1. H,(9(H"), Z)=0 for g==n—1.
Therefore we make the following
DEFINITION 6.2. Let

St(H") = H, (I(H"), Z), n=0,

and St(9(°)=Z be the hyperbolic Steinberg module for G(n).
Similarly to corollary 5.18 and proposition 5.24, we obtain

Proposition 6.3. i) P(I")=Hy(G(n), St(I")").

1) There is an exact sequence of G(n)-modules
0—=St(HA)Y—-TISt(V") > -« > IISt(V°) > Z—0
pn-1 7o
where V'? runs through all p-dimensional hyperbolic subspaces of l".

For V?C 4" a hyperbolic subspace let Gy» denote the stabilizer for V'?, i.e.
the subgroup of G(n) mapping V? into itself. Notice that if H?C 4" is the
natural inclusion on the first p+1 coordinates in the above model then the
stabilizer for H? is

(6.4‘) Gﬂp == G(_P) X O(L—P) .
Therefore again by Shapiro’s lemma and “center kills” we have

Lemma 6.5.
a) Hy(G(n), [H St(V?)])=H«(G(p) X O(n—p), St(I?)'RZ").
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b) In particular for n—p odd
H(G(n), []_} St(V)H]H=0 mod(;.
v
Also let us recall (Sah [19, chapter 1, proposition 4.3]) that P (") is 2-divisible.
Then we can study P(4") in low dimensions using the exact sequence in pro-

position 6.3. For n=1, 2, the results are of course already known (cf. Sah [19,
chapter 8]).

ExampLE 6.6. P(H'). For n=1 we obtain from proposition 6.3
H,(GQ), St(H))~H,;(G(1), Z') modC,.

Here G(1)=0(1, 1)* is the semidirect product of R and Z/2 where Z/2 acts by
—1. In particular

P(IHY~H\(G(1), Z)~R mod C,
s0 P(4')=R and the isomorphism is given by “length”.

ExampLE 6.7. P(H?). Using proposition 6.3 and lemma 6.5 we obtain
an exact sequence moe C,

(6.8) Hy(0(2), Z*) — Hy(G(2), Z*) - P(H?) —

— H,(0(2), Z*) — H\(G(2), Z") .
If we use the upper halfplane model for 9% i.e. the set of complex numbers 2
with Im 2>0, then G(2) is the semidirect product of PSI(2, R) acting as
z—(az+b)/(cz+d) and the Z/2 given by z+——2Z. Since Sl(2, R) is perfect

the last term in (6.8) vanishes. Also clearly the first term lies in ;. Now
Hy(G(2), Z*). is equivalent (mod (,) to the (—1)-eigenspace in Hy(S1(2, R), Z)

for the automorphism given by conjugating with the matrix (_é (1)) This

eigenspace however is contained in the kernel for the map
(6.9) H,y(S1(2, R), Z) — Hy(S1(3, R), Z)

since on the latter group conjugation by the matrix

—1 0 0 —1 0 0\/1 O0 O
0 1 Of=f 0—1 O}f0—-1 0
0 0 1 . 0 0—-1/\0 0 —1

clearly induces the identity. Now the kernel of (6.9) is infinite cyclic (cf. Sah-
Wagoner [21]) corresponding to the central extension given by the universal
covering of SI(2, R). Hence (6.8) reduces to an exact sequence mod C,
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(6.10) 0—>Z—> P(H) —> R|Z—0

and it is easy to see that o is given (up to a factor a power of 2) by
o(8) = —(a+6+)
27

where A is a triangle with angles @, 3, v. From (6.10) and the classical formula
Area(A) = n—(a+B+Y)
it now easily follows that “Area”: P(H?*)—R is an isomorphism.

Notice that if TCPSI(2, R) is a discrete subgroup with T'\J{* a surface of
genus g >1, then the image of the fundamental class under the composite

H/T\I*, Z) = HyT, Z) > H(G(2), Z') > P(I0)

can be represented by the regular polygon with 4g sides and angle z/2g at the
vertices.

ExampLE 6.11. P(9°). We now prove theorem 1.4:
Using the exact sequence of proposition 6.3 in the same way as in example
(5.29) we obtain an exact sequence mod Cy:

(6.12) 0 — Hy(G(3), Z*) - P(IH*) —
— H{(G(), [T1 St(V)]) — HAG(3), 2% 0.
Here
H(GQ), [LI St(VI)~Hy(G(1), St(H))QH(O0(2), Z°)
%R?R/Z mod C,
and again the map ‘
D: P43 — RGZ§R/Z

is identified with the Dehn invariant.

Now let us use as model for %* the upper halfspace bounded by the Rie-
mann sphere CU {oo}. Then G(3) is the semidirect product of PSI(2, C) and
Z[2, where PSI(2, C) acts on CU {co} as the Mobius transformations

2 (az+b)/(ca+d)
and Z/2 acts by complex conjugation. It follows that

(6.13) H(G(3), Z)~H(SI(2,C), Z)~ mod(,
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where ~ indicates the (—1)-eigenspace for the automorphism induced by complex
conjugation. Thus (6.9) is equivalent to the following exact sequence mod C,:

(6.14) 0— HyS1(2,C), Z)” — P(I) -—lz—> RQR|Z —
— H,y(SI(2, C), Z)‘Z—> 0.
Now by Sah-Wagoner [21]
H,(S1(2, C), Z)=K,(C)

and this group is divisible, hence the last map of (6.14) is surjective. Since
P(H) is 2-divisible and RQR|Z is divisible and torsion free we conclude
that (6.14) is exact at these two places. This ends the proof of theorem 1.4.

ReMARks 1. This time H,y(S1(2, C), Z)"=K,(C)~ is the cokernel of the
hyperbolic Dehn invariant D, and similar to the spherical case the image of D
in RQR|Z is generated by elements of the form

a B v
a®27t—}—b®2”+c®2”

where sin® a sin’ y<<cos®’ B and where i™! cosh a, i~ cosh b, i™! cosh ¢ are given
by the same expression as in the spherical case in section 5 remark 4. However
Sah-Wagoner [21] has already described this group in a simple way as generated
by all elements of the form

—log(2 cos a)®@-% .
27
2. If TEPSI(2, C) acts discontinuously on H* with compact quotient
then the image of the fundamental class under the composite map.
Hy(T\963, Z) = Hy(T, Z) - H{(G(3), Z*) — P ()

is represented by a polyhedron which is a fundamental domain for I" acting on
9.
3. If «: P(H3)—R is given by «(P)=Vol(P)/Vol(S®) then the composite

map
H{SI(2,C), Z)" — P(I’)—> R

is the evaluation of the Cheeger-Simons class l_C‘zeH%Sl(Z, C),CliZ) or
Z

rather the class corresponding to the imaginary part of the Chern polynomial C,
(the real part obviously vanishes on the (—1)-eigenspace for conjugation).
Notice that this time there is a natural choice for the chain map of Eilenberg-
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MacLane chain complexes:

Cu(S1(2, €)) > Cy(I)

(cf. Dupont [9]).

As in the spherical case we now finally obtain

Corollary 6.15. Let B H,(S1(2,C), Z)~ be as in the theorem 1.4. Then
a) A hyperbolic polyhedron P in which all dihedral angles are rational multi-

ples of = determines a homology class ISEH;,(SI(Z, C), Z)"|B. Furthermore

<% C,, B> = Vol(P)[Vol(S?)

b) Let KS P(H3) be the kernel of D. Then K has infinite rank.
c) The restriction of Vol: K— R has countable image.
d) Vol and D are separating invariants for LP(I) iff the evaluation

<%c2 —>: H(SI(2,C), Z) >R

has kernel in C,.

In another paper with C.-H.Sah we shall extend the results on L (9°) to

the extended hyperbolic space where the polyhedra may have some (or all)
vertices lying on the boundary of 4{3.
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