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The purpose of this paper is to determine those homogeneous real hypersur-
faces in a complex projective space P,(C) of complex dimension n(=2) which are
orbits under analytic subgroups of the projective unitary group PU(n-1), and to
give some characterizations of those hypersurfaces. In §1 from each effective
Hermitian orthogonal symmetric Lie algebra of rank two we construct an example
of homogeneous real hypersurface in P,(C), which we shall call a model space in
P,C). In §2 we show that the class of all homogeneous real hypersurfaces in
P,(C) that are orbits under analytic subgroups of PU(n+1) is exhausted by all
model spaces. In §§3 and 4 we give some conditions for a real hypersurface in
P,(C) to be an orbit under an analytic subgroup of PU(n-+1) and in the course
of proof we obtain a rigidity theorem in P,(C) analogous to one for hypersurfaces
in a real space form.

The author would like to express his hearty thanks to Professor T. Takahashi
for valuable discussions with him and his constant encouragement, and to Pro-
fessor M. Takeuchi who made an original complicated proof of Lemma 2.3 short
and clear.

1. Model spaces

In this section we shall state several model spaces in a complex projective
space P,(C) with the Fubini-Study metric of constant holomorphic sectional cur-
vature. They are obtained essentially as orbits under the linear isotropy groups
of various Hermitian symmetric spaces of rank two. Precisely, let (11, ) be an
effective orthogonal symmetric Lie algebra of compact type. u is a compact se-
misimple Lie algebra and 6 is an involutive automorphism of u ([3]). Let u=
f+p be the decomposition of u into the eigenspaces of  for the eigenvalues +1
and —1, respectively. Then t and p satisfy [E, £]ct, [E, p]cp and [p, p]Ct.

1) Partially supported by the Sakko-kai Foundation.
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For the Killing form B of u we define a positive definite inner product <, > on
p by <X, Y>=—B(X, Y) for X, Yep. Let K be the analytic subgroup of the
group of inner automorphisms of u with Lie algebra ad(f). Then K leaves the
subspace p of u invariant and acts on p as an orthogonal transformation group
with respect to {, >. We define a representation p of K on p by p(k)=k|p for
k=K. The differentiation py of p is an isomorphism of f into the Lie algebra
of the orthogonal group of p and satisfies (p4X)Y=[X, Y] for all X<t and all
Yep. Let S denote the unit hypersurface in p centered at the origin and A be
a regular element of p in S. Then the orbit N=p(K)A4 of A under p(K) is a
submanifold of S of codimension R—1 ([9]), where R denotes the rank of the
orthogonal symmetric Lie algenra (1, §). Furthermore we assume that (u, 6) is
Hermitian and of rank two. Then N is a hypersurface in S. It is known ([3])
that there is an element Z, in the center of f such that

(aZef = —1,
UpsZ)X, (pxZ)Y> =<X,Y> for X,Yep.

Thus we may regard p as a complex vector (n+1)-space C*** with complex
structure I=py;Z, and Hermitian inner product <, >, where 2(n+1)=dim p.
Let = be the canonical projection of p— {0} =C"*'— {0} onto P,(C) and V be a
vector field on p defined by Vx=1I(X), X&p. Since the 1-parameter subgroup
p(exp RZy) of p(K) induces V' and leaves N invariant, it is easy to prove htat the
image M=n(N) of N by = becomes a real hypersurface in P,(C). We assert
that p(K) is an analytic subgroup of the unitary group U(n-+1) of p with respect
to I and p mapps the group C, of K generated by Z, onto the center of U(n+1)
isomorphically. In fact, for any k€ K we have

Top(k) = (ad Z,)|pok|p = k| pe(ad Z,)|p = p(k)oI .

The second assertion is evident. It follows that the group G=p(K)/p(C,) is a
compact analytic subgroup of PU(n+1)=U(n+1)/p(C,) which acts on M tran-
sitively as a transformation group of isometries of M. We shall call this M a
model space in P,(C). We can say that a real hypersurface M in P,(C) obtained
from another regular element of p in S is of the same type as M in the sense that
both M and M are orbits in P,(C) under the same subgroup G of PU(n-+1).
Thus it turned out that each effective Hermitian orthogonal symmetric Lie alge-
bra of compact type and of rank two produces real hypersurfaces of the same
type in P,(C). By virture of a complete classification theorem of effective Her-
mitian orthogonal symmectric Lie algebras we obtain the following list of model
spaces of different type in P,(C). The first case in the Table is the only case
where (11, 8) is reducible, which was found by N. Tanaka ([8]).
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Table
| u t dim M
BELRITHGD | sup)+u)+au@ rut) | 2Ap+e-3
su(m +2) a(u(m) +1u(2)) 4m—3
D(,:lng:;z) o(m)+R 2m—3
o(10) u(5) 17
E, o(10)+R 29

2. Orbits under analytic subgroups of PU(n+1)

In §1 we saw that each model space is an orbit in P,(C) under an anlytic
subgroup of the identity component PU(n-+1) of the group of all isometries of
P,(C). Conversely we have

Theorem 2.1. If M is a real hypersurface in P,(C) being an orbit an analytic
subgroup G of PU(n--1), then M is congruent to one of model spaces with respect to
the group of all isometries of P, (C)

In order to prove Theorem 2.1 we need some preparations.

Lemma 2.2. Let (u, ) be an effective orthogonal symmetric Lie algebra of
compact type and the other notations as in §1. If H is an analytic subgroup of K
such that p(H) acts on an orbit N=p(K)A transitively, then so is RHk™ for any
keK.

Proof. Choosing an element % of H such that p(k~*)A=p(k)A, we have
p(kHE™)A=p(kH)p(k™")A= p(kH) p(h) A= p(k) p(H) A= p(R)N=N. Q.E.D.

Lemma 2.3. Let (11, 0) be an irreducible effective orthogonal symmetric Lie
algebra of compact type and of rank two and H be an analytic subgroup of K such
that p(H) acts on N transitively. Suppose that there is a p(H)-invariant complex
structure I on p such that I=pyZ, for some Z,=¥. If H is not semisimple, then
(u, 6) is Hermitian.

Proof. Assume that (1, 0) is not Hermitian. Then { is semisimple. We
assert that § and u have the same rank. In fact, if the rank of  is smaller than
that of u, then there is a Cartan subalgebra c(f)+¢(p) of u such that ¢(f) is a
Cartan subalgebra of ¥ containing Z,, and {0} =¢(p)Cp. Then pyZ, vanishes
on ¢(p), which contradicts pyZ,=I1. By a complete classification theorem of
effective orthogonal symmetric Lie algebras we know that the possile set of paris

(u, T) satisfying these conditions is {(G,, 0(4)), (80(2-+n), 8p(2)+8p(n))} .
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The case where u=G), and t=0(4). Since p(H) acts on N transitively, dim
H >dim N=dim p—2=6. Hence h=I since dim 0(4)=6, where §) denotes the
Lie algebra of H. This contradicts the fact that o(4) is semisimple.

The case where u=8p(2+n) and £=8p(2)4-8p(z). In this case we shall
derive a contradiction by determining a concrete expression of ). We denote by
H the real algebra of quaternions and by 1,7, j, k the units of H. We identify C
with the subalgebra R-1+R-i of H. The set of all martices of degree n with
coefficients in H will be denoted by M,(H). Then we have

u=8p(2+n) = {XEMz+n(H); X= *X} ’

t=sp(2)+ap() = {(X0); Xeap2), Yespm) .

We choose as a Cartan subalgebra t of ¢ the following one

ix, 0

t= {U(xu "ty Xpyg) = ( >; X1y "ty xn+2ER} .

N 0 X n+2

Then U,=U(0, -+, 1, -+, 0)(0 except for r-th), 1=<r=< n+2, forms a base
of . A base o,, I=S7r=n-+2, of the dual space t* of t is defined by w,(U,)=35,.,
1=s=<n+2. For an element a=t* we put

u, = {Xeu; [U, X] =27zia(U)X forall Uct},

where u¢ denotes the complexification of u. If u, = {0} then « is called a root
of w with respect to t. The set of nonzero roots of u with respect to t is de-

noted by A. We put
Ar= {aeA; u,Ct}, Ap = {a=A; u,Cpc} .
Then we easily find (cf. [7])
At = {to,to, +20,(l1=r=n+2), to,teodsr<ssn+2)},
Ap= {+o,+o,, to,+o, G=Sr=n+2)}.

Since for any Cartan subalgebra ¥’ of §) there is an element %, of K such that
Ad(k,) mapps t’ into t(cf. [5]), we may assume by Lemma 2.2 that Z,ct. For
any ¢ € Ap and any X, u, we have

I(X,) = [Zo, XJ] = 2zic(Z)X.,

which implies that 2zia(Z,) is an eigenvalue of I. Hence a(z,)=+1 for any
a< Ap, where we put z,=2zZ, It follows that 2, =4 U,+U, or +U,4 -
4+U,,, Since the Weyl group Wt of t is generated by the reflections of At,
there is an element w of Wt such that w(z,)=U,~+ U, or U,+ -+ U,,,. Hence
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we may assume again by Lemma 2.2 that 3,=U,+ U, or U;+---+U,,, First
let 2,=U,+ U, A subalgebra )= {Xe&t; [X, Z,]=0} of ¥ contains ). By a
simple calculation we find

ia =
y=4{ % ;a,bER, 2€C .
0 *
If we put
10
0 0 2: 0
A=| 7 0 O‘ 0
0 2¢
0 0 0

then A is a regular element of p. This can be easily checked from the fact that
Aeu, _,+1,,_,CPp. Itisbe easily calculated that the centralizer ¥(4) of A
in £ is given by

al 0 0
05b
t(4) = —taz O ; a, be Ri+ Rj+ Rk
0 ..l 0
0 —ib
0 0 *

Therefore the following subspace of ¥ is not contained in §'+-£(4)

0 ¢
_z0l0]|0
; € Ri+ Rk} .
0 0 qgE R+
0 0 0

On the other hand, since the tangent space of N at A coincides with the subspace

[t, A]l=[¥, A] of p, we see that £=Y'+¥(A4). This is a contradiction. Similarly

we have a contradiction also in the case where 2,=U,+ -+ U,,. Q.E.D.
Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let C*** be a complx vector (n+1)-space with
complex structure I’ and Hermitian inner product {, )/, and #’: C**'— {0} —
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P,(C) be the canonical projection. Let S’ denote the unit hypersphere in C"*!
centered at the origin. Then it is evident that the subset N=7»""(M)N S’ of S’
becomes a hypersurface in S’ ina natural manner. Moreover N isan orbit under
an anlytic subgroup of U(n+1). In fact, if we denote by g the Lie algebra of
G and by 3 the center of u(n-+41), then the direct sum g3 is a subalgebra of
8u(n+1)+3=u(n+1) and hence of 0(2n+2). Let H be the analytic subgroup
of O(2n+-2) with Lie algebra g+3. Then N coincides with an orbit under ﬁ,
which proves our assertion. On the other hand, W.Y. Hsiang and H.B. Lawson
Jr. [4] classified those compact analytic subgroups of O(m+-1) up to conjugation
which have orbits of codimension one in an m-sphere and are not subgroups of
another compact analytic subgroups of O(m-1) with the same orbits. As a
result of their classification we know that those groups except for reducible ones
coincide exactly with the linear isotropy groups of various irreducible symmetric
spaces of rank two. Since H includes the center of U(n+1), H is reducible as a
subgroup of O(2n+-2) if and only if H is reducible as a subgroup of U(n+1). If
H is reducible, then it can be easily shown that N is a product of two spheres.
Hence H is conjugate to a subgroup of a subgroup of the following form of
U(n+1) in O(2n-+2)

( U(r) o

) ,1ZrZn.
O Un+1—r)

In other words, there is an orthogonal symmetric Lie algebra (i, §) of the first
type in the Table and a R-linear isomrphism of C*** onto p with sends I’, {, >’
and N to I, {, > and an orbit Ny=p(K)A in S, resectively. Thus M is a model
space in P,(C) of the first type. If H is irreducible, then H is compact by a
theorem of M. Goto ([2]). Then above theorem of Hsiang and Lawson implies
that there is an irreducible effective orthogonal symmetic Lie algebra (u, §) of
compact type and of rank two such that we can identify C*** with p as R-linear
spaces, {, Y with {, > and N with an orbit N;=p(K)4 in S under the linear
isotropy representation of (1, 8), and such that p(K) coincides with the idenity
component of the group of all orthogonal transformations of p leaving N, in-
variant, in particular, p4(f) contains I’ which can be regarded a complex structure
of p. We put H= p"‘(H ), which is a compact analytic subgroup of K. Then H
and (u, ) satisfy the condition of Lemma 2.3 and so (u, 6) is Hermtian. Since
an irreducible group H of O(2n+2) commutes elementwise with both I and I’,
we have I=4-1" by Schur’s lemma. If I=—1I’, by taking —Z, instead of Z, we
have I=1I’. Hence we may set /=1I’. Thus the above identification: C**'=p
induces the identification of two complex projective spaces P,(C) under which
M=n(N,). Q.E.D.
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3. Arigidity theorem

In this section we shall prove a rigidity theorem on real hypersurfaces in a
complex projective space P,(C) to give a characterization of model spaces. Here-
after let M be a connected Riemannian manifold of dimension 2n—1(=3). We
denote by F(M) the bundle of orthonormal frames of M. Then F(M)is a principal
fibre bundle over M with structure group O(2n—1). An element u of F(M) can
be expressed by u=(p: e,, ***, €,,-,), where p is a point of M and e, ..., €,,_, is
an ordered orthonomal base of the tangent space of M at p. The projection of
F(M) onto M is denoted by z. The canonical forms 0,, -+, 0,,_, of F(M) are
the linear diffrential forms on F(M) defined by

e X = 104 X)e”

where X is a tangent vector of F(M) atu=(p: e,, -+, €,,_,) and 7 is a differential
mapping of =w. The connection forms 0} of F(M) are the linear differential forms
on F(M) uniquely determined by the following conditions:

(3.1) 03+6{=0 and dP+310N¢ =0.
The curvature forms ©} of the connection are defined by
(3-2) 6] = dfij+310iN0).

k

Hereafter let P,(C) have constant holomorphic sectional curvature 4c. The
bundle of orthonormal frames of P,(C) is denoted by F(P). If we denote by
G4, 04 and ©4 the canonical forms, the connection forms and the curvature forms
of F(P) respectively, then ®4 are given by

(33) 84 = cNG=+c 33 (JETB+T4]3) 6°NEP,

where the tensor field J=(J4) on F(P) denotes the complex structure of P,(C),
that is, J(€,)=>.J5¢5 at (p: &,, -+, &,,)= F(P). Moreover J satisfies
B

(3:4) +75=0,
(3.5) S JeT5= 8%,
(3.6) aJg =3 J805-3J50¢

The equation (3.6) means that J is parallel.

An isometry @ of P,(C) induces a diffeomorphism of F(P) leaving the forms
04, 04 and ©4% invariant in an obvious manner, which is also denoted by the same
letter .

2) In the following the indices 7,5, &,/ run from 1 to 2n—1 and the indices 4, B, C, D run from
1 to 2n.
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Let ¢ be an isometric immersion of M into P,(C). For an orthonormal frame
u=(p: e, **+, €,,—,) of M there exists a unique tangent vector &,, to P,(C) at ¢(p)
such that #=(c(p): tx€;, ***, t4€3n_1,&,4) 1S an orthonormal frame of P,(C)compatible
with the orientation of P,(C) determined by J. This mapping u—># of F(M) into
F(P) is also denoted by the same letter .. Then denoting by ¢* the dual mapping
of ¢y we have @*=:*@* and *§**=0, from which we know 6}=:*d% and 0=
H*df™=—31*G"A6*. By Cartan’s lemma we may write as

(3.7) ¢iEL*g‘2"=ZH,‘j0‘i, H,‘jZH,'J-.
7
The quadratic form >3¢,0% is called the second fundamental form of (M, ). Put

Ji=Jioc and f;=]%"o:. The pair (], f) is called the almost Grayan structure of
(M, ). From (3.2), (3.3) and (3.7) we have the equation of Gauss

(3:8) O} = BN, FeONO e T (JET TSN
From (3.3) and (3,7) we have the equatior'l of Codazzi

(3.9) dbit 6,0 = S (F, T+ 0 N O*
Moreover (], f) satisjﬁes ’

(3.10) Jst]i=0,

(3.11) SUL—ff, = =8, 3t =0, 3fi=1,
(3.12) 4]} = S1J403— SN J30A—fiAF b

& =205 )14,

Thus an isometric immersion ¢ of M into P,(C) induces three tensor fields
H=(H,) of type (0,2), J=(J%) of type (1,1) and f=(f;) to type (0,1) on F(M).
For another isometric immersion ¢ of M into P,(C) we shall denote the differential
forms and the tensor fields on F(M) induced by ¢ by the same symbol but with a
roof A overhead.

Lemma 3.1. Let ¢, ¢ be two isometric immersions of M into P,(C). If H=
H, then J=] and f=f, or J=—] and f=—f.
Proof. Since ¢;=¢, and @%= : %, we have from (3.8) and (3.9)

(3.13) DJJHTST DN = g(]i]i—l-fﬁff)a"/\ﬂ’,
(3.14) ST LT NG = S (S T)e New.

Compare the coefficients of ¢ A 67 in (3.13) to get
Jy =5
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Here we define a subbundle F’ of F(P) by
F' = {(ﬁ- én "ty ézn—u ézn)EF(P); jézn—l = ézn}

and restrict the forms the tensor fields under consideration to the subbundle
i F’ of F(M). Then Ji,,=0 for all { and f,,_,=1, so f;=0 for 1<i<2n—2.
Hence J%,-,=0 for all  and so f,,_,=41by (3.11). Thus f;=0for 1 =i=<2n—2.
Put i=2n—1 in (3.14) to get

Ji=fim-sJl for 1 <i, k<2n—2.

Since f,,.,=-1, we showed that Lemma 3.1 holds on F’ and hence on F(M).
Q.E.D.

Theorem 3.2. Let ¢, ¢ be two isometric immersions of M into P,(C). If H=
H, then 1, are rigid, that is, there is an isometry @ of P,(C) such that poi=ti.

Proof. By Lemma 3.1 we have J=] and f=f, or J=—] and f= —f. First
assume that /=] and f= f This implies that if # is an element of F(M) such
that ¢(u) is a unitary frame of P,(C) then () is also a unitary frame of P,(C).
Then there exists a unique element @ of PU(n-+1) such that o(¢(u))=:i(u).
Making use of the same method as one of proving a rigidity theorem of hypersur-
faces in a real space form, it can be proved that the mapping u—¢ of F(M) into
PU(n+1) is constant (cf. [6], [10]). Next assume that J=—J and f=—f. This
implies that #n41 is even since for each ue F(M) the frames ¢(x) and (x) of
P,(C) determine the same orientation of P,(C). Hence the isometry 7 of P,(C)
induced from the conjugation of C"*' preserves the orientation of P,(C). It

follows that the almost Grayan structure ( f, f) induced by an isometric immersion

2=7ot of M into P,(C) is equal to (—J, —f). Since the second fundamental

form of (M, ¢) coincides with SVH,;6°07, the previous argument shows that there
i

is an element o of PU(n+1) such that got=i=go7To; Q.E.D.

Theorem 3.3 Let ¢ be an isometric immersion of M into P,(C). If a group
G of isometries of M leaving H invariant acts on M transitively, then (M) is con-
gruent to a model space, that is, there are an isometry ¢ of P, (C) and a model
space M, such that ¢(M)=p(M,).

Proof. It follows from Theorem 3.2 that for each g& G there exists a unique
element o, of PU(n-+1) such that g ot=tog or o ot=Torog. Hence M is con-
gruent to an orbit under the identity component of a subgroup {o,&PU(n+1);
g€ G} of PU(n+1). Thus Theoem 3.3 was reduced to Theorem 2.1. Q.E.D.

4. The type number of hypersurfaces

In this section we shall consider the problem of the converse of Lemma 3.1
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and fix the notation in §3. If ¢, ¢ are two isometric immersions of M into P,(C),
then we have from (3.8)

PiNp; = biNb; if J=+].

Then by a theorem of E. Cartan [1] we know that ¢,—-¢; at the points
where the rank of the second fundamenal form of (M, ¢) (which is called the type
number of (M, ¢)) or of (M, 1) is not less than 2. So we shall study the type
number ¢ of (M, ¢). For a nonemtpy open set U of F(M), let m be the maximal
value of £ on U. Then ¢ takes the constant m on an open subset U, of U, or
equivalently the number of linearly independent ones of ¢, ---, ¢,,-, is equal to
m on U,. In a while restrict the forms and the tensor fields under consideration
on the following subbundle F, of U,

F,= {ucU,; ¢, =D H, 0% ¢, = 0 at u}®.
b
Lemma 4.1 If m<n—1, then f,=0 for all r.

Proof. Puti=r in (3.9) and compare the coefficients of 8°A ¢ using ¢,=0
to get

(4.1) fli—fJi=2f,Ji=0.

Put =7 in (4.1) to get f, J:=0. Therefore multiplying (4.1) by f, we get f, Ji=
0. If f,=0 for some 7, then J{=0 for all s,t, which contradicts the fact that the
rank of J is equal to 2n—2 and m<n—1. Q.E.D.

By Lemma 4.1 we have m>1 and may assume that f,=1 and f;=0 for 2<i=m.
Then from (3.12) we have

(42) 0; = 2]34’1;, 0: = Zb}]:(ba .
Put 7=7 in (3.9) to get
(4.3) za]d)a/\ 07 = c 2 JIONG .

Now assume that m=1. Then 6}=>) Jip,=]b,=0 since 0=f,J;=]; by
(3.11). Hence J5=0 forall 7, s since 0=¢, A\ 0r=c>] J:6' A\ & by (4.2) and (4.3).
If n=3, this contradicts the fact that the ran of J is equal to 2n—2(>2). Thus

we proved

Theorem 4.2. Let ¢ be an isometric immersion of M into P (C) (n=3).
Then in any nonempty open set of F(M) there exists a point u where t(u)=2.

3) In the following the indices a, b, ¢ run from 1 to m and the indices 7,s,t run from m+1 to
2n-1.
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From Theorem 4.2 we have the following theorem

Theorem 4.3. Let ¢, ¢ be two isometric immersions of M into P,(C) (n=3)
such that J=] and f=f, or J=] and f= —f. If the type number of (M, ¢) or of
(M, 2) is not equal to 2 at any point of F(M), then ¢, ¢ are rigid.

Proof. Let u be any point of F(M). Then by Theorem 4.2 any neighbour-
hood of # contains a point v where #(v)=3. Hence H =4 H at v. Since we have
asequence {u,} of points of F(M)such that u, tends to u as w—>oo and H=+ K
at u,,, we have H=-+H at u. We define two closed subsets F, and F_ of F(M)
by

F.= {ucF(M); H= Hat u} ,
F.= {ucF(M); H= —Hatu} .
Then F(M)=F,UF_.. Moreover 'F_ can not contain any nonempty open set

of F(M). In fact, suppose that U’ is a nonempty open set of F(M) contained in
F_. Then we have on U’

dit- Db A0l = —(ddi+ 31, \0) .
On the other hand, from the assumption we have
DS HfINI NG =2 Tt Ther Ao
Theses equations and (3.9) imply
§ (F;Ji+f:JD0 NG =0 foralli,

from which we have a contradiction f,Jj=0 as in the proof of Lemma 4.1.
Thus we showed that the boundary of F, contains F_, that is, F,.=F(M) since
F, is closed. Now Theorem 4.3 was reduced to Theorem 3.2. Q.E.D.

Corollary 4.4. Let ¢ be an isometric immersion of M into P,(C) (n=3).
Assume that the type number of (M, ¢) is not equal to 2 at any point of M. If a
group of isometries of M leaving the almost Grayan structure (], f) of (M, ¢) inva-
riant acts on M transitively, then M is congruent to a model space.

The proof is similar to that of Theorem 3.3.

ReMARK. Theorems 3.2,4.2 and 4.3 are valid for a complex space form of
negative constant holomorphic sectional curvature instead of P,(C).

Toky0o UNIVERSITY OF EDUCATION
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