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The purpose of this paper is to determine those homogeneous real hypersur-

faces in a complex projective space Pn(C) of complex dimension n(^>2) which are

orbits under analytic subgroups of the projective unitary group PU(n-\-\)> and to

give some characterizations of those hypersurfaces. In § 1 from each effective

Hermitian orthogonal symmetric Lie algebra of rank two we construct an example

of homogeneous real hypersurface in Pn(C)y which we shall call a model space in

Pn(C). In §2 we show that the class of all homogeneous real hypersurfaces in

Pn{C) that are orbits under analytic subgroups of PU(n-\-l) is exhausted by all

model spaces. In §§3 and 4 we give some conditions for a real hypersurface in

Pn(C) to be an orbit under an analytic subgroup of PU(n-\-l) and in the course

of proof we obtain a rigidity theorem in Pn(C) analogous to one for hypersurfaces

in a real space form.

The author would like to express his hearty thanks to Professor T. Takahashi
for valuable discussions with him and his constant encouragement, and to Pro-
fessor M. Takeuchi who made an original complicated proof of Lemma 2.3 short
and clear.

1. Model spaces

In this section we shall state several model spaces in a complex projective
space Pn(C) with the Fubini-Study metric of constant holomorphic sectional cur-
vature. They are obtained essentially as orbits under the linear isotropy groups
of various Hermitian symmetric spaces of rank two. Precisely, let (u, θ) be an
effective orthogonal symmetric Lie algebra of compact type, u is a compact se-
misimple Lie algebra and θ is an involutive automorphism of u ([3]). Let u =
ϊ+t> be the decomposition of u into the eigenspaces of θ for the eigenvalues + 1
and — 1 , respectively. Then I and p satisfy [ϊ, ! ] c l , [f, p ] c p and [p, t>]cϊ.

1) Partially supported by the Sakko-kai Foundation.
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For the Killing form B of u we define a positive definite inner product < , > on
p by <X, Y>= — B(X, Y) for X, Y(Ξp. Let K be the analytic subgroup of the
group of inner automorphisms of u with Lie algebra ad(ϊ). Then K leaves the
subspace p of u invariant and acts on p as an orthogonal transformation group
with respect to < , >. We define a representation p of K on p by p(k)=k \ p for
k^K. The differentiation p* of p is an isomorphism of ϊ into the Lie algebra
of the orthogonal group of p and satisfies (p*X)Y=[X, Y] for all Z G Ϊ and all
Y^p. Let S denote the unit hypersurface in p centered at the origin and A be
a regular element of p in S. Then the orbit N=p(K)A of A under ρ(K) is a
submanifold of S of codimension R—ί ([9]), where R denotes the rank of the
orthogonal symmetric Lie algenra (u, θ). Furthermore we assume that (u, θ) is
Hermitian and of rank two. Then N is a hypersurface in S. It is known ([3])
that there is an element Zo in the center of ϊ such that

( p * Z 0 ) 2 = - l ,

<(P*ZO)X, (P*Z0) Y> = <X, Y> for X, F ε p.

Thus we may regard p as a complex vector (#+l)-sρace Cn + 1 with complex
structure I=p*Z0 and Hermitian inner product < , > , where 2(n-\-l)=dim p.
Let 7Γ be the canonical projection of p— {0} = C Λ + 1 — {0} onto Pn(C) and F be a
vector field on p defined by VX=I(X), Z e p . Since the 1-ρarameter subgroup
ρ(exp RZ0) of ρ{K) induces V and leaves N invariant, it is easy to prove htat the
image M—π(N) of N by π becomes a real hypersurface in Pn{C). We assert
that p(K) is an analytic subgroup of the unitary group U(n-\-\) of p with respect
to / and p mapps the group Co of K generated by Zo onto the center of E/
isomorphically. In fact, for any k^Kwe have

Iop(k) = (ad ZQ)\pok\p = k\Mad Z0)\p = p(k)ol.

The second assertion is evident. It follows that the group G=p(K)jp(C0) is a
compact analytic subgroup of PU{n-\-Y)=U{n-{-\)jp(C0) which acts on M tran-
sitively as a transformation group of isometries of M. We shall call this M a
model space in Pn(C). We can say that a real hypersurface M in Pn(C) obtained
from another regular element of p in S is of the same type as M in the sense that
both M and M are orbits in Pn(C) under the same subgroup G of PU(n-\-\).
Thus it turned out that each effective Hermitian orthogonal symmetric Lie alge-
bra of compact type and of rank two produces real hypersurfaces of the same
type in Pn(C). By virture of a complete classification theorem of effective Her-
mitian orthogonal symmectric Lie algebras we obtain the following list of model
spaces of different type in Pn(C). The first case in the Table is the only case
where (u, θ) is reducible, which was found by N. Tanaka ([8]).
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Table
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u

3u(£ + l) + ftt(? + l)
P^q^l9p>\

3u(m+2)
m^3

o(m + 2)
w ^ 3

o(10)

!

S(u(£)+u(l)) + 8(u(<z)+u(l))

S(u(m)+u(2))

o(w)+J?

u(5)

o(10) +22

dim ikf

2(ί> + <?)-3

4m-3

2m-3

17

29

2. Orbits under analytic subgroups of PZ7(n+l)

In §1 we saw that each model space is an orbit in P«(C) under an anlytic
subgroup of the identity component PU(n-\-ί) of the group of all isometries of
Pn(C). Conversely we have

Theorem 2.1. If M is a real hypersurface in PJC) being an orbit an analytic
subgroup G of PU(n-\-l), then M is congruent to one of model spaces with respect to
the group of all isometries of Pn (C)

In order to prove Theorem 2.1 we need some preparations.

Lemma 2.2. Let (u, θ) be an effective orthogonal symmetric Lie algebra of
compact type and the other notations as in$\. If H is an analytic subgroup of K
such that ρ(H) acts on an orbit N=ρ(K)A transitively, then so is kHk'1 for any

Proof. Choosing an element h of H such that ρ(k~1)A=ρ(h)Ay we have
p(kHk-1)A==p(kH)p(k-1)A==p(kH)p(h)A=p{k)p(H)A==p{k)N==N. Q.E.D.

Lemma 2.3. Let (u, θ) be an irreducible effective orthogonal symmetric Lie
algebra of compact type and of rank two and H be an analytic subgroup of K such
that ρ(H) acts on N transitively. Suppose that there is a ρ(H)-invariant complex
structure I on p such that I=ρ*Z0 for some Z0^t. If H is not semisimple, then
(u, θ) is Hermitian.

Proof. Assume that (it, θ) is not Hermitian. Then I is semisimple. We
assert that ϊ and u have the same rank. In fact, if the rank of ϊ is smaller than
that of u, then there is a Cartan subalgebra c(t)+c(p) of u such that c(l) is a
Cartan subalgebra of I containing Zo, and {0}φc(p)Cp. Then ρ*Zo vanishes
on c(p), which contradicts p*ZQ=I. By a complete classification theorem of
effective orthogonal symmetric Lie algebras we know that the possile set of paris
(u, ϊ) satisfying these conditions is {(G2, o(4)), (8p(2+n), 8p(2)+8p(ή))}.
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The case where n—G2 and f=o(4). Since p(H) acts on N transitively, dim
H>dim iV=dim £—2=6. Hence fj=f since dim o(4)=6, where f) denotes the
Lie algebra of H. This contradicts the fact that o(4) is semisimple.

The case where u=8p(2+«) and t=8p(2)+8p(n). In this case we shall
derive a contradiction by determining a concrete expression of §. We denote by
H the real algebra of quaternions and by 1, iyj, k the units of H. We identify C
with the subalgebra R> 1+R i of H. The set of all martices of degree n with
coefficients in H will be denoted by Mn{H). Then we have

u = βp(2+fi) = {XϊΞM2+n(H); * X = -

I = 8»(2)+βp(n) =

We choose as a Cartan subalgebra t of I the following one

ί

(

Then Ur=U(0, •••, 1, •••, 0)(0 except for r-th), l ^ r ^ w+2, forms a base
of t. A base ω r, l ^ r ^ w + 2 , of the dual space t* of t is defined by ωr(Us)=8rSi

For an element α ^ t * we put

uΛ = { I G U C ; [J7, X] = 2πia{U)X for all C7et} ,

where u c denotes the complexification of u. If uΛ Φ {0} then a is called #
of u WίϊA respect to t. The set of nonzero roots of u with respect to t is de-
noted by Δ. We put

Then we easily find (cf. [7])

Δ ! = {±ω1±ω2i

Δ4)= {±ω1±ωri ±ω2±ωr, (3^r^

Since for any Cartan subalgebra V of § there is an element k0 of ^ such that
Ad(&0) mapps V into t(cf. [5]), we may assume by Lemma 2.2 that Z o e t . For
any ct^Ap and any X^ na we have

/(Xα) = [Zo> Λ J = 2^/α(Z0)Z,,,

which implies that 2πia(Z0) is an eigenvalue of /. Hence α ( # 0 ) = ± l for any
«GΔp, where we put zo=2πZo. It follows that ^o=±^idzί^2 o r ± ^ 3 ± * # *
i t C/M+2 Since the Weyl group Wι of ϊ is generated by the reflections of ΔΪ,
there is an element w of Wt such that w(zo)= U^ U2 or ί73+ •••+ Un+2. Hence
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we may assume again by Lemma 2.2 that zQ =U1-\-U2 or ί/3+ +?7M+2. First
let zo=U1+U2. A subalgebra §'= { X G I ; [X, Zo]=0} of ϊ contains ϊ). By a
simple calculation we find

I ia z

—2 ib

\ o

0

* /

If we put

i

0

\

0

0

2i

0

I

0
0
li

0

0

0

0

0

\

/

then A is a regular element of p. This can be easily checked from the fact that
It is be easily calculated that the centralizer t(A) of A

in f is given by

la 0

0 b

0

\ o

0

-iai 0

0 -ίbi

0

o\

0

*/

a,b<=Ri+Rj+Rk

Therefore the following subspace of ϊ is not contained in

/0 q

-?o

0

M 0

0

0

0

0

0

o /

q^Ri+Rk

On the other hand, since the tangent space of N at A coincides with the subspace
[ϊ, ^4]=[^/, A] of p, we see that ϊ = ^ + ϊ ( ^ 4 ) . This is a contradiction. Similarly
we have a contradiction also in the case where zo= C/3+ « -|- Un+2. Q.E.D.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let Cn+1 be a complx vector (w+l)-space with
complex structure / / and Hermitian inner product < , y, and π': Cn+1— {0}->
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Pn(C) be the canonical projection. Let S' denote the unit hypersphere in Cn + 1

centered at the origin. Then it is evident that the subset N=π'~1(M) Π S' of S'

becomes a hypersurface in S' in a natural manner. Moreover iV is an orbit under

an anlytic subgroup of U(n-\-l). In fact, if we denote by g the Lie algebra of

G and by 5 the center of u(n-\-\)y then the direct sum g+$ is a subalgebra of

3u(n-\-l)-\-%=u(n-\-l) and hence of o(2n+2). Let ή be the analytic subgroup

of O(2n-\-2) with Lie algebra g+§. Then N coincides with an orbit under ή,

which proves our assertion. On the other hand, W.Y. Hsiang and H.B. Lawson

Jr. [4] classified those compact analytic subgroups of O(m-\-l) up to conjugation

which have orbits of codimension one in an /^-sphere and are not subgroups of

another compact analytic subgroups of O(m-\-\) with the same orbits. As a

result of their classification we know that those groups except for reducible ones

coincide exactly with the linear isotropy groups of various irreducible symmetric

spaces of rank two. Since Hincludes the center of U(n+l), i^is reducible as a

subgroup of O(2n-{-2) if and only if i^is reducible as a subgroup of U{n-\-\). If

H is reducible, then it can be easily shown that N is a product of two spheres.

Hence ίϊ is conjugate to a subgroup of a subgroup of the following form of

U(n+l)inO(2n+2)

( U{r) O \
V O U(n+ί-r)J9

In other words, there is an orthogonal symmetric Lie algebra (u, θ) of the first
type in the Table and a Λ-linear isomrphism of Cn+1 onto p with sends /', < , >'
and N to /, < , > and an orbit iV0= ρ(K)A in S, resectively. Thus M is a model
space in P«(C) of the first type. If ή is irreducible, then ή is compact by a
theorem of M. Goto ([2]). Then above theorem of Hsiang and Lawson implies
that there is an irreducible effective orthogonal symmetic Lie algebra (u, θ) of
compact type and of rank two such that we can identify Cn+1 with p as Λ-linear
spaces, < , >' with < , > and N with an orbit No= ρ(K)A in S under the linear
isotropy representation of (u, θ), and such that p{K) coincides with the idenity
component of the group of all orthogonal transformations of p leaving No in-
variant, in particular, p*(!) contains Γ which can be regarded a complex structure
of p. We put H= ρ~ι{ίt)y which is a compact analytic subgroup of K. Then H
and (w, θ) satisfy the condition of Lemma 2.3 and so (u, θ) is Hermtian. Since
an irreducible group i^of O(2n-\-2) commutes elementwise with both / and /',
we have I=±I' by Schur's lemma. If I=—I\ by taking — Zo instead of Zo we
have 1=1'. Hence we may set 1=1'. Thus the above identification: Cn+1 = p
induces the identification of two complex projective spaces Pn(C) under which
M=π(N0). Q.E.D.
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3. A rigidity theorem

In this section we shall prove a rigidity theorem on real hypersurfaces in a
complex projective space PJC) to give a characterization of model spaces. Here-
after let M be a connected Riemannian manifold of dimension 2n—1(^3). We
denote by F(M) the bundle of orthonormal frames of M. Then F(M) is a principal
fibre bundle over M with structure group O(2n— 1). An element u of F(M) can
be expressed by u=(p: ely •••, e2n_^)y where/) is a point of M and ely ..., ^2n_! is
an ordered orthonomal base of the tangent space of M at p. The projection of
F(M) onto M i s denoted by π. The canonical forms θly •••, θ2n^ of F(M) are

the linear diffrential forms on F(M) defined by

where X is a tangent vector of F(M) at u=(p: e19 •••, e2«-i) and πr* is a differential
mapping of π. The connection forms θ] of F(M) are the linear differential forms
on F(M) uniquely determined by the following conditions:

(3.1) θj+θl=O and rffl'+ΣβjΛfl'= 0 .
i

The curvature forms Θj of the connection are defined by

(3.2) θj

Hereafter let Pn(C) have constant holomorphic sectional curvature 4<r. The
bundle of orthonormal frames of Pn(C) is denoted by F(P). If we denote by
ffΛ, B£ and Θ^ the canonical forms, the connection forms and the curvature forms
of F(P) respectively, then Θjf are given by

(3.3) θ£ = effAAffB+e Σ (JAH+JΛJ%)
C>D

where the tensor field J=(j£) on F(P) denotes the complex structure of Pn(C)>

that is, 7 ( ? A ) = Σ / A * B at (p: g19 - , e2n)^F(P). Moreover / satisfies

The equation (3.6) means that / is parallel.
An isometry φ of Pn(C) induces a diffeomorphism of F(P) leaving the forms

ΘA, θβ and Θ^ invariant in an obvious manner, which is also denoted by the same
letter φ.

2) In the following the indices i,jfkf I run from 1 to 2n-l and the indices AfB, C,D run from
1 to 2n.
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Let i be an isometric immersion of M into Pn(C). For an orthonormal frame

u=(p: elf •••, e2n-i) of M there exists a unique tangent vector £2n to Pn(C) at *(/>)

such that u=(t(p): ι*ely •• ,ι*e2n_lye2n)h an orthonormal frame of Pn(C)compatible

with the orientation of Pn(C) determined by /. This mapping u-*ϋ of F(M) into

F(P) is also denoted by the same letter c. Then denoting by ι* the dual mapping

of i* we have θi=^8i and ι*&2n=0, from which we know 01=1*0$ and 0 =

L*d§2n= — Σ ' * 0 f Λ 0'. By Cartan's lemma we may write as

(3.7) φ Ίl

The quadratic form Σ φ , ^ 1 is called ίλe second fundamental form of (M, Λ). Put

J]—Jjoi and / f =/fwo^. The pair (/,/) is called ίλe almost Gray an structure of

(My ή. From (3.2), (3.3) and (3.7) we have the equation of Gauss

(3.8) Θ$ = φt Λ φj+cθ'Λ θ'+c g UUt+JUΪ)θ*Λ θι.

From (3.3) and (3,7) we have the equation of Codazzi

(3.9) j j

Moreover (/, /) satisfies

(3.10) /}+/* = 0,

(3-11)

(3.12)

Σ/^Σ
Thus an isometric immersion * of M into Pn(C) induces three tensor fields

H=(H,) of type (0,2), / = ( / J ) of type (1,1) and/=(/,) to type (0,1) on F(M).

For another isometric immersion i of M into Prt(C) we shall denote the differential

forms and the tensor fields on F(M) induced by I by the same symbol but with a

roof Λ overhead.

Lemma 3.1. Let cy I be two isometric immersions of M into Pn{C). If H=

# , then J=J andf=fy or J= - j andf= - / .

Proof. Since φi=φi and Θ$=®5> we have from (3.8) and (3.9)

(3.13) Έ(JU3ι+ΓJϊ)θkΛθ< = J2UiJi+JtJϊϊPΛ0i >

(3.14) Σ (fjJί+fJlW'Λ θ* = Σ (fJi+fJWΛ θ« .
jtk j,k

Compare the coefficients of θiAθJ in (3.13) to get
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Here we define a subbundle Fr of F(P) by

F' = {(P: 8» - , e2n-» e2n)(ΞF(P); Jg2H_t = e2n}

and restrict the forms the tensor fields under consideration to the subbundle
2"1 Ff of F(M). Then / L - i = 0 for all i and /,„-!= 1, so /,=() for l ^ i ^ 2 n - 2 .
Hence/L-i=0 for all i and so f t n - x =±\ by (3.11). Thus/,=() for l ^ i ^ 2 n - 2 .
Put i=2n— 1 in (3.14) to get

Since/ 2 n _ 1 =±l, we showed that Lemma 3.1 holds on F ' and hence on F(M).
Q.E.D.

Theorem 3.2. Le£ £, 2 be two isometric immersions of M into Pn(C). If H=
H, then i, I are rigid, that is, there is an isometry φ of Pn(C) such that φot=c.

Proof. By Lemma 3.1 we have J=J and / = / , or / = —/ and / = —/. First
assume that / = / and / = / . This implies that if u is an element of F(M) such
that ι(u) is a unitary frame of Pn(C) then i(u) is also a unitary frame of Pn(C).
Then there exists a unique element φ of P£/(n+l) such that φ(c(u))=ΐ(ύ).
Making use of the same method as one of proving a rigidity theorem of hypersur-
faces in a real space form, it can be proved that the mapping u^>φ of F{M) into
PU(n+ί) is constant (cf. [6], [10]). Next assume t h a t / = — / and/=—/. This
implies that w+1 is even since for each u^F(M) the frames c(ύ) and ι(u) of
Pn{C) determine the same orientation of Pn(C). Hence the isometry T of PΛ(C)
induced from the conjugation of Cn+1 preserves the orientation of PM(C). It

follows that the almost Grayan structure (J, f) induced by an isometric immersion
t=τo£ of M into Pn(C) is equal to (—/, —/). Since the second fundamental
form of (M, t) coincides with 2 ίlifi

iQί

y the previous argument shows that there
*»/

is an element <r of PU(n~\-l) such that σoί=£=σoτo£ Q.E.D.

Theorem 3.3 Let c be an isometric immersion of M into Pn(C). If a group
G of isometries of M leaving H invariant acts on M transitively, then i (M) is con-
gruent to a model space, that is, there are an isometry φ of Pn (C) and a model
space Mo such that ι(M)—φ(MQ).

Proof. It follows from Theorem 3.2 that for each g^G there exists a unique
element σg of PU(n-\-l) such that σgoc—ιog or σgoι=τoιog. Hence M is con-
gruent to an orbit under the identity component of a subgroup {σg^PU(n+l)\
g(=G} of PU(n+\). Thus Theoem 3.3 was reduced to Theorem 2.1. Q.E.D.

4. The type number of hypersurfaces

In this section we shall consider the problem of the converse of Lemma 3.1
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and fix the notation in §3. If i, ϊ are two isometric immersions of M into Pn(C),
then we have from (3.8)

φiAφJ = φiAφj if J=±J

Then by a theorem of E. Cartan [1] we know that φi=±φi at the points
where the rank of the second fundamenal form of (M, t) (which is called the type
number of (M, ι)) or of (M, ί) is not less than 2. So we shall study the type
number ΐ of (M, c). For a nonemtpy open set U of F(M), let m be the maximal
value of t on U. Then t takes the constant m on an open subset UQ of t/, or
equivalently the number of linearly independent ones of φly •••, φ2n-i is equal to
m on Uo. In a while restrict the forms and the tensor fields under consideration
on the following subbundle Fo of Uo

Fo = {u(Ξ Uo; φa = Y±Habe\ φr = 0 at w}3).

Lemma 4.1 Iftn< n— 1, then fr= 0 /or all r.

Proof. Put i=r in (3.9) and compare the coefficients of θsAθt using φr=0
to get

(4.1) fJr*-fsβ-2frβ = 0.

Put *=r in (4.1) to get/ r/£=0. Therefore multiplying (4.1) by fr we get frj't =
0. If/ rΦθ for some r, then/J=0 for all s,t, which contradicts the fact that the
rank of/ is equal to 2n—2 and m<.n— 1. Q.E.D.
By Lemma 4.1 we have m^>l and may assume that/ x=l and/t = 0 for 2^i^m.
Then from (3.12) we have

(4.2) <%

Put ί=r in (3.9) to get

(4.3) ΣΦ.Λ0? =

Now assume that m=l. Then θl=^Σβφa=βφ1=0 since 0==fJl=J} by

(3.11). Hencey;=0 for all r, j since 0=φ 1Λ6> r

1=cΣ/^ 1Λ^ by (4.2) and (4.3).

Ξ>3, this contradicts the fact that the ran of/ is equal to 2n—2(>2). Thus
we proved

Theorem 4.2. Le£ i be an isometric immersion of M into Pn(C) (n^>
Then in any nonempty open set of F(M) there exists a point u where t(u)^2.

3) In the following the indices α, b, c run from 1 to m and the indices rysj run from m + 1 to



HOMOGENEOUS REAL HYPERSURFACES 505

From Theorem 4.2 we have the following theorem

Theorem 4.3. Let ι> I be two isometric immersions of M into Pn(C) (n^>3)

such that J—J and f—f, or J=J and f= —/. If the type number of (M, t) or of

(M, ϊ) is not equal to 2 at any point of F(M), then t, I are rigid.

Proof. Let u be any point of F{M). Then by Theorem 4.2 any neighbour-

hood of u contains a point v where t(v)^3. Hence H=±ή at v. Since we have

a sequence {uw} of points of F(M) such that uw tends to u as w-> oo and H= i ίϊ

at uwy we have H=+H at u. We define two closed subsets F+ and JF_ of F(M)

by

F+ = {U<EΞF(M); H = # a t u} ,

F. = {u£ΞF(M); H = -Aat u} .

Then F(M)=F+\JF_. Moreover'ί1. can not contain any nonempty open set

of F(M). In fact, suppose that Ur is a nonempty open set of F(M) contained in

F_. Then we have on W

i

On the other hand, from the assumption we have

Σ (fjJl+fJίψΛθ* = Έ

Theses equations and (3.9) imply

k = 0 for all i

from which we have a contradiction fkJ*j—O as in the proof of Lemma 4.1.

Thus we showed that the boundary of F+ contains F_, that is, F+=F(M) since

F+ is closed. Now Theorem 4.3 was reduced to Theorem 3.2. Q.E.D.

Corollary 4.4. Let c be an isometric immersion of M into PΛ(C) ( « ^ 3 ) .

Assume that the type number of (My c) is not equal to 2 at any point of M. If a

group of isometries ofM leaving the almost Gray an structure (/,/) of (M, t) inva-

riant acts on M transitively, then M is congruent to a model space.

The proof is similar to that of Theorem 3.3.

REMARK. Theorems 3.2, 4.2 and 4.3 are valid for a complex space form of

negative constant holomorphic sectional curvature instead of PJC).

TOKYO UNIVERSITY OF EDUCATION



506 R. TAKAGI

References

[1] E. Cartan: La deformations des hyper surfaces dans Γespace euclidien reel a n dimen-
sions, Bull. Soc. Math. France 44 (1910), 65-99.

[2] M. Goto: Faithful representations of Lie groups I, Math. Japon. 1 (1948), 107-119.
[3] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, New

York, 1962.
[4] W.Y. Hsiang and H.B. Lawson Jr: Minimal submanifolds of low cohomogeneity, J.

Differential Geometry 5 (1971), 1-38.
[5] G.A. Hunt: A theorem of Elie Cartan, Proc. Amer. Math. Soc. 7 (1956), 307-308.
[6] P.J. Ryan: Homogeneity and some curvature conditions for hyper surf aces, Tόhoku

Math. J. 21 (1969), 363-388.
[7] Seminaire "Sophus Lie", Secretariat mathematique, Paris, 1955.
[8] N. Tanaka: On the pseudo-conformal geometry of hypersurfaces of the space of n

complex variables, J. Math. Soc. Japan 14 (1962), 397-429.
[9] R. Takagi and T. Takahashi: On the principal curvatures of homogeneous hypersur-

faces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo,
1972.

[10] T. Takahashi: Homogeneous hypersurfaces in spaces of constant curvature, J. Math.
Soc. Japan 22 (1970), 395-410.




