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1. Introduction

A topological graph is a one-dimensional complex consisting of finitely many
0-cells (vertices) and finitely many 1-cells (edges and loops). In [7], Kauffman proved
that piecewise linear ambient isotopy of a piecewise linearembedding of a topo-
logical graph in Euclidean 3-spaceR3 or 3-sphere 3, referred simply aknotted graph,
is generated by a set of diagrammatic local moves (see Fig. 1)that generalize the
Reidemeister moves for diagrams of classical links. This gives a complete combinato-
rial description of the topology of graphs in three dimensional space. Throughout this
paper, all spaces and maps are in piecewise linear category and we speak of 3-space
in referring to eitherR3 or 3 = R3 ∪ {∞}.

A method for producing invariants of knotted graphs in 3-space is to associate
a collection of links to the knotted graph [7, 13] and also a polynomial invariant
for knotted graphs is developed [16]. On the other hand, ambient isotopy of knotted
graphs is rather complicated by the fact that the generalized Reidemeister move (V)
(see Fig. 1) creates or destroys arbitrary braiding at a vertex and so it is not easy to
define non trivial invariants of the braiding move (V). For this reason, many authors
turned their attention to restrict the valency of vertices and the allowed movement in
the neighborhoods of vertices. This makes the constructionof invariants of such graphs
rather easier [1, 5, 7, 8, 13, 14, 15, 18].

The purpose of this paper is to introduce a method for obtaining invariants of the
braiding move (V) and consequently producing invariants ofknotted 4-valent graphs,
by using the 3-move for knots and links.

This paper is organized as follows. Section 2 contains fundamental concepts for
graph embeddings in 3-space. In Section 3 we associate a collection of knots and links
to a knotted 4-valent graph in 3-space and show that the 3-equivalent class of the col-
lection is an invariant of the knotted 4-valent graphs. In Section 4 we construct new
3-move invariants by using Kauffman bracket polynomial andshow that this 3-move
invariant gives a useful way to distinguish knotted 4-valent graphs in 3-space.

This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0038).
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Fig. 1. The Reidemeister moves for knotted 4-valent graphs

2. Knotted graphs in 3-space

A topological graph is a 1-dimensional cell complex consisting of finitely many
0-cells (vertices) and finitely many 1-cells (edges or loops). Each edge is homeo-
morphic to a closed line segment, and its ends are vertices inthe graph. A topolog-
ical graph is said to be-valent if the number of arcs incident with each vertex is
equal to . Throughout this paper, a graph means a 4-valent topological graph and a
knotted graphmeans an embedding of a 4-valent topological graph intoR3 otherwise
specified.

Two knotted graphsG and G′ are said to beequivalent (or ambient isotopic)
if there exists an orientation preserving homeomorphism :R3 → R3 such that

(G) = G′. Then it is well known that two knotted graphs are equivalentif and only
if their graph diagrams can be transformed to each other by a finite sequence of the
Reidemeister moves (I), (II), (III), (IV) and (V) as shown inFig. 1 [5, 7].

A rigid vertex 4-valent graph(briefly, 4 graph) is a 4-valent graph whose ver-
tices are replaced by rigid 2-disks or 3-balls. Each disk or ball has four strands at-
tached to it. Aknotted 4 graph means an embedding of a 4 graph intoR3. A
rigid vertex ambient isotopy of a knotted 4 graphG is a combination of topologi-
cal ambient isotopies of the strands corresponding to the edges ofG relative to the end
points on the rigid disks, coupled with affine motions of the disks carrying along the
strands in ambient isotopy. Two knotted 4 graphs are equivalent(or ambi-
ent isotopic) if their graph diagrams are transformed to each other by a finite sequence
of Reidemeister moves (I), (II), (III), (IV) of Fig. 1 and themove (V∗) as shown in
Fig. 2 [5, 7].
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Fig. 2. Braiding move for knotted 4 graphs

Fig. 3. Rigid vertex connection replacements

3. The 3-equivalent class of links in a knotted graph

In [7], Kauffman associated a collection (G) of links to each knotted 4 graph
G and showed that the ambient isotopy class of (G) is an invariant of the equiva-
lence of the graphG. An element of (G) is obtained by making a connection at each
vertex, replacing the vertex locally by a configuration thatconnects the four edges in
pairs. There are four ways to do this as shown in Fig. 3. In practice, the ambient iso-
topy class of (G) is very useful to distinguish knotted 4 graphs in 3-space.

In the case of a topological vertex graphG, however, the ambient isotopy class of
(G) is not an invariant of the (topological vertex) equivalence of the graphG because

the braiding move (V) may change the ambient isotopy type of alink in (G). This
section is devoted to show that if we take the 3-equivalence class of (G), then it is
an invariant of the knotted graphG.

Let G be a knotted graph with the vertex set (G) = { 1 2 . . . } ( ≥ 0)
and let be a diagram ofG. Let T = { 0 ∞ + −}, where 0, ∞, + and

− are 4-tangle diagrams as shown in Fig. 3, and let : (G) → T be an as-
signment of a member ( ) inT for each vertex ofG. Note that there are 4
assignments ofG. We denote all such assignments ofG by 1 2 . . . 4 and let

(G) = { 1 2 . . . 4 }. For each assignment ∈ (G), let ( ) denote the knot
or link diagram obtained from by replacing all vertices ofG as shown in Fig. 4 in
accordance with the assignment .

Let C( ) denote the collection of all 4 link diagrams ( ) associatedto ,
i.e., C( ) = {( ) | 1≤ ≤ 4 }. If | (G)| = 0, then we defineC( ) = { }.

Let be a link diagram. Then the +3-moveand the−3-moveare local changes
in as shown in the following Figure:

//

+3-move

//

−3-move
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Fig. 4. Vertex connection replacements
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Fig. 5.

DEFINITION 3.1. Two links and ′ are said to be 3-equivalent if their diagrams
can be transformed to each other by a finite sequence of Reidemeister moves (I), (II),
(III) of Fig. 1, the +3-move, the−3-move and their inverses.

Then we have the following easy lemma.

Lemma 3.2. Let +, −, ++ and −− be four link diagrams that are identical
except a small neighborhood where they are as shown inFig. 5. Then + and − are
3-equivalent to −− and ++, respectively.

Theorem 3.3. Let G be a knotted graph and let and ′ be any two diagrams
of G. Then there exists a permutationσ on the set{1 2 . . . 4 } such that the link
( ) is 3-equivalent to the link( ′

σ( )) for each = 1 2 . . . 4 .

Proof. Let = 0 1 . . . −1 = ′ be a sequence of graph diagrams
connecting and ′ where is obtained from −1 by applying exactly one of
the moves (I), (II), (III), (IV) and (V). Let 1 2 . . . be the vertices ofG and let

(G) = { | 1 ≤ ≤ 4 } as above. For each pair ( ), 1≤ ≤ , 1≤ ≤ 4 , we
denote by the knot or link ( ). For each = 1 2. . . , define a permutation
σ on {1 2 . . . 4 } such that the links −1 and σ ( ) are 3-equivalent for each

= 1 2 . . . 4 as follows:
CASE I. is obtained from −1 by applying the Reidemeister move (I), (II),

(III), or (IV). Then it is clear that the moves (I), (II), and (III) do not affect ver-
tex connection replacements. So−1 and are ambient isotopic for each =
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Fig. 6. Reidemeister move (IV)

Fig. 7. Reidemeister move (V)

1 2 . . . 4 . On the other hand, the Fig. 6 illustrates a vertex connection replacement
at a vertex by a tangle ∈ T and the effect of the move (IV). This shows that the
links −1 and are ambient isotopic for each = 1 2. . . 4 . In this case, we
defineσ to be the identity permutation.

CASE II. is obtained from −1 by applying the Reidemeister move (V). We
may assume that the move (V) is accomplished at the vertex1 without loss of gen-
erality. Fig. 7 shows all possible vertex connection replacements in the diagram −1

and the corresponding replacements in the diagram at the vertex 1.
For the type (A) of Reidemeister move (V) in Fig. 7, we observethat ∞ and

(A-3) are ambient isotopic by Reidemeister move (II),0 and (A-2) are ambient
isotopic by Reidemeister move (I),− and (A-1) are plane isotopic, and+ is 3-
equivalent to (A-4) by Lemma 3.2. For the type (B),∞ and (B-4) are ambient iso-
topic by Reidemeister move (II), 0 and (B-2) are ambient isotopic by Reidemeis-
ter move (I), + and (B-1) are plane isotopic, and− is 3-equivalent to (B-3) by
Lemma 3.2.

Now for each ∈ (G), let ′ : (G) → T be an assignment ofG defined by
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′( ) = ( ) for 2≤ ≤ and

′( 1) =





+ if ( 1) = ∞

0 if ( 1) = 0

− if ( 1) = +

∞ if ( 1) = −

Then ′ ∈ (G) and it follows from the above observation that the mapping
: (G) → (G) defined by ( ) = ′ for all ∈ (G) is bijective and so it in-

duces the desired permutationσ on {1 2 . . . 4 }. Similarly, we can obtain a permu-
tation σ for the type (B).

Finally, define σ = σ σ −1 · · ·σ1. Then ( ) = ( 0 ) is 3-equivalent to
( σ( )) = ( ′

σ( )) for each = 1 2. . . 4 . This completes the proof.

Two collections 1 and 2 of links are said to be 3-equivalent if every member
of 1 is 3-equivalent to some member of2 and vice versa. The following corollary
is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let G be a knotted graph and let be a diagram ofG. Then the
3-equivalent classC3(G) of the collectionC(D) is an invariant ofG.

EXAMPLE 3.5. LetG1, G2, G3 andG4 be knotted graphs as shown in Fig. 8. Then

C3(G1) = { 1 2} C3(G2) = { 2 3} C3(G3) = { 1 2} C3(G4) = { 1 2 3}

where denotes the unlink with trivial components. SinceC3(G1) and C3(G2) are
not 3-equivalent,G1 and G2 are not equivalent and henceG2 is knotted. Similarly,G3

andG4 are not equivalent.

4. 3-move invariants and invariants of knotted graphs

An invariant I of links is called a 3-move invariantif I( ) = I( ′) for any two
3-equivalent knots or links and ′. Now let 3 be a numerical or more generally
commutative ring valued 3-move invariant of links. Then it may be extended to an in-
variant of a knotted graphG by taking a suitable summation in terms of all values of
links associated to the graphG. The simplest such an example can be obtained by the
way:

Let G be a knotted graph and let be a diagram ofG. Then it follows from
Theorem 3.3 that the value3(G) defined by

3(G) =
4∑

=1

3(( ))
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hoinjmklhoinjmkl• •

G1 G2

hoinjmklhoinjmkl
•

•

hoinjmklhoinjmkl• hoinjmkl•

G3 G4

Fig. 8.

is an invariant of the knotted graphG. This invariant is more useful than the
3-equivalence classC3(G). In this section we shall discuss two examples of this type.

Let be a link in 3. Let M ( ) denote the -fold cyclic branched cover of3

branched along and 1(M ( ); ) the first homology group ofM ( ) with coeffi-
cients in an Abelian group .

DEFINITION 4.1. Let G be a knotted graph with vertices, let be a diagram
of G, and let (G) = { 1 2 . . . 4 } be the set of all assignments ofG. Let denote
the link in 3 represented by the diagram ( ). Then we define two integersρ1(G)
and ρ2(G) for G by

ρ1(G) =
4∑

=1

Dim 1(M2( ); Z3) ρ2(G) =
4∑

=1

Dim 1(M3( ); Z2)

Let be any unoriented link in 3 of µ components and let̄ denote an oriented
link with underlying unoriented link . Let (̄ ) and (̄ ) denote the Jones polyno-
mial [4] and the skein polynomial [3] of̄, respectively, and ( ) the -polynomial
invariant of the unoriented link [2].

Theorem 4.2. Let G be a knotted graph and let be a diagram ofG. Then
ρ1(G) and ρ2(G) are invariants ofG and

ρ1(G) = 2 log3




4∏

=1

∣∣∣ ¯ ( π /6 1)
∣∣∣


 = 2 log3




4∏

=1

∣∣∣ ¯ ( π /3)
∣∣∣


(4.1)
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= log3




4∏

=1

∣∣ (−1)
∣∣

(4.2)

ρ2(G) = 2 log2




4∏

=1

∣∣∣ ¯ (1 1)
∣∣∣


(4.3)

where¯ denotes an oriented link with underlying unoriented link represented by the
diagram ( ) and =

√
−1.

Proof. It is well known that the 3-moves preserve the groups1(M2( ); Z3)
and 1(M3( ); Z2) [10, 11, 12]. Therefore the dimensions Dim1(M2( ); Z3) and
Dim 1(M3( ); Z2) are 3-move invariants. It follows immediately from Theorem 3.3
that ρ1(G) and ρ2(G) are invariants ofG.

To prove (4.1), let̄ be an oriented link in 3 of µ components. By [10],

(̄ π /6 1) = (̄ π /3) = ± µ−1(
√

3 )Dim 1(M2( ); Z3)

So Dim 1(M2( ); Z3) = 2 log3

∣∣ (̄ π /6 1)
∣∣ = 2 log3

∣∣ (̄ π /3)
∣∣. Hence

ρ1(G) =
4∑

=1

Dim 1(M2( ); Z3) =
4∑

=1

2 log3

∣∣∣ ¯ ( π /6 1)
∣∣∣

= 2 log3

4∏

=1

∣∣∣ ¯ ( π /6 1)
∣∣∣ = 2 log3

4∏

=1

∣∣∣ ¯ ( π /3)
∣∣∣

For (4.2), let be an unoriented link in 3. It is known that (−1) =
(−3)Dim 1(M2( ); Z3) [2]. So Dim 1(M2( ); Z3) = log3 | (−1)|. Hence

ρ1(G) =
4∑

=1

Dim 1(M2( ); Z3) =
4∑

=1

log3 | (−1)| = log3

4∏

=1

| (−1)|

To prove (4.3) let̄ be an oriented link in 3 of µ components. By [10], (̄1 1) =
(−2)(1/2) Dim 1(M3( ); Z2). So Dim 1(M3( ); Z2) = 2 log2 | (̄1 1)|. Hence

ρ2(G) =
4∑

=1

Dim 1(M3( ); Z2) =
4∑

=1

2 log2

∣∣∣ ¯ (1 1)
∣∣∣ = 2 log2

4∏

=1

∣∣∣ ¯ (1 1)
∣∣∣

Now we will construct new 3-move invariants of links by usingKauffman bracket
polynomial and consequently give another numerical invariants of knotted graphs.

Let be a link and let be a diagram of . The Kauffman bracket polynomial
of [6] is the Laurent polynomial〈 〉 = 〈 〉( ) ∈ Z[ −1] defined by the follow-
ing rules:
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(i) 〈©〉 = 1,
(ii) 〈 ©〉 = (− 2 − −2)〈 〉,
(iii)

〈 〉
=
〈 〉

+ −1
〈 〉

.

Note that the Kauffman bracket polynomial is a regular isotopy invariant and

〈 〉
= − 3

〈 〉 〈 〉
= − −3

〈 〉

So it is not an ambient isotopy invariant. Also, it is not invariant under the 3-moves
since

〈 〉
= 3

〈 〉
+ ( − −3 + −7)

〈 〉
(4.4)

〈 〉
= −3

〈 〉
+ ( 7 − 3 + −1)

〈 〉
(4.5)

Let = cos( π/12) + sin( π/12), where = 1, 5, 7, 11, 13, 17, 19, 23 and
=
√
−1. Then each is a nonzero common root of the two equations− −3 +

−7 = 0 and 7 − 3 + −1 = 0 or equivalently, 8 − 4 + 1 = 0. Substituting in
the Kauffman bracket polynomial〈 〉, we get a regular isotopy invariant〈 〉 of :

〈 〉 = 〈 〉| =

DEFINITION 4.3. Let be a link diagram. For each = 1, 5, 7, 11, 13, 17, 19,
and 23, we define a real number [ ]∈ R by

(4.6) [ ] = 〈 〉 〈 〉

where 〈 〉 = 〈 〉| = −1 is a polynomial obtained from〈 〉( ) by interchanging
and −1.

Theorem 4.4. Let be a link diagram. Then for each = 1, 5, 7, 11, 13, 17,
19, and 23, the real number[ ] is a 3-move invariant of knots and links.

Proof. It is obvious that [ ] is a regular isotopy invariant. We observe that

[ ]
= − 3

〈 〉
· (− −3)

〈 〉

=
〈 〉

·
〈 〉

=
[ ]

Similarly,
[ ]

=
[ ]
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So [ ] is an ambient isotopy invariant.
Since − −3 + −7 = 0 and 7− 3 + −1 = 0, it follows from (4 4) and (4 5) that

〈 〉
= 3

〈 〉
and

〈 〉
= −3

〈 〉

So

[ ]
= ( 3)

〈 〉
· ( −3)

〈 〉

=
〈 〉

·
〈 〉

=
[ ]

Similarly,
[ ]

=
[ ]

Therefore [ ] is invariant under the 3-moves. This completesthe proof.

From Theorem 3.3 and Theorem 4.4, we obtain immediately the following numer-
ical invariant of knotted graphs:

Theorem 4.5. Let G be a knotted graph with vertices and let be a diagram
of G. For each = 1, 5, 7, 11, 13, 17, 19,and 23, define a real number[G] by

[G] =
4∑

=1

[( )]

Then [G] is an invariant ofG for each .

EXAMPLE 4.6. Let G1, G2, G3 and G4 be knotted graphs of Example 3.5. For
= 1, i.e., 1 = cos(π/12) + sin(π/12), we obtain that

ρ1(G1) = 1 ρ2(G1) = 2 [G1]1 = 6

ρ1(G2) = 5 ρ2(G2) = 10 [G2]1 = 27

ρ1(G3) = 4 ρ2(G3) = 8 [G3]1 = 24

ρ1(G4) = 8 ρ2(G4) = 16 [G4]1 = 36

This shows that the invariantsρ1, ρ2 and [ ]1 distinguish all graphsG1, G2, G3 and G4.

Final remarks. (1) Let and ′ be knotted graph diagrams with , vertices,
respectively. Then ⊔ ′ denotes the disjoint union of and′ and ♯ ′ denotes a
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connected sum of and ′ obtained by removing a small arc, not including vertices,
from each diagram and then connecting the four endpoints by two new arcs without
further crossing as a connected sum of two link diagrams. Connected sum of two knot-
ted graphs is not well defined in general. By the properties ofthe Jones polynomial
and the Kauffman bracket polynomial for⊔ ′ and ♯ ′ of two links and ′, we
have the following formulas:

ρ1( ⊔ ′) = 4 ρ1( ) + 4 ρ1( ′) + 4 +

ρ1( ♯ ′) = 4 ρ1( ) + 4 ρ1( ′)

ρ2( ⊔ ′) = 4 ρ2( ) + 4 ρ2( ′) + 4 +

ρ2( ♯ ′) = 4 ρ2( ) + 4 ρ2( ′)

[ ⊔ ′] = 3[ ] [ ′]

[ ♯ ′] = [ ] [ ′]

(2) A knotted surface is a closed and locally flat surface embedded in the
Euclidean 4-spaceR4 or the 4-sphere 4. In 1994, Yoshikawa [17] represents a knot-
ted surface in 4-space by a knotted graph diagram with 4-valent labelled vertices,
called a surface diagram, and introduces equivalence of surface diagrams. In [9], Lee
defined three variable state-sum polynomial invariants of equivalent surface diagrams
by using the invariants of Definition 4.3 for = exp(π

√
−1/6) for = 1, 2, 4,

5, 7, 8, 10, 11 as state evaluation, which are modifications ofthe graph invariants
[G] of Theorem 4.5. This shows that the complex number (1/4)| (G)|[G] evaluated
at = exp( π

√
−1/6) is an ambient isotopy invariant of a knotted surface in 4-space

R4 or 4 represented byG, where| (G)| denotes the number of the vertices ofG [9].
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