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The Dirichlet problem at infinity on Hadamard manifolds

久 村 裕 憲



THE DIRICHLET PROBLEM AT INFINITY ON HADAMARD 

                  MANIFOLDS

          HIRONORI KUMURA 

Dedicated to Professor Hideki Ozeki on his sixtieth birthday

                          1. INTRODUCTION 

  Let M be an n-dimensional Hadamard manifold, that is, a complete simply con-

nected C°° Riemannian manifold with nonpositive sectional curvatures. Making use 

of geodesic rays, Eberlein and O'Neill [11] constructed a compactification M = 
M U S(oo) of M which gives a homeomorphism of (M, S(oo)) with the Euclidean 
pair (Bn, Sn-1). In this paper we shall study the asymptotic Dirichlet problem for 
the Laplace- Beltrami operator, which is stated as follows: 

  Problem. Given a continuous function V on S(oo), find a harmonic function u E 
C°°(M) fl C°(M) such that ulshl = cp. 

 The maximum principle implies that cp uniquely determines u if it exists. 

 This problem has been studied by several authors (see [2], [3], (4], [7], [8], [9], [14], 
[15], [16], [20] and [21]). Choi [9] solved this problem for rotationally symmetric 
manifolds with the decay of sectional curvatures faster than -Ap'2{log p}'' outside 
a compact subset, where A > 1 is a constant and p is the distance from a fixed 

point. In [3] and [21], Anderson and Sullivan independently settled this problem 
affirmatively for the manifold with the sectional curvatures bounded between two 

negative constants. In relation with this result, the following question is proposed 

by Yau [22, p.14]: if curvatures of M are bounded above by a negative constant, can 
one find nontrivial bounded harmonic functions defined over the manifold ? From 
this point of view, as a first step, we shall attempt to relax the pinching condition 

for the curvatures which is imposed in Anderson [3] and Sullivan [21]. A work in this 
direction was actually done by Hsu and March: 

Theorem 1.1. ([15],[14]). Let M be an Hadamard manifold of dimension n > 3 and 
assume either (a) there are constants a > 2, 0 < 6 < 1 and L > 0 with all - /3) > 2 
such that 

                   KM(x) < -a(a - 1)p(x)-2 
and 

                    RicM(x) > -Lp(x)2' 

for all x E M outside some compact subset; or (b) there are constants U > 0 and 
L > 0 with U2/L > (n - 1)/2 such that 

                       KM(x) < -U2
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and 

                     RicM(x) > -L2p(x)2 

for all x E Al outside some compact subset, where p(x) = dist(o, x) and o E M 
is a fixed point of M and KM(x) (resp. Ricj(x)) denotes the sectional curvature of 
M (resp. the Ricci curvature of M.) Then one can solve the asymptotic Dirichlet 
problem for the Laplace-Beltrami operator. 

  In this paper, we shall generalize Theorem 1.1 and prove the following: 

Theorem 1.2. Let M be an Hadamard manifold of dimension n > 3 and assume 
either (a) there exist constants I > 2, C > 0, and 0 > 0 such that 

                    KM(x) < -1(1- 1)p(x)-2 

and 

                RicM(x) > -Cp(x)'-'f log p(x)}-e-1 

for all x E M outside some compact subset; or (b) there exist constants a > 0, C > 0 
and b E (0, a) such that 

                         KM(x) < -a2 
and 

                        RicM(x) > -Ceb'(x) 
for all x E M outside some compact subset. Then one can solve the asymptotic 
Dirichlet problem for the Laplace-Beltrami operator. 

  To prove Theorem 1.1, Hsu and March used a probabilistic approach. Their proof 
requires some lower bound of the Ricci curvature which guarantees the conservative 
law for the heat equation to hold; see [15, Remark 3]. This is the reason they 
imposed the condition RicM(x) > -C(p(x)2 + 1). Indeed, Li and Yau [18] showed 
that if the Ricci curvatures on a complete Riemannian manifold M satisfy RicM(x) > 
-C(p(x)2 + 1) for some positive constant C, then a nonnegative solution of the heat 
equation on M is uniquely determined by its initial data and therefore the minimal 

heat kernel p(t, x, y) satisfies fm p(t, x, y)dV (y) - 1. On the other hand, Azencott 
[6] showed that this curvature bound is almost sharp. To be precise, he showed 
that if M is an Hadamard manifold whose sectional curvatures are bounded from 

above by -Cp(x)2+f for some positive constants C and e, then the minimal heat 
kernel p(t, x, y) satisfies 0 < fm p(t, x, y)dV (y) < 1 for t > 0 and hence a solution of 
the heat equation on M is not uniquely determined by its initial data. Obviously, Th

eorem 1.2 includes the case that M is not stocastically complete. 
 On the other hand, we shall prove Theorem 1.2 by a more geometric method than 

Hsu and March's one. Indeed, we shall construct C2-superharmonic and subharmonic 
functions with given boundary value on S(oo), making use of the Schoen's technique 
in [4]. In our proof, we shall use only the comparison theorems in Riemannian 
geometry and the maximum principle.
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 This paper is divided into five sections. In section 2, a key estimate for the proof 
of Theorem 1.2 will be obtained by using the comparison theorem in Riemannian 

geometry. Section 3 is devoted to proving Theorem 1.2. In section 4, we shall state 
a generalization of Theorem 1.2 to the Dirichlet problem for harmonic maps. Some 

examples of manifolds will be given in section 5. 

  Acknowledgement. The author would like to express his gratitude to Professor 

Atsushi Kasue for his valuable suggestion and warm encouragement.

                         2. A KEY ESTIMATE 

 To begin with, we choose a fixed point o E M and identify S(oo) with the unit 
tangent sphere So-1(1) _ {u E T0M; ((u(( = 1} via the exponential map at o, where 
we assume that So-1(1) has the standard sphere metric. Let cp be a Lipschitz function 
on So-1(1) = S(oo) and extend it radially along the rays from o to a function on 
M - {o}, with boundary data cp on S(oo). Let X : [0, oo) --j R be a fixed C2 -function 
such that

(1) X(t) = 1 ,  10,
0<t<1, 

2 < t,

(2) 
and

XI(t)<0, t > 0,

(3) X"(t) > 0, 7/4 < t < 2. 
 As in [4], we define a function A(W) by 

(4) A((p)(x) = f x(p(x, y))'(y)dV(y)                       f
mx(p(x, y))dV (y) 

where p(x, y) = dist (x, y) and dV denotes the Riemannian measure on M. We note 
that A(W) is a C2-function on M with boundary value cp on S(oo). Then we have 
the following: 

Lemma 2.1. The Laplacian of A(V) satisfies 

(5) (AA(~o)( (x) < C1(k(x)2 + 1). sup (p(y) - ~O(x% 
                                             yEBz(2) 

where 

(6) -k(x)2 = inf { ( 2CM)((' (( 0 u E TqM, q E Bx(2) } 
                         n-1 u 2 ))' 

and C1 is a constant depending only on X and n = dim M.
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       t=1 

where {e;I 
0(i,j=1 

v

 Remark 1. In [4], Anderson and Schoen took an auxilialy function X satisfing (1) 
and showed that 

(7) ID 2A(sa)I (x) < Ci - sup IV(y) - w(x)I, 
                                      yEBs(2) 

when the sectional curvatures of M are bounded between two negative constants. 
Here, D2A(yp) is the Hessian of A(W) and C; is a constant depending only on the 
choice of X, the curvature bounds and ambient geometry of M (see [4, p.437]). 

 Proof of Lemma 2.1. Direct computation shows that 

              A(A(4p))(xo) = L~(A(w) - 4~(xo))(xo) 

__ fm Ax(X(P(x, y))(xo)[c2(y) - y(xo)]dV(y)        f
m X(P(xo, y))dV (y) 

 _ fm X(P(xo, y))[V(y) - 4~(xo)]dV(y) - fm L1 x(X(P(x, y))(xo)dV(y) 
              { ff,1 X(P(xo, y))dV (y)}2 

    " f
M(e+)x(X(P(x, y)))(xo)dV (y) - fM(e=)x(X(P(x, y)))(xo)[V (y) - V(xo)]dV(y)

             {fM X(P(xo, y))dV (y)}2 
fm X(P(xo, y))[~P(y) - SP(xo)]dV(y) . {fM(e=)x(X(P(x, y)))(xo)dV(y)}2

                 {fM X(P(xo, y))dV (y)}3 

        i = 1 ... n} is a local orthonormal frame around x,, satisfying (V,,ej)(xo) _ 
         ... , n) and the subscript x means the differentiation with respect to x-

 ariable. Therefore, we get 

  IA(A(V))(x)I < 2. fm l Ax(X(P(x, y))I dV(y) + 2n {fM I X'(P(x, y)) I dV(y)}2                f
Aj x(p(x, y))dV (y) {fM X(P(x, y))dV (y)}2 

                    x sup I (P(y) - o(x) I 
                                1EBs(2) 

for all x E M. Since L1x(X(P(x, y))) = x'(p(x, y)) . Axp(x, y) + x"(p(x, y)), we obtain 

(8) JA(A(v))(x)I _< 2 {f3(x) + f2(x) + 2n fl(x)2} x sup IV(Y) - V(x)I, 
                                                   yEB=(2) 

where 

               fi(x) = fm I X'(P(x, y))) dV(y)                      f
m X(P(x, y))dV (y) 

               f2(x) - fm I X"(P(x, y)) I dV (y)                     f
m x(p(x, y))dV(y) 

4



and 

            f3 (X) - fm I X'(P(x, Y)) I (&p(x, y)I dV (y)                      f
m X(P(x, y))dV (y) 

Now, we shall estimate the part {.} in the inequality (8) from above in terms of a 
polynomial of k(x). (We choose the sign of k(x) to be nonnegative). 

  We shall begin with an estimate of fl. When we represent the volume form dV 
relative to geodesic porlar coordinates centered at x, we have dV(y) = a(t, 8)dtd9 
for some positive function a(t, 0), where dO is the standard volume form on the unit 
sphere Sx-1(1) C TxM and t = dist (x, y) and 0 E Thus, we get 

  JM I X'(P(x, y)) I dV (y) _ - IM X'(P(x, y))dV (y) _ - fsn_' (1) dO f 2 X'(t)a(t, 8)dt 
and for every fixed 0 

      - f 2 X'(t)a(t, 9)dt = -[X(t)a(t, 0)1t=2 + f 2 x(t) - (ata)(t, O)dt 

2 

          < a(2, 0) + (n - 1)k(x) J'2 X(t) coth(k(x)t)a(t, O)dt 

2 

         < a(2, 0) + (n - 1)k(x) • coth(k2x)) . J12 X(t)a(t, 0) dt. 
2 In the above inequalities, we have used the property (1), (2) of X and the Bishop-

Gromov inequality, that is to say, 

          0 < n t 1 < (ata (t , 0) < (n - 1)k(x) coth(k(x)t) 
for t > 0 and 0 E Sx-1(1). Also we note that 

1 

                a(2, 0) < 2 j X(t)a(t, 0) dt. 
2 Combining the inequalities above, we deduce 

(9) fi (x) -_ - fsn-,(1) d9 fo X'(t)a(t, 8)dt                      f
sn-1(1) d9 fo X(t)a(t, 0) dt 

                < 2 + (n - 1)k(x) coth(k(x)/2) 
               < Cl„(k(x) + 1), 

where C1" is a positive constant depending only on n = dimM. 

 Next, we shall estimate f2(x). We set 

               C2 = suP{IX'(t)(, IX"(t)I ; t > 0}-
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Then, since x" > 0 on [7/4,21, we see 

        f2(x) < C2 • Vol(Bx(7/4)) + fSn-1(i) dO f4 x"(t)a(t, ©)dt 
            fm X(P(x, y))dV (y) fm X(P(x, y))dV (y) 

The first term on the right hand side in the above inequality is estimated as follows: 

       C2 • Vol(Bx(7/4)) C2 • Vol(Bx(7/4)) C2 _ 

C 

      fM X(P(x, y))dV (y) - x(7/4) • Vol(Bx(7/4)) X(7/4) 3, 

where C3> 0 is a constant depending only on X. 

With respect to the second term, we have 

        J 2 X"(t)a(t, O)dt = [X'(t)a(t, 9)]i; - f X'(t) (ata) (t, B)dt 
      < -X (7/4)a(7/4, O) - (n - 1)k (x) J 72 x'(t)a(t, 8) coth(k(x)t)dt 

     < -X'(7/4)a(7/4, 0) - (n - 1)k(x) coth(7k(x)/4) • J X'(t)a(t, O)dt 
and, because a(t, 0) is an increasing function with respect to t > 0, we get 

                                                          ]5            -X'(7/4)a(7/4, 0) < C2 .8. J18 a(t, O)dt 

4 

                                                            15                  < x(15/8) J4 8 X(t)a(t, B)dt 

2 

                     < C4 f x(t)a(t, 0) dt,                            - 
o 

where C4> 0 is a constant depending only on X. Hence, we obtain 

(10) f2(x) < C3 + C4+ (n - 1)k(x)coth(7k(x)/4)fi(x) 

                   < C5(k(x)2 + 1), 
where C5> 0 is a constant depending only on x and n = dim M. 

  Now, it remains only to estimate the function f3. The Bishop-Gromov inequality 
implies that for y E Bx0(2) - Bx0(1), 

                   0 < (n - 1) • p(x, y)-1 

                < (oxP(x, y))(x) 
             < (n - 1)k(x)coth(k(x)p(x,y)) 

                 < (n - 1)k(x) coth k(x). 
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Noting that Ix'(p(x, y)) I = 0 when y E Bx(1) U (M - Bx(2)), we see 

(11) f3(x) < (n - 1)k(x) coth k(x) . fi(x) 

                   < C6(k(x)2 + 1), 
where C6 > 0 is a constant depending only on n = dimM. Lemma 2.1 follows from 
the inequalities (8) - (11). Q.E.D. 

                    3. THE PROOF OF THEOREM 1.2 

  In the first place, we note that the following inequality holds by virtue of Lemma 

2.1: 

(12) 0{A(V) + C7(log(p + Cs))-'I(x) 

1 

                  (p + Cs){log(p + Cs)}E+1 

                                       - (P + Cs)-1}          X [GE {Op - (P + C8) 109(P + C8) 
             - C1(k(x)2 + 1)(P + Cs) {log(p + Cs)}E+1 

                                     x sup WY) - V(x)I] 
                                                           yEBT(2) 

at x for every positive constants C7, C8 and e, where p(.) = dist (o, .) and C1 is as 
in Lemma 2.1. Let us set 

(13) 
  Kmx(s) = max{KM(-yv (s) A u)lu E Tw(3)M - {0}, y,(s) I u, v E S,',-'(I) }, 

where y„(s) = expo(sv), So-1(1) = {v E T,,Ml Ilvil = 1}, and yv(s) A v is the 2-plane 
spanned by -y',(s) and v, and KM(y„(s) A v) is its sectional curvature. Next we take 
a continuous function K(s) E C°([0, oo)) such that 

(14) K., (s) < K(s) < 0 for all s E [0, oo). 

Using this function K(s), we define FK E C2([0, oo)) to be a solution of the equation 

(15) Fh + KFh = 0,                     F
x(0)=0,F'(0)=1. 

Then, the comparison theorem implies 

                  Op> (n-1)Fh oP > (n-1)1 
                              Fh °P P 

7



and 

              Sp > o pId 
                         FK 

on M - {o}, where St is the shape operator of OB0(t) _ {x E Mldist(o, x) = t}. 
Therefore, when n = dimM > 3 and C8 is sufficiently large, we have 

                e+1 1 1FKop        A
P - - > - on M - {o}.           (P + C8){log(P } C8)} W + C8 - 2 FK o p 

Also, it is easily seen that 

               sup kP(y) - 4P(x)I < 2 C9 
                 yEaz(2) FK(P(x) - 2) 

for every x E M with p(x) > 3, where C9 is a Lipschitz constant of cp on So-1(1) 
with standard sphere metric. 

  Hence, we obtain the following inequality: 

                0{A((p) + C7(log (p + C8))-E} 

          1 [C7 • e FK o p , 2 (P + C8){log(P + C8)}E+1 
   (p + C8){1og(P + C8)}f+1 X 2 FK o p - C9(k + 1) FK(p - 2) 

on M - Bo(3), where C9 > 0 is a constant depending only on cp and C8 is arbitrary 
constant greater than or equal to e2(E+1). The following is an immediate consequence 
of this inequality: 

Lemma 3.1 (main lemma). Let M be an Hadamard manifold of dimension n > 3. 
We fix a point o in M and define k, K„lax, K and FK by (6), (13), (14) and (15), 
respectively. Suppose that there exist positive constants C7, e and t° > 3 such that 

  inf C7FK(P(x)) _ (k(x)2 + 1)(P(x) + e2('+')){log(P(x) + e2(e+1))}E+1 > 0. 
dist(o,x)>to FK(P(x)) F<(P(x) - 2) -

Then the asymptotic Dirichlet problem for the Laplace-Beltrami operator is solvable 
for any cp E C°(S(oo)). 

  Proof. Without loss of generality, we may assume that cp is a Lipschitz function on 

S(oo) = So-1(1): (see [4]). Under the assumption of Lemma 3.1, we can find positive 
constants C7 and C8 so that ep+ := A(cp) + C7(log(p + C8))--' is superharmonic and 
ep_ := A(W) - C7(log(p + C8))'E is subharmonic. We note that ep+ and cp_ are in 
C2(M - {o}) fl C°(M) and they have the same boundary data cp on S(oo). The 
Perron method shows that there exists a harmonic function u such that 

                           cp_ < u < cp+ on M. 

Therefore, Du = 0, u E C°°(M) fl C°(M) and uIs(.) = cp. Q.E.D. 
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  We are now ready to prove Theorem 1.2. 
Let us assume that there exist constants 1 > 2 and po > 0 such that 

(16) Km(xo 2 for any o E M satisfying disc(o, x) >               _ 
P o= p_ po. 

Then, as a function K(p) appeared in the inequality (14), we can take 

                 K(p)=-1(1-1)p-2 for all p> po. 

We respectively define functions f and B by 

                   f (P) = (P + C9)' 
and 

     B(p) = fl(p) for p >_ pa) 
                 f (P) P + C9 

where C9 > 2 is a positive constant determined so as to satisfy 

(17) spo > Fh(Po)Id > 1 Id _> 1 Id = B(po)Id.                 FK(P0) PO Po + C9 
In the situation introduced above, we observe that 

(18) K(p) < _EP) for all p > po                   f(P) 

and that FK and f respectively satisfy the following Riccati equations: 

           F(P) ' + Fh (P) 2 + K(p) = 0               (P) (P) 
and 

            B'(p) + B2(P) 0 for p > po.                   f(
P) 

From (17), (18) and the Riccati equations, we obtain 

(19) F' (P) 1              Fh (P) > B(p) = P + C9 for all p > p,,. 
So, 

        h {}'(p){B_~1}(p)~o.                 = h JHence, 
              1 f (PO 1 f

or >_ (20) F
K (P) C FK(P0) f (P) p Po 
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Now, we shall add the following assumption: 

(21) Ricn1(x) > -CIO (log (X P(),-)),'+1 for x E M satisfying p(x) > p,,, 
where C10 and 0 are positive constant. If two positive constants C7 and po are 
sufficiently large, and if e E (0, 0) , then (19) and (21) imply that 

             C7FKop- k2+1           F
K o p FK (p - 2) (P + C8)(log(P + - C8)}'+1 

        1 _ f(Po) P + Cs t-2   > C7 p + C9 FK(Po) (p + C9 - 2)1 {log(P + C8)}'+' fC1O(1P)O~l og P.+ 1 I > 0 
on M - B0(po), where C8 = e2(f+1). Therefore, under the assumption (16) and (21), 
the asymptotic Dirichlet problem for harmonic functions is solvable and we complete 

the proof of the case (a) in Theorem 1.2. 

 Next, let us prove the case (b) in Theorem 1.2. We assume that KM(x) _< -a2 for 
all x with dist(o, x) > p0. Let us take the constant pl > p0 and then define

                     0, t E [0, Po], 

(22) K(t) _ -Pia2PO (t - Po), t E [Po, Pi 1, 
                         -a2 t E [p1, 00). 

In addition, we define FK to be the solutin of equation (15). Then, we can prove that 
FK(t)/FK(t) -+ a as t --+ oo and that eat/FK(t) converges to some positive constant 
as t -i oo. Hence, applying Lemma 3.1 completes the proof of the case (b). 

  Remark 2. As is seen from the above proof, the assumption (b) in Theorem 1.2 can 
be weakened as follows: let us assume that (b') there exist positive constants a, C, 
and 0 such that 

                          KM(x) < -a2 

and 

          RicM(x) > -CeaP(x)(p(x) + 1)-1 {log(P(x) + 2)}-1-e 

for x E M outside a compact subset. Then we can solve the asymptotic Dirichlet 

problem. 

  Remark 3. For Hadamard manifolds with the sectional curvatures bounded be-

tween two negative constants, Anderson and Schoen [4] showed that the Martin 
boundary of the manifold coincides with the geometric boundary S(oo). But it is 
unclear that the Martin boundary of M coincides with S(oo) under our assumption 
of Theorem 1.2.
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                        4. A GENERALIZATION 

  When we consider the Dirichlet problem for harmonic maps, it is important to 
solve the problem for harmonic functions as a special case. Indeed, Aviles, Choi and 
Micallef's argument in [5] enables us to show the following: 

Theorem 4.1 (the Dirichlet problem for harmonic maps). Let M be an Hada-
mard manifold satisfying the condition of Theorem 1.2 or more generally that of main 
lemma. BT(p) denotes the closed geodesic ball of radius T and center at p in a complete 
C°° Riemannian manifold N. We assume that T < min{ir12/, injectivity radius of 
N at p}, where x > 0 is an upper bound for the sectional curvatures of N. Then for 
each 0 E C°(S(oo), BT(p)), there exists a unique u E C°(M, BT(p)) fl C°°(M, BT(p)) 
which is a harmonic map on M and which equals 0 on S(oo). 

  We note that when N is an Hadamard manifold, there is no restriction on the 

upper bound of T in Theorem 4.1 and therefore Theorem 1.2 is considered as a 

special case of Theorem 4.1. We remark that in [5], Aviles, Choi and Micallef (and 
also Akutagawa[1]) solved the asymptotic Dirichlet problem for harmonic maps when 
the sectional curvatures of M are bounded between two negative constants. But their 

arguments are also available in the case that S(oo) is regular for the Laplace-Beltrami 
operator, and we shall omit the proof of Theorem 4.1.

                             5. EXAMPLES 

 The notion of the asymptotic Dirichlet problem on Hadamard manifolds is nat-

urally extended to that on a manifold with a pole (see Choi [9]). (Let us recall 
that a point p of a Riemannian manifold N is called a pole if the exponential map 
expp : TpN -+ N is a diffeomorphism). 

 Definition 1([9]). Let N be a Riemannian manifold with a fixed pole p. Given 
v E Spy-1(1) = {w E TpNI IIwJI = 1}, we define y,, to be the geodesic ray emanating 
the pole p with -y'(0) = v. Suppose u is a function defined on M. We say that u(q) 
converges to a number A as q -+ yv(oo) if for any e > 0 there exist b > 0 and r > 0 
such that I u(q) - Al < e for all q E K(v, b, r). Here K(v, b, r) is the truncated cone 
{expp(tw) E NJ t > r, Lp(v, w) < b, w E Sp-1(1)}. 

 Definition 2 (asymptotic Dirichlet problem with respect to a pole p ([9])). Given 
0 E C°(Sp-1(1)), find a harmonic function on N such that for every v E Sp 
u(q) converges to cp(v) as q --~ y„(oo) in the sense of Definition 1. 

 Now, we shall make examples of a manifold with a pole which satisfies curvature 

conditions similar to those of Theorem 1.2, where the sectional curvatures shall be 

replaced by the radial curvatures with respect to the pole. We remark that the upper 

bound of the sectional curvatures in Theorem 1.2 can be replaced with the weaker 
hypothesis of the radial curvatures with respect to a pole of M, as is easily seen from 

the proof in section 3.
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  Let 6 be a unit Killing vector field on the standard unit sphere (S2r-1, go) which 
satisfies Ker f* = R . 6 for the Hopf fibering f : Stn-1 --f CP'a-1. We define a 
symmetric tensor gh on S2r-1 by gh = go - we 0 wt, where wC is the 1-form dual to 
~. We shall introduce the following Riemannian metric G,,N, on R2n using two tensors 
gh and wC ®WC: 

                 Gnu = dP2 + r!(P)2gh + t,(P)2wf ®wf' 
where p is the Euclidean distance to the origin 0 of R2n, and rl and µ are smooth 
function on [0, oo) satisfying 

               n(a) _ I(0) = 0, q'(0) _ IL'(0) =1, 
and 

                     g>0, i >0 on (0, 00). 
Some properties of the harmonic functions on R2µ = (R2n, G,) are discussed in 
Kasue [171. 

 We shall assume that n = 2 and choose g and µ to make examples related to 

Theorem 1.2. 

  Example 1. Let us take g and µ such that 

             ,q (p) = p1 and p (p) = pm for all p > po > 0. 

We suppose m > 21. Then, straightforward calculation shows 

                   KR4 (X A ap) < -l(l - 1)p-2, 

                   KR7µ(XI A ap) _ -1(1- 1)p-2, 
                RicR4, (q) ~ -C{p2(m-21)(q) + 1}, 

and 
                    RicRnµ(XI,X1) , -, _2p 2(m-21) asp--+ o0 

             11X1112 
for all q E R4 - {O}, where X is an arbitrary tangent vector at q with dist(O, q) = p 
and X lap, and where X1 is any vector at q satisfying dist(q, O) = p, X11ap and 

N X116, and where C > 0 is a constant which does not depend on q. Here, 6 = (0, 6) 
is the vector field on (0, oo) x S3 = R4 - {O} that is canonically determined by 
the vecter field ~ on S3. Therefore, if 8 < 41 < 2m < 5l - 2, then this example 
satisfies curvature conditions similar to those of Theorem 1.2 (a), where KM should 
be replaced to be the radial curvatures with respect to the origin. As a matter of 
fact, if only 2 < 21 < m, the asymptotic Dirichlet problem with respect to the origin 
is solvable. (We note that this is not an Hadamard manifold). 

  Example ,2. We set 

                     n(p) = a-1 sinh(ap), 
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                      p(p) = b-1 sinh(bp), 
and assume b > 2a > 0. Then, 

                        KR4 (X A a,,) < -a2, 

                       KRnµ(Xi A 8P) = -a2, 

                       RicR'RN (q) ? -C e2(b-2a)n(a) 
and 

            RiC 4 (X X) 4 

                       1 II2, 1 -8 b2 e2(b-2a) 0 asp--+ 00                    JJX
for all q E R4- {O}, where C > 0 is a constant depending only on a and b. Hence, if 
2a < b < 2 a, this example satisfies curvature conditions similar to those of Theorem 
1.2 (b), where the condition KR~µ <-a2 should be replaced to be the radial curva-
tures with respect to the origin < -a2. Actually, under the condition 0 < 2a < b, 
alone, the asymptotic Dirichiet problem with respect to the origin is solvable. (This 
example is also not an Hadamard manifold). 

  The following example may be somewhat interesting, because q decreases expo-

nentially but the asymptotic Dirichlet problem with respect to the origin is solvable. 

  Example 3. We take 

           r7(p) = p2 (logp)ee-° and p(p) = exp(exp 2p) 
for p > po > 0 and suppose the constant 0 satisfies 20 > 1, then we can settle 

the asymptotic Dirichlet problem on (R2' , G,,µ) with respect to the origin. Indeed, 
given co E C°(San-1(1)), we extend it radially along the rays from the origin 0 
to a function on Rnµ - {O} and denote this function by cp. We may assume that 
Son-1(1) = {v E ToRInj IIvil = 1} has the standard sphere metric g0 and that (p is 
smooth with respect to the metric go. Then, we have 

              IA-I(X) < C{p-2(P(x)) + q-2(P(x))} 
for all x with dist(O, x) = p(x) > po, where C is a constant. Also, we get 

      O(log P)-, _ -
p(log PY+1 {(2n - 2) r1(P) + p(P) P P 1 g P } 

for any e > 0. Consequently, if there exist positive constants e, C' and po such that 

(23) max{rl-2(P), p-2(P)} < C' {(2n - 2) W(P) + Y(P) - 1 - e + 1 }                  P(lg P)E+1 9(P) P(P) 
P P log P 

for all p > po, then we can solve the asymptotic Dirichiet problem on (R2n, G, 
with respect to the origin for any e E C°(Spn-1(1)). This condition (23) is actually 
satisfied in this case, example 3. Moreover, we should note the following two facts: 
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first, when 20 < 1, there are no nonconstant bounded harmonic functions on Rnµ; 

hold o nR21Y, here every 0 E R the conservative law for the heat equation does not        n,' w q(p) =P (log P) i1(P) = exp(exp2p) for p - Po > 0. (
This example is also not an Hadamard manifold). 

 Remark 4. Kasue [171 gives the general condition which setlle the asymptotic Dirich-
let problem on Rnµ with respect to the origin. Indeed, he defined two integrals, 

              I1 = I °° ,2n-4(r) t(r) r°O 712-2n(6)µ-'(s)dsdr 
                1 Jr

and 

            12 = j ,2n-2(r)µ-1(r) f °° 712-2n(s)it-1(s)dsdr 
                      1 r 

and proved that 

  (A1) there are no nonconstant bounded harmonic functions on Rnµ if and only if 
h = +oo; 
  (A2) the asymptotic Dirichlet problem with respect to the origin is solvable on Rnµ 

for any continuous function on So -1(1) if and only if both Il and 12 are finite; 
 (A3) when Il is finite but 12 divergent, any bounded harmonic function is constant 

along each fiber of the Hopf map f, and for a continuous function T on CPn-1, there 
exists a unique bounded harmonic function h on Rnµ such that h(q) converges to 
11! o f (v) as q -* ^y„(oo) for every v E So -1(1). 

  Remark 5. While the author was preparing this paper, Professor Kasue informed 

the author that the following two condition (B1) and (B3) are equivalent; 
 (B1) Any bounded classical solution u(x, t) of the Cauchy problem for the heat 

equation 

               (at - 0)u(x, t) = 0 on Rnµ x (0, T], (24) 
                 u(x,0) = uo(x) on RIn, 

is uniquely determined by its initial data uo(x), where T is a positive constant; 
 (B2) fR2n p(x, y) t)dV,7,,(y) = 1, where p(x, y, t) is the minimal heat kernel on Rnµ 

and d[/,,,, is the Riemannian measure on Rnµ; 
 (B3) f°° 13(t)dt = +oo, where I3(t) = q2-2n(t)µ-1(t) ft q2n-2(s)µ(s)ds. 

 The proof is not difficult. The fact that (B1) implies (B2) is obvious. To see (B2) 
implies (B3), it suffice to notice the following: 

(25) 100 I3(t)dt = JRnµ 1 00 p(x, y, t)dtdV,,,,(y). 
The equation (25) is easily proved from the fact that O(t) - fo I3(s)ds satisfies 
A(O o p) - 1. Using the argument in Dodziuk [22, p.706 and p.707], we can show
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that (B3) implies (B1). In relation to the condition (BI), we remark that the classical 
solution u of the Cauchy problem (Hl)(H2) satisfies 

                m [° T9 lu(x, t)I _ RaN lu(x, 0)I, 
if (B3) holds and if there exists monotone increasing sequence {R=} such that 
N(R;)/0(R;) -' 0 as R1 -+ oo, where N(s) = sup{Iu(x,t)I; (x, t) E aBo(s) x [0,T]} 
and where 0(s) = fo I3(t)dt and aBo(s) _ {x E R1n; p(x) = s} and s is a positive                                                              IIA 
constant.
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