

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON AN EXPONENTIAL CHARACTER OF THE SPECTRAL DISTRIBUTION FUNCTION OF A RANDOM DIFFERENCE OPERATOR

HIDEO NAGAI

(Received November 26, 1975)

1. Let *H°* be a second order difference operator

$$
(H0u)(a) = \frac{\sigma^2}{2} \{u(a-1)-2u(a)+u(a+1)\}\;,\quad a\in Z\,,
$$

u being a function on the space *Z* of all integers. We then consider a random difference operator *H^ω* defined by

$$
(H^{\circ} u)(a) = -(H^{\circ} u)(a) + q(a, \omega)u(a), \quad a \in Z,
$$

where $\{q(a, \omega)\}_{a\in\mathbb{Z}}$ is a family of random variables defined on a probability space (Ω, \mathcal{B}, P) .

We assume that $\{q(a, \omega)\}_{a \in \mathbb{Z}}$ forms a non-negative valued stationary Markov process with one step transition function $P(x, A)$ and absolute probability $\mu(A)$:

$$
P(q(a_1) \in A_1, q(a_2) \in A_2, \cdots, q(a_n) \in A_n)
$$

= $\int_{A_1 \cdots A_n} \mu(dx_1) P^{(a_2 - a_1)}(x_1, dx_2) P^{(a_3 - a_2)}(x_2, dx_3) \cdots P^{(a_n - a_{n-1})}(x_{n-1}, dx_n)$

for integers $a_1 < a_2 < \cdots < a_n$ and Borel set A_1, A_2, \cdots, A_n of $[0, \infty)$. Here $P^{(k)}(x, A)$ denotes the *k*-th iterate of $P(x, A)$.

Denote by $L^2(Z)$ the Hilbert space consisting of all square summable functions with inner product $(u, v) = \sum_{a \in \mathcal{A}} u(a)v(a)$. For each $\omega \in \Omega$, H^{ω} determines a selfadjoint operator *A^w* by

$$
\begin{cases}\n\mathcal{D}(A^{\omega}) = \{u \in L^{2}(Z); \ H^{\omega}u \in L^{2}(Z)\} \\
A^{\omega}u = H^{\omega}u \quad u \in \mathcal{D}(A^{\omega}).\n\end{cases}
$$

Let ${E_{\lambda}^{\omega}, \lambda \in R^1}$ be the resolution of the identity associated with A^{ω} . Then $(E_\lambda^{\omega}I_0,\,I_0)$ is measurable in ω and we can define the spectral distribution function ρ of $\{H^{\omega}\}\;$ by

$$
\rho(\lambda) = E((E_\lambda^{\omega}I_0, I_0))
$$

112 H. NAGAI

where *E* is the expectation in ω with respect to *P* and $I_0(a) = \delta_{0a}$, $a \in Z$ ([1]). $\rho(\lambda)$ vanishes for $\lambda < 0$. Our present aim is to prove the following theorem.

Theorem.

- (i) If $P(0, \{0\})=b>0$ and $\mu({0})>0$, then $\lim_{x\to 0} \sqrt{x} \log \rho(x) > -\infty$.
- ${\bf J_0}^ \frac{x}{x+0}$ $\frac{0}{0}$ $\frac{0}{0}$ **(0,** {0})=b>0 and μ ({0})>0, then $\lim_{x \to 0} \sqrt{x} \log \rho(x)$ > - ∞ .
 $\int_{0}^{\infty} \frac{1}{1+y} P(x, dy) < c \quad \mu$ -a.e. x for some $c < 1$, then $\lim_{x \to 0} \sqrt{x} \log \rho(x) < 0$.

A similar result has been obtained by M. Fukushima ([1]) when $q(a)$, $a{\in}Z$, are non-negative valued independent identically distributed random variables. We further mention the works of L. A. Pastur ([2]) and S. Nakao ([3]) for related results on the one dimensional Schrödinger operators with random potentials. The present novelty is to make use of a Markovian character of the local time (cf. M. L. Silverstein [4]).

The author wishes to express his hearty thanks to Professor M. Fukushima and Mr. S. Nakao for valuable advice and helpful discussions.

2. At first we collect some lemmas for the proof of our theorem.

We introduce the continuous Markov process $M{=}(\dot{\Omega},\, \dot{\mathscr{B}},\, \dot{X}_t,\, \dot{P}_a)$ on Z with the generator $H^{\mathfrak{g}}$. Denoting by $\dot{E}_{\mathfrak{g}}$ the expectation with respect to $\dot{P}_{\mathfrak{g}},$ we have Kac representation as follows.

Lemma 1 ($[1]$).

$$
\int_0^\infty e^{-t\lambda}d\rho(\lambda)=E\times \dot{E}_0\bigg[\exp\Big(-\int_0^t q(\dot{X}_s, \ \omega)ds\Big);\ \ \dot{X}_t=0\bigg].
$$

The proof of our theorem reduces to finding how fast $E\!\times\!\dot{E}_{\rm o}\bigl|\exp\bigr(-1\bigr)$ $\int q(\dot{X}_s, \, \omega) ds$); $\dot{X}_t = 0$ tends to zero as $t \rightarrow \infty$ because of Lemma 1 and the follow*ing Tauberian theorem.*

Lemma 2 ([1]). Let $\phi(\lambda)$ be non-decreasing function on $[0, \infty)$ with $\phi(0)=0$ *and* $\psi(t)$ *be its Laplace transform:*

$$
\psi(t)=\int_0^\infty e^{-t\lambda}d\phi(\lambda)
$$

- (i) If $\lim_{t \to \infty} \frac{1}{t^{\gamma}} \log \psi(t)$ > ∞ then $\lim_{x \to 0} x^{\gamma/1-\gamma} \log \phi(x)$ > -
- (ii) If $\lim_{t \to \infty} \frac{1}{t^{\gamma}} \log \psi(t) < 0$ then $\lim_{x \to 0} x^x$

For the investigation of asymptotic behavior of $E\times E_{0}$ $\big| \exp\big(-\big|_+q(\dot{X}_{s},\,\omega)\big)$

$$
\dot{X}_t = 0
$$
 as $t \to \infty$, the following two lemmas are of great use.

Lemma 3 ([4]). Put $\dot{L}(t, x) = \int_0^t I_x(\dot{X}_s) ds$, $t > 0$, $x \in Z$, $\sigma_x(s) = \sup$ $\{t; \ L(t, x) \leqq s, \ T_{x,y}(s) = L(\sigma_x(s), y), \ then \ it \ holds \ that$

 (i) ${f}_{y,z}^{\dagger}(s)$, $y, z \ge x$ } and ${f}_{y,z}^{\dagger}(s)$, $y, z \le x$ } are multually independent for each $x \in Z$ and $s \geq 0$,

(ii)
$$
\dot{E}_0[\exp(-\alpha \dot{T}_{x,x-y-z}(s)) | \dot{T}_{x,x-y}(s) = l] = \frac{1}{\alpha z+1} \exp\left(\frac{-l\alpha}{\alpha z+1}\right)
$$
 for each $\alpha > 0$,

 $x>0$ (<0) and y, $x \ge 0$ such that $y+z \le x$ ($\le -x$),

(iii) $\{T_{x,x-y}(s)\}\$ is Markovian in $y \ge 0$ for fixed $s \ge 0$ and $x > 0 \, < 0$.

Corollary Put $\mathscr{B}_{x-u}^x(s) = \sigma[\dot{T}_{x,x-v}(s), v=0, 1, \dots, u]$ $s \ge 0$, then we have

$$
\dot{E}_0\left[\exp\left(-\alpha \dot{T}_{x,x-y-z}(s)\right)|\mathcal{B}_{x-y}^z(s)\right] \leq \frac{1}{\alpha z+1}
$$

for each $x>0$ *(<0) and y,* $z \ge 0$ *such that* $y+z \le x$ *(y+z* $\le -x$).

Lemma 4 ([1]). Let \dot{R} , be the number of states where \dot{X} , visits during the *interval* [0, ί), *then we have*

- (i) $\lim_{t \to \infty}$ *for any positvice constant* $\beta_1 > 0$,
- (ii) $\overline{\lim_{t}} t^{-1/3} \log \dot{E}_0[e^{-\beta_2 R_t}] < 0$

for any positive constant β_2 > 0.

3. Now we give the proof of our theorem.

Put
$$
k(t) = E \times \dot{E}_0 \left[exp\left(-\int_0^t q(\dot{X}_s, \omega) ds\right); \; \dot{X}_t = 0\right]
$$
, then
\n
$$
k(t) = \sum_{k=0}^{\infty} \sum_{\substack{m+n=k\\m,n \ge 0}} E \times \dot{E}_0 \left[exp\left(-\sum_{s=-n}^m \dot{L}(t, x) q(x, \omega)\right); \; \dot{M}_t = m, \; \dot{m}_t = -n, \; \dot{X}_t = 0 \right]
$$

where \dot{M}_i =sup { \dot{X}_i : $0 \leq s \leq t$ } \dot{m}_i =inf { X_s : $0 \leq s \leq t$ }. Taking the expectation of $exp(-\sum_{i=1}^{m} L(t, x)q(x, \omega))$ with respect to P, we have by stationarity and Markov property of $(\Omega, \mathcal{B}, P, q)$

$$
E\bigg[\exp\bigg(-\sum_{x=-n}^{m}L(t,x)q(x,\,\omega)\bigg)\bigg]\geq E\bigg[\prod_{x=-n}^{m}I_0(q(x,\,\omega))\bigg]=\mu(\{0\})b^{m+n}
$$

therefore

114 H. NAGAI

$$
k(t) \geq \sum_{k=0}^{\infty} \sum_{\substack{m+n=k \ m,n \geq 0}} \dot{E}_0[\mu(\{0\})b^k; \ \dot{M}_t = \dot{m}, m_t = -n, \ \dot{X}_t = 0]
$$

= $\frac{\mu(\{0\})}{b} \sum_{k=1}^{\infty} b^k \dot{P}_0(\dot{R}_t = k, \ \dot{X}_t = 0) = \frac{\mu(\{0\})}{b} \dot{E}_0[e^{-\beta_1 \dot{R}_t}; \ \dot{X}_t = 0],$
 $\beta_1 = -\log b.$

Because of Lemma 4

$$
\lim_{t\to\infty}t^{-1/3}\log k(t)\!\geq\!-\infty.
$$

We get the first assertion (i) of our theorem by Lemma 1 and Lemma 2.

Turning to the proof of the second assertion (ii), we put

$$
k_1(t) = E \times \dot{E}_0 \left[\exp \left(- \int_0^t q(\dot{X}_s, \omega) ds \right); \; \dot{X}_t = 0, \; \dot{R}_t < t \right],
$$
\n
$$
k_2(t) = E \times \dot{E}_0 \left[\exp \left(- \int_0^t q(\dot{X}_s, \omega) ds \right); \; \dot{X}_t = 0, \; \dot{R}_t \ge t \right],
$$

then we get

$$
k_1(t)^2 = \{\sum_{k=0}^{\lfloor t \rfloor-1} \sum_{m+n=k \atop m,n \geq 0} E \times E_0[\exp(-\sum_{k=-n}^m \hat{L}(t,x)q(x,\omega)); \ \hat{M}_t = m, \ \hat{m}_t = -n, \ \hat{X}_t = 0]\}^2
$$

$$
\leq \frac{[t]([t]+1)}{2} \sum_{k=0}^{\lfloor t \rfloor-1} \sum_{m+n=k \atop m,n \geq 0} \{E \times E_0[\exp(-\sum_{k=-n}^m \hat{L}(t,x)q(x,\omega));
$$

$$
\hat{M}_t = m, \ \hat{m}_t = -n, \ \hat{X}_t = 0]\}^2
$$

$$
\leq \frac{[t]([t]+1)}{2} \sum_{k=0}^{\lfloor t \rfloor-1} \sum_{m+n=k \atop m,n \geq 0} E \times \hat{E}_0[\exp(-2\sum_{k=-n}^m \hat{L}(t,x)q(x,\omega))]
$$

$$
\hat{P}_0[\hat{M}_t = m, \ \hat{m}_t = -n, \ \hat{X}_t = 0].
$$

Putting $\tau_i = t \wedge \inf \{s; \dot{X}_s = i\}, i \in \mathbb{Z}$, it is clear that

$$
\dot{L}(\tau_m, x) \leq \dot{L}(t, x)
$$
, $\dot{L}(\tau_{-n}, x) \leq \dot{L}(t, x)$ and
\n $\dot{L}(\tau_m, x) = \dot{T}_{m,x}(0)$, $\dot{L}(\tau_{-n}, x) = \dot{T}_{-n,x}(0)$.

Therefore

$$
\exp(-2\sum_{x=-n}^{\infty}\dot{L}(t, x)q(x, \omega))
$$

$$
\leq \exp(-2\sum_{x=0}^{\infty}\dot{T}_{m,x}(0)q(x, \omega)-2\sum_{x=-n}^{-1}\dot{T}_{-n,x}(0)q(x, \omega)).
$$

Taking the expectation with respect to $P\times \dot P_{\rm 0}$, we get

$$
E\times \dot{E}_0\left[\exp\left(-2\sum_{x=-n}^m \dot{L}(t,x)q(x,\,\omega)\right)\right]\leq E\left[\prod_{x=-n}^m \frac{1}{1+2q(x,\,\omega)}\right]
$$

because of Lemma 3, (i) (iii) and its Corollary. From Markov property of $(\Omega, \mathcal{B}, P, q)$ and the assumption in our theorem, it follows that

$$
P, q)
$$
 and the assumption in our theorem, it follows that\n
$$
E\left[\prod_{x=-n}^{m} \frac{1}{1+2q(x, \omega)}\right] = E\left[\prod_{x=-n}^{m-1} \frac{1}{1+2q(x, \omega)} E\left[\frac{1}{1+2q(1, \omega)}\middle| q(0)\right]\right]
$$
\n
$$
\left\langle cE\left[\prod_{x=-n}^{m-1} \frac{1}{1+2q(x, \omega)}\middle| \right] \right\langle c^{m+n+1} \right].
$$

Now we have

$$
k_1(t)^2 \leq \frac{[t]([t]+1)}{2} \sum_{k=0}^{[t]-1} \sum_{m+n=k}^{[t]-1} c^{m+n+1} \dot{P}_0[\dot{X}_t=0, \dot{M}_t=m, \dot{m}_t=-n]
$$

=
$$
\frac{[t]([t]+1)}{2} \sum_{k=1}^{[t]} c^k \dot{P}_0(\dot{X}_t=0, \dot{R}_t=k)
$$

$$
\leq \frac{[t]([t]+1)}{2} \dot{E}_0(e^{-\beta_2 \dot{R}_t}; \dot{X}_t=0), \beta_2=-\log c.
$$

On the other hand

$$
k_2(t) \leq E \times \dot{E}_0 \bigg[\exp\left(-\int_0^t q(\dot{X}_s, \ \omega) ds; \ \dot{X}_t = 0, \ \dot{M}_t \geq \frac{t}{2}\right) \bigg] \\ + E \times \dot{E}_0 \bigg[\exp\left(-\int_0^t q(\dot{X}_s, \ \omega); \ \dot{X}_t = 0, \ \dot{m}_t \leq -\frac{t}{2}\right) \bigg] \\ \leq E \times \dot{E}_0 \bigg[\exp\left(-\sum_{s=0}^{[t/2]} \dot{L}(\tau_{[t/2]}, \ x) q(x, \ \omega)\right) \bigg] \\ + E \times \dot{E}_0 \bigg[\exp\left(-\sum_{s=-1}^{[-t/2]} \dot{L}(\tau_{-[t/2]}, \ x) q(x, \ \omega)\right) \bigg] \\ \leq E \bigg[\prod_{s=0}^{[t/2]} \frac{1}{1+q(x, \ \omega)} \bigg] + E \bigg[\prod_{s=-1}^{[-t/2]} \frac{1}{1+q(x, \ \omega)} \bigg] < 2c^{[t/2]} \\ = 2e^{-\beta_2[t/2]} \ .
$$

As a result

$$
k(t) = k_1(t) + k_2(t) \leq \sqrt{\frac{[t]([t]+1)}{2}\dot{E}_0(e^{-\beta_2 k_t})} + 2e^{-\beta_2 [t/2]},
$$

which, combined with Lemma 4, leads us to

$$
\overline{\lim_{t\uparrow\infty}}\,t^{-1/3}\log k(t)\!<\!0.
$$

Hence we arrive at the second assertion of our theorem.

OSAKA UNIVERSITY

116 H. NAGAI

References

- [1] M. Fukushima: *On the spectral distribution of a disordered system and the range of a random walk,* Osaka J. Math. 11 (1974), 73-85.
- [2] S. Nakao: *On the spectral distribution of the Schrodinger operator with random potential,* Japan. J. Math. 3 (1977)
- [3] L.A. Pastur: *Spectra of random self-adjoint operator,* Russian Math. Surveys 28 (1973), 1-67.
- [4] M.L. Silverstein: *A new approach to local time,* J. Math. Mech. 17 (1968), 1023- 1054.