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ON REGULAR CATEGORIES
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Gabriel and Oberst have defined a C,-spectral category in [6] and we shall
consider spectral categories which are not necessarily C, in this note. We call
a category ‘“‘spectral’’, if the category is abelian and every morphism splits. We
shall define a regular category and show that the concept of regularity and
spectrality are equivalent if a category is amenable, (see the below for definitions
of regular category and amenable category.) and give some characterizations of
a special regular category. Finally as an application of the above argument, we
shall show that %/J() is a completely reducible abelian category if % is artinian
and noetherian abelian category, where J(21) is the radical of 9 (see the below
for definitions of radical of category and A/J(NA).). We shall give further
applications in the forthcoming paper jointed with M. Harada. 'The author
would like to express his thank to Professor M. Harada for his suggestion of
the problem. We shall make use of the notations and definitions in [8].

Let 2 be an additive category and 2[,, the totality of morphisms in .
For a=¥,,, a,, means the class of all morphisms of a3, where 3%, and
aBis defined. Furthermore, we can define a right (resp. left) ideal € in 2 which
are analogous to the case of rings. Let € be a sub-class of 9(,, which satisfies
the following two conditions;

1 For every a, B€, a+-B€, whenever a4+ is defined.

2 Bac (resp. aB<E) for any acs¥,,, B=E€ such that Ba (resp. af) is
defined.

We call € a right (resp. left) ideal of A. We denote the quotient category of
A with respect to € by N/€; namely the objects of A/€ are the same as the
objects of 9, and for 4, B in /€, [4, Blys is equal to [4, B]/[4, B]NE.
We call a two sided ideal R of A “radical,” if "N [A4, A]is equal to the Jacobson
radical of [4, A] for every object 4 in .

Let A be an additive category with finite coproduct. We call 9 “‘regu-
lar,” if the ring [4, A] is regular in the sense of Von Neumann for every object
A in A (cf. [9]), and we call A “amenable,” if every idempotent morphism in
[4, A] has the kernel for every A= ([4]).
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Proposition 1. Let A be an additive category with finite coproduct. Then
the following statements are equivalent

1) A is regular.

2) For every morphism o in U, there is a morphism x such that a=oaxa.

3) There are idempotent morphisms e, e’ suct that N,a=U,e, a¥,=eYU,,.

Proof. 1)=2) Let a be in [4, B], then we put a'=(° 8): A®B—AD®B.
a

Then there exists x:(x“ x”); APB—-APB such that a’=a’xa’. Therefore
a=ax,0. X Xz

2)=>3). The proof is completely similar to the case of ring. Let o be in
[4, B] then there exists x; B—A4 such that a=axa. Let we put xa=e then
e is idempotent, a=xe and e=xa=xaxa. Therefore A, a=U,e. Similarly,
we have a¥l,,=¢'%,,.

3)=>1) Let a be in [4, A], then we can denote a=xe, e=ya for some
x, yeU,,. Therefore, aya=ae=xe’=xe=a.

Theorem 2. Let A be an amenable category. Then U is regular if and
only if A is spectral.

Proof. We assume that 9 is regular. Then we shall show first that
is abelian. Let a: 4—B be any morphism in 2L.

i) We shall show that o has the kernel and the cokernel. From the as-
sumption, we can denote that a=xe, e=ya for some x, y, ee,,, where e is
an idempotent. From the assumption (cf. [8], p. 31), every idempotent e in
[4, A] has its image and we denote it by e4. Let 7,_,: (1—e)A—A be the
inclusion. 'Then we shall show that 7, , is the kernel of «. We have ai,_,=
xet,_,—0. Let B be any morphism such that «8=0, then 8=(i,p,+1,_.p:_.)B
=1, ,p,_.0, since i,p,8=eS=ya =0, where p, and p,_, are the projections
of 4 to e4 and (1—e)4, respectively. Therefore (1—e)4=Ker @. Similarly,
we have (1—e")B=coker o, where a=¢'y’, é=ay’.

ii) Next, we shall show that 9 is normal and conormal. We note first
that 9 is balanced. Let f: 4—B be monomorphic and epimorphic. From
the assumption we have f=uxe for some x=%,,. Then e is monomorphic since
f is monomorphic. Hence Ker f=(1—e)4=0 from i), and e=1,. Therefore,
there exists g, such that gf=1, since A,,f=A,,e=A,,1,. From the duality
we have fg’=15 for some g'=%,,. Hence f is isomorphic. Let a be mono-
morphic, then coker a=(1—¢")B, ker (1 —¢)=¢'B from i), where a=¢'x’, ¢ =ay’
for some &’ y'=%,, and ¢ is idempotent. We put B=px’, then iyB=i,p s’
=¢'x’=a .We shall show that B is isomorphic. /B is monomorphic since a
is monomorphic. We have p/=e’ &y, since iypy=é=ay =ex'y' =i psx'y
and ¢,/ is monomorphic. Let 2 be any morphism such that 23=0, then 0=2z43
=2psx'=2psx'y =zp,s. Hence z=0 since p, is epimorphic, which implies
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that @ is epimorphic, Therefore, B is isomorphic from the above argument.
Hence %A is normal, and we can show that 9 is conormal from the duality.
Let a be in [4, B], then A=ed P(1—e)Ad=eA Dker a, B=¢ BH(1—¢)B=
im a@P(1—¢)B from i). Therefore A is spectral. Conversely, We assume that
A is spectral. For any a: A—B, we have A=ker a pA’, B=im aPB, and
alA’=x: A’—im a is isomorphic. We put e=i,/p s, then e is idempotent
and a=xe. Furthermore, e=i,/x"*a. Hence ,,a=,,e. Similarly we have
a,,=eN,,.

ReMARK 1. Let 2 be a regular category, then we can imbed ¥ into
a spectral category A*. Let A* be the category whose objects are pairs (4, e)
where A=Y and e is an idempotent in [4, A]. We define the morphisms of
(4, e) to (B, f) as follows: first we consider the subset C of ¢ in [4, B] such that
te=ft, and define a congruent relation among them; ¢t=¢ if and only if ft=ft.
Then we put [(4, e), (B, f)]=the congruent classes £ of C. Next we shall show
that 9* is a regular category. For any @: (4, e)—(4, e), there exists a morphism
x such that a=axa from the assumption. We put x’'=exe, then ex'=x"e, and
ax’a=a, which implies that 9(* is regular. 9 is imbeded into 2A* by a natural
imbedding functor T such that T(4)=(4, 1,).

REMARK 2. A special case of Theorem 2 was obtained by Harada (un-
published.). We shall give some interesting applications to a case of category of
injective modules in the forthcoming paper.

We shall give some characterizations of special regular categories.

Proposition 3. Let N be an abelian category, then we consider the following
conditions

1). A is regular.

2). For any epimorphism a: A—B, we have [B, Blac a4, A]

3). The projection functor T: A—->WU/E is epi-preserve for every ideal €.

then we have 1)< 2) and 1)=>3). Furthermore we have 3)=>1) if Ais a locally
small Cs-category.

Proof. 1)=2). If 9% is regular, then every object in 9 is projective,
and hence [B, BlaSa[A4, A] for an epimorphism «; A—B. Conversely, let

B—s(C—0

E

A

be a diagram with x epimorphic. We define an epimorphism x': APBPHC —

A®C by setting x'=(1 0 0). Put y'=(0 O)e[A@C, A@C]. Then from
0x0 y 0
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the assumption, there exists 2 in [A@BPC, AGBPD C] such that y'x'=x'z.
Hence y=zx,,, where 2=(2;;). Which means that every object 4 is projective
in 91, and hence, % is regular.

1)=>3). It is clear since every morphism splits

Next we assume that U is a locally small C,-category.

3)=1). Let A be a subobject of B. From the assumption on 9, there exists
a complement A€ of 4 and AP AC is essential in B. Let, a: B>B/(A®A°)=C
be the natural epimorphism. Put €=9[,a¥,,, then T(a)=0 and hence
[C, C1=U,,a¥,,. Therefore, there exist x: C—B, y: C—C such that 1.=yax,
hence B=im xPkerya. Since ker ya2A@ A€, and A is essential in B,
im =0, and hence C=0, which implies that % is regular.

Proposition 4. Let A be a C,-category with a generator U, then U 1s
regular if and only if for any injective subobjects M, i=1, 2 in M, M, M,, is also
injective.

Proof. Only if part is clear. Let R=[U, U], and M} be the category of
right R-modules. Let S=[U, ]: A->M; and T=U®: M — A be the usual

N A AN
ajoint functors. Then for any object 4 in A, S(A)=S(4) where A and S(4)
is an injective envelope of 4 and S(4), respectively, by [10]. Furthermore we

can express S(4)=N,NN, for some N; such that N,~S(A4) (cf. [3] p. 63).
Therefore A=TS(A)=T(N,NN,)=T(N,)NT(N,), since T is kernel pre-
serving (cf. [8] p. 55 6-5), and T(N,-)z/i. Hence 2 is regular.

Harada has defined a semi-simple category in [7]. We shall give the

following proposition related to a semi-simple category

Proposition 5. Let A be a small abelian category. Then U is semi-simple
artinian if and only if additive functor category (3, Ab) is completely reducible,
where Ab is the category of all abelian groups.

Proof. From the assumption, % is semi-simple artinian if and only if A
is artinian completely reducible ([7], 1.2). Let % be semi-simple artinian, then
we shall show that if 4 is irreducible in 9, then [4, ] is irreducible in (2, A4b).
Let any F&[4, ], then F(4)S[A4, A], which implies F(4)=[4, 4], or F(A)==0,
since F(A) is a left ideal of [4, 4] which is a division ring. If F(4)=[4, 4],

then for any B9, we can express B= g@Bi, where every B; is irreducible
in 2 from the assumption, we have F(B) ;—;EF(B,.) and [4, B]:@[A, B If
A=B,;, then F(A)=~F(B,), and if A*Bj,’—then F(B;)=[4, B;]_lzo. Hence
F(B)= @F(B): g}l[A, B;]=[4, B] which is a contradiction.

Hence }:‘(A)=0..H We have easily that F(B)=0 for any B, which implies
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F=0. Furthermore, for any Fe (U, Ab), we have an exact sequence,

QI@A [4, ]-F—0, and hence, (¥, 4b) is completely reducible. Conversely we
(S
assume that (%, 4bd) is completely reducible. Then for any A€, we have,

[4, ]=F;, where every F; is irreducible in (¥, 4b). Since F; is small pro-

jective in (2, Ab), we can find F,=[4,,] for some 4, ([4], p- 229), and we
shall show that A4, is irreducible in %. For any B& 4;, we have the natural
transformation f=[z, ]: [4;, ]—=[B, ], then we have ker f=[4;, ] or ker /=0 in
(A, Ab), since F;=[A4,;, ] is irreducible in (2, Ab), where 7 is the inclusion. If
ker f=0, then f,,5=1[i, A;/B]: [4, A;/B]—[B, A;/B] is monomorphic and

fAi/B(g):B—L»A,. —g—>A,-/B=O for the natural epimorphism g and hence g=0,

which is a contradiction. Hence ker f=[4;, ] and fAi(lA‘.):B—i—»A,.—l&A,.

=0, which implies B=0, and A4; is irreducible in . Also since [4, 4]
=@[4,, 4], we can express [4, 4]= _EIB[A,., A] for some integer n, which
implies [4, ]=§§[A,., ]:[é}A, ] from the naturality of the functor. Hence

A:éA,-, and ¥ is semi-simple artinian.

i=1

Proposition 6. Let 2 be a small artinian abelian category. Then, (N, Ab)
is completely reducible if and only if (U, Ab) is regular.

Proof. Only if part is clear. We assume that (2, 4b) is regular, then
from the assumption and ([4], p. 119), for any sub-functor F in [4, ], F'is a direct
summand of [4, ], and we can find F=[4’, ] for some direct summand A’ of
A. Hence [4, ] is artinian in (A, 4b), and so, [4, ] is completel reducible
which implies that (2, Ab) is completely reducible since {[4, ], A=}, is a
family of generators for (2, A4b).

Finally, we shall give following theorem as an application of Theorem 2,
which is due to Harada (unpublished).

Theorem 7. Let U be an artinian and noethrian abelian category. Then
A/I(A) is a completely reducible abelian category, where J(N) is the radical of A.

Proof. From the assumption, every object M is a coproduct of finite

directly indecomposable sub-objects of M, namely M =é§M,-. It is well known

in the case of modules that R=[M, M] is a semi-primary ring such that R contains
the nilpotent radical N and R/N is an artinian semi-simple ring, therefore,
R/N is a regular ring. This fact is also valid in the case of abelian category,
(cf.[5]). Hence A/IJ(A)is a regular category. Let o bein R and by & we denote
the class of @ in R/N. If @ is idempotent, then there exists an idempotent
e in R such that e=a ([1] p. 545, 77. 4). Since 1=(1—e)+e on R, @ has the

kernel 7,_,: (1—e)A—A. Hence A/J(N) is amenable, therefore A/J(A) is
spectral from Theorem 2 and is completely reducible from artinian and noetherian.
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REMARK 3. In the above theorem, if 9 is only noetherian abelian, then
this theorem is not valid. For example, Let U be the category of all finitely
generated abelian groups, which is noetherian abelian and is not artinian. We
shall show that 2/J(2) is not abelian. Let « be any map of Z to Z/(P), where Z
is the ring of rational integers, (P) is the abelian group generated by a integer P.

Then ae S (), because [Z & Z/(P), ZDZ|(P)] g([z ZZ/ . Z/‘zp))z Rzszim,

and RZ@Z/(P)(O O) is nilpotent left ideal, hence (0 O)ES(RZ@Z,(P)), which
a 0 a0

implies a € () since J(Rzoz/m) N [Z, Z/(P)|=IJIQ)N[Z, Z|(P)]. Let f: Z—Z
is any non zero map of Z to Z, then we shall show that f is monomorphic and
epimorphic in A/J(A). g: G—Z is any map such that fg=0, then since we
can express G=G,PG, and g=(g,, £,): G,PG,—~Z, where G, and G, are the
torsion sub-group and a free sub-group of G, respectively, we can show easily
that g,—g,=0, hence f is monomorphic. Nextlet g’': Z—G’ is any map such that

g'f=0, then as above we can express G'=G1$H G4, and g’:(gé). We have
g2

21 () from the above argument, and we can show easily that g5=0, which
also implies that f is an epimorphism in /J(RA). If A/IJFQ) is abelian, then f
is isomorphic in /I (A), and so there exists g’ such that g’’f=1 (mod J([Z, Z])).
Since J([Z, Z])=0, f=-+1, which is a contradiction.

ReMARK 4. We shall generalize this argument in the forthcoming paper.
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