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ON THE UNIQUENESS OF THE SOLUTION OF THE
CAUCHY PROBLEM AND THE UNIQUE CONTINUATION
THEOREM FOR ELLIPTIC EQUATION

By

Hrrosu1 KUMANO-GO

§0. Introduction. We shall consider differential operators with complex
valued coefficients in a neighborhood of the origin in the (v+1)-dimen-
sional Euclidean space whose points are denoted by (¢, x)=(¢, x,, -, x,)
or (v, 0)=(r, 6, ---,8,) or simply (x)=(x,, -+, Xy4,).

The object of this note is to prove the following two theorems by
a unified method.

The one is the theorem on the uniqueness of the solution of the
Cauchy problem for the differential equation of the form

At

— o
0.1) Lu= 31 a2 ult 2) = f(t, 2)

(= (ys v 5 o)y |6l =ty 5 x=(2,, ==+, x,), Ox*=0x}1 -+ Ox%») under

the following conditions: Set L,,= > «; .(¢, x)—,a—.
i+ iE=m ’ atlaxi‘«

the associated characteristic polynomial L, (¢, x, )\, §)= > a; (¢, x)\iE*
i+ [eT=m

E=(,, -, &), &=&n ... &) can be written as

We assume that

0.2 Lt nE) = TP, 2 )T O-AP(, 2, )
O<k<m)

for £ in some neighborhood of any & on the unit sphere S={&; |&| =1}
(1€ :(ﬁ %" and for (¢, x) in some neighborhood of the origin where
i=1

AP =g +ip® (=1, -,k and AP=—¢P+p® (J=1,---,m—k) are
distinct respectively and infinitely differentiable with respect to (¢, x, &)
(A$P and A$® may coincide at some point for some ¢ and j). Furthermore
we assume that A{(Z x, &) =A0(, 1, E1E|17) &l (=1, --- , k) satisfy the
condition of M. Matsumura [8], that is
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C) (&) o 1) .
0.3) < <1>+ { a <1>_ <1> (1)} =1 D=1, k
( ) at E 17 aé‘,- ax] af —=b Y. ( )
for some v;=v,(t, x, E)EC(”,E) (65=0), and that none of p?® (j=1, -,
m—Fk) vanishes.

The other is the unique continuation theorem for the elliptic di-
fferential equation of the form

|
0.4) Lu = >y~ kbg (x)gﬂu(x) =0
=" o
V41
(x = (xn ’xv+1)7 r:(‘gx )1/2) m= (/1’1’ ) /"*H—l)) Ilf'| =+ "'+/1'v+1) under

an exponential vanishing condition, that is
(0.5) lim exp {ar” ’} (x) =0 0O=|pl=m

for a fixed / depending only on L and for every a.
Here we make the following assumption for the characteristic poly-
nomial L, (x, n)zuz a.(x)n". After transforming L,(x,7) dy (2.14), it
'L:"l

can be expressed as

0.6)  Ly(x 7) = a*@) 1L O—r %0, 0, )T (—r 220, 0, £))
O=k<m)

for & in some neighborhood of any & on S and for (7, 6) in some
neighborhood of the origin where A" /=1, .-+, k) and \; (j=1, --+ , m—k)
are distinct respectively and infinitely differentiable.

Strictly speaking it is sufficient to assume that the smoothness of
AP and AP with respect to (¢, x) in (0. 2) or to (7, 0) in (0. 6) is sufficiently
high depending only on m and ». Furthermore the constant 2 may depend
on & on S, but it is sufficient to treat only the case when the repre-
sentation (0.2) or (0.6) holds in the whole of the product set of S and
some neighborhood of the origin with a fixed constant %, which will be
proved in Theorem 4 of §4. Appendix using the idea of S. Mizohata
[11]. In this note for the convinience sake we assume A" and A are
infinitely differentiable in & on S and in (¢, x) or (», ) in a neighborhood
of the origin.

We can easily see from the proof of Theorem 4 that we need not
impose restriction on the dimension of the space, and also we see that
the condition (0.3) corresponds to a sufficient condition obtained by L.
Hormander [7] for the existence of the solution of first order differential
equation.
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The results of A. P. Calderén [3], S. Mizohata [9] and L. Héormander
[6] are contained in ours for the case of k=m, of m=4, k=2 and of
PP =40 (z=1,---,k) in (0.2) respectively if we assume the sufficient
differentiability for the leading coefficients a; (£, x) (¢4 || =m) of L.

The result of the second theorem contains that of M. H. Protter [12],
and partly I. S. Bernstein [1] that corresponds to the case of £=0 in (0. 6).

As a consequence of the first theorem we can also prove the local
existence theorem for a certain differential equation Lu=jf of the form
(3. 6).

The idea of the proofs is based on the methods of S. Mizohata [9]
and M. Yamaguti [13].

We wish to thank Prof. M. Nagumo, Dr. H. Tanabe and my colleague
for valuable discussions.

§1. Preliminary lemmas. In this chapter we shall consider singular
integral operators in the sense of M. Yamaguti [13] in the vr-dimensional
Euclidean space.

The singular integral operator of A. P. Calder6n and A. Zygmund [2]
is an operator in the sense of M. Yamaguti if it is of type Cy (8= o).

DeriniTION 0. We call H =i a,h, a singular integral operator with
the symbol o(H )=§] a,(x)h,€) (h,()=1) in the sence of M. Yamaguti if
the following conditions are satisfied: a,(x) € Cg,, 71,(5) €CG, (r=0,1, 1),
=

I
and for every k and / there exists a constant A,; such that %ao(x)
X

Ak,l)

1l
%a,(x)ggflk,,r" for » =1 (|| <k), and for every k there exists

g;fﬁ,<f>|gBkrfélé|—‘“' (Il =k r=1,2, ).

>

We define for w€ L’ the Fourier transform § by B[u]=a() =

constants B, and /, such.that

ﬁg e i*fy(x)dx, and convolution operators %, by ﬁzﬁ,(f)ﬁ(f).
Then, Hu is defined by
Hu = ’Z;a,(x)(h,u)(x) or Hu= :/—;—_;Se“"fo(H)d(E)df .

DeriniTION 1. A function u=u(t, x) €C%; ., defined in a neighborhood
of the origin is said to be of class F™ =g if car. u=closure of

{x; u(x)-1-0} is contained in {(t, xX); O§t<h<—;—, |x|<K} (x| =

-1

(Z )" and u0, x) =0 (j=1, -, m).

o7
ottt
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DEFINITION 2. A function w=u(r, ) € Cl; 4, defined in a neighborhood
of the origin is said to be of class @5;’:},:(55(;:?m if cas. # is contained in

{, 0); 0=7<r, <1, 10|<K} (101 =(Z ) and
Qitiml

lim exp {ar*} -
70 p i } oriof*

ur,0) =0 0= i+ |p|< m) for every «.

DerINITION. 3. A function #=u(x) € C3(D), D= {x; | x|< r,< 1} is said

to be of class O™, if lim exp {ar“’}%ﬁu(x)zo OZ || <m) for every
r>0 X

ol

V1
a (x:(xu tth xw—l): r= lxl :(21 x%)l/z)'
=

In this note we shall use the next lemma without proof.

Lemma 1. 1i) Let P and Q be singular integral operators of type Cz(B>1)
in the sense of [27] with real valued symbols, then the following operator
norms

QA —-AQH, [(PA—AP¥)],

1.1
&0 I(P*Q—Q*P)All, [[AP*Q—Q*P)|

where A is defined by ZX;(S)= |£1#(E) and P* means the adjoint operator
of P, are all bounded ; see [2].

i) Let H, H, and H, be singular integral operators, then we have for
any positive integers p and q the next representations

HA?—A*H = H, ,A?"'+ H),,

(-2 (H.H,~HoH)A = H, + H!,

where H,, and H, are singular integral operators, and H,, and H are
bounded operators together with AiH, N’ and A'H AN (0=i+j=<q) respec-
tively. H,oH, shows a singular integral operator with the symbol o(H))
o(H,) ; see [13].

iii) Let H be a singular integral operator such as |o(H)|=06">0, then
there exists a positive constant C such that

1.3 HHAullzz%IIAuHZ—CHuH"’; see S. Mizohata [10].

ReEMARK. The sign || || always shows L? norm.

Lemma 2. Let P and @ be singular integral operators with real
valued symbols.
Then we have the following representation
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1.4 —i(PAQ —AQ*P)A = (K,— K) A+ K,PA+ K,
where K, and K, are singular integral operators with

(1.5) o(K,) =

zai (Q)a( o(P)|£])

respectively, and Ko and K’ are bounded operators.

Proof. Here we shall prove it roughly, details are easily derived from
M. Yamaguti [13]. See also the proof of Lemma 6 in §4 of this note.

As a simple case we consider P=ah and Q=~0bk with o(P)=a(x)h(é)
and o(Q)=>b(x)k() respectively.

Take a)eCie(@(é)=1 on |E|<1), we write P=ah,+ah,(c(h)=
a(EYA(E), o(h)=1—aE)hE), and so Q=bk,+bk,.

Then, we can write (PAQ—AQ*P)A=a(h,A)b(k,A)—(Ak)ba(h,A)+a
bounded operator, and a(h,A)b(k,A)— (Ak)ba(k,A)= {a((h,A)b—b(h,\))(k,A)+
abh,k,A% — {((Ak)b—b(AR,))ah,A + b((Ak,)a—a(Ak,))h,A + abh,k,A*}. Now, for
sufficiently large / we use the following representation for « € C%,,

(7, A)b—b(h.A))u(x)
S (B, ) (x —3)b(9) — b(x) (hA) (B A) (% — 3))u( ) Ay

(in the distribution’s sense)

=31 [ 2 (e () = ppucs)dy
ox

i= i

I

CHE L OB S (IVER O

PE IS

+ 31 [ e - b Dy,

[]=1+1
then, the operator for the first term is equal to a singular integral

operator with the symbol —ZZ i b(x)gg—(h .|€]), and we can see the
j
operators for remaining term are equal to a bounded operator K together
with KA.
Using the above representation, if we set K, a singular integral

operator with then, we can obtain

—ia((h,A\)b—b(h,\))(kA)=—K,A+ K5 where K5 is a bounded operator.
Similarly, if we set K, a singular integral operator with o(K))=

f a#(I(P)é 9_(a(Q)|£]), we obtain +ib((Ak)a—a(Ak))hA=KA+ K, with

bounded operator Ki. By (1.1), (Ak,)b—b(Ak,)=AQ* —QA is bounded.
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Consequently, we get (1.4) for P=ah and Q@ =>bk. For general case,
we write o(P)=X)a.(2)k.) and (@)= b, (x)k.,(£) and we can prove
I3 w

(1.4) dy the same manner as the above simple case. Q.E.D.
Now we shall prove the next fundamental lemmas 3 and 3'.

Lemma 3. Let P(t) and Q(t) be singular z'htegral operators with real
valued symbols defined in (x)-space with t as a parameter and satisfy the
condition of M. Matsumura [8], that is

2 ) 2 2 2 e
1.6) S+ 2 {ZoP) 2 (QIEN 0@ - CP)IED) = vo()

in a neighborhood of the origin (¢, x)=(0, 0) for some = fy(t %, 8 €Cq .
(=-0).

Then, if we set | :-a—a—t+(P+iQ)A, there exists a positive constant h,

depending only on P and Q such that for O< h<h,, r==t+h and sufficiently
large n

1.7 S:r‘”‘ll Tulpdt = ”;" S:r—2"||u1|2dt+ 81_n S:r‘z”llPAullzdt

for all ue L.
Especially, if |o(P)|=6">0, then we have for a positive constant C’

- hn(* _ c —2n|| OU
. 2n 2 2 2n 2 2n
.8 [reipra =2 2 mupare [ ) O

“dt

h
+| r-2"||Au||2dt} ue Ty,
REMARK : If o(P)=0 or |o(P)|=6 >0, (1.6) is satisfied.

Proof. Set u=r"v, then r‘"]u:(%+z'QAv)+(PAv+nr“v), so that

(1.9) SVWMW=U?

S {<dv PA”) (PA” % }dt+ S s leirdt

h
+i

h
+1QAv dt + S ||PAv +nr~'v||’d¢

=)

'-/5

(QAv, PAv) — (PAv, QAv)} dz‘+m$ r{(QAv, v)— (v, QAv)} dt

0

I
M-

i
i=

-

. h
Integrating by part, I4:ns r~?||vl|’dt and applying Schwarz’s inequality
0
we have
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h
(1.10) L+I, %S {|PA|[*—2nr~*||PAv|| |[v]| +n(n+1)r~?[v][*} dt
)
2 —2 2 2
g—s—nj lolFd+L S || PA|fdt .
By (1.1) we have for a positive constant C,
h
L1y I, = an r(QA—AQ*), v)dt = —Cm Shr'2| ol °dt .
[ 0

For I,, we use the method of S. Mizohata [9], and consider it
together with I;, then integrating by parts and using (1.1) we get for
a constant C,(">0)

I, = S @, P’Av)dt+g ((PA AP*p, % +zQAv>dt
_So (v, i(AP* — PAYQAD)dt = — S (v, (P’ +i(AP* — PAYQ)Av)dt
—Il—Czh"‘S:r‘zllszdt, and I, —S:(v, iIAQ*P— P*Q)Av)dt .
Consequently we get
I+1, = —S:(v, (P’ —i(PAQ — AQ*P))Av)dt —I,— C? S:r‘zllvl rdt,

and by Lemma 2, we have
—i(PAQ —AQ*P)A = (K,— K,)A+K,PA+ K’ ,

where K, and K, are singular integral operators with

58 o(p) 2 (@£ - Lo(P) 2 (o
oK~ K) = 2 o) @)~ o) L @D

and K, and K’ are bounded operators, on the other hand P’ is a singular

integral operator with o(P’):gzzr(P). Hence, by the condition (1.6) we

get o(P’'+(K,— K,))=vo(P), then using (1.2) and Schwarz’s inequality,
we have for a constant C,(”>0)

(1.12) N T _*S \\PAD|[*dt—C, k'n S r?|(ol|%dt .

From (1.9)-(1.12), we have

(1.13) S '”H]ul]zdz‘Z(%n cm)S rlolidt+ SHPAszdt
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Remarking v=r""u, we get (1.7) for a sufficiently small % because
of r‘zg%h‘z for 0 ¢t<<h.

In order to prove (1. 8) we use (1.3) by |o(P)|=6">0, and remarking
1 JIAZ? (C,>>0), we have (L. 8). Q.E.D.

Lemma 3. Let P(r) and Q(r) be singular integral operators defined
in a neighborhood of the origin in (0)-space with v as a parameter and
have real valued symbols.

Suppose |o(P)|=6">0, then for the operator J= —-+r“(P+zQ)A

u
ot

there exist positive constants [, and C depending only on P and Q such
that for every [ (=1,) and sufficiently larg o

(1.14) Srorzﬁ exp {2ar=?} || Jul|’dr
gc{alzg P12 exp {2071} ||u|["dr

11 oy (|28 s s
+asor exp {2ar }(}5; +77%|Au||?)dr ue®r,.

Proof. Set wu = exp {—ar~’}v, then, exp {ar %} Ju= <Zv+ zr“lQAv>
(r*PAv+alr-*~'v). Hence,

dv

(1. 15) Sroexp 2ar-1} || Julpdr — S 141 +ir'QA d

e[ et a2, r-m> (rps0, 9)

+al$ G~ Hvllzdr+zg ’ {(r'QAv, r'PAv) — (r *PAv, »'QAv)} dr

+z‘al$ 71 {(QAw, v)— (v, QAv)} dr
e

We shall estimate each term parallel to the proof of Lemma 3.
Integrating by part, we have I ,=al(/+ l)S por-y [v]|’dr, hence, using
0
Schwarz’s inequality

21 = Sror_zﬂIPAUHZ—ZCYW’HPAUH ol +al*(ar™ +1)r~!|v]|*} dr

1 oo . 1 (7,
>_alzg 7-2 2 L 7-2 2 .
= . il dr+4a$o r'~?||PAv||*dr
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By the assumption of the lemma we can apply (1.3) to the above
inequality and we get for a positive constant C, and sufficiently large «

(1. 16) N lalzgr"w*znvuzdr 4+ G S'“rlfznm dr .
3 0 A Jo

Integrating by parts and using (1.1) we get
.10 1z = rapar-ca e -1 €20

and

1.18) Ii+1,=> — 4ch Sror"zllAv[(Zdr~C3alSror""zllvl{zdr (C,>>0).

From (1.15)-(1.18), there exists a positive constant /, such that

(1.19) S:Oexp {2ar-1} | ]u||2drg%alzg?w-znuuww ¢ S:or"ZHAvllzdr

20

for every / (=/,) and sufficiently large «.

Remarking v=exp {&r *}u and du 2g2||]u|i2+C47"2||AuH2 (C,=>0) we

r
obtain (1.14) for B8=0, and replacing » by 7»°x« we get (1.14) for suf-
ficiently large a. Q.E.D.

Lemma 4. Let H (t)(i=1,---, k for k=2) be singular integral operators
defined in (x)-space with t as a parameter such that |o(H;—H;)|=8_>0
(Z=F7).

We set ],~z§;+H,-A(z':1, o B), and Jo o Joe e o Jou_ (o =i for ool )

are the product operators for the permutations from J,, J,, -+, and J.
Then, we have for positive constants C and C’,

i T
27 Ay
ot

i 2
—a—_A"u -’
oti

o<itik-2

1.200 3 Ty Toyr oo P =C 2

laigeip—1 iti=k-1

Proof. For the case k=2, J,—J,=(H,—H,)A. From the assumption
|o(H,—H,)|=6">0, if we apply (1.3) of Lemma 1, we get

%Z—HAuII”—CIIIuII2 = [|[(H,— H)Aul|* < 2(|| Jul[*+ 1| Ll ") (€, >0),

and( 2§2(H]1u]]2+HH1AuHZ), hence we get (1.20) for k=2.

ou
ot

For the general case k=3, using (1.3) we have for 2<<7/,<k and
i, 74=1, for v=p,
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.21) (=T oo Jo WP = (((Hy = Hi )A Jiye oo o il

5 : VY T
= LAy Jiy gl =C, Zoan| (€ >0

o<iti=<k-2

and because of §=]1~H1A

2

(1. 22) ” 9

a_t]iz'.“.]"k-lu
= 2([| JoeJiye e Jip @l P HA Ty oo+ Ty ell?)

On the other hand, using (1.2) we have for constant C,(">0),

(1.23) AE|;],.2.....],.,?‘IM||2+’]iz.....]ik_l@u
ot |

0 BCAy S 4 : : o P

gca{”AJizc--.-]-ik—1uH +Ha—t.,12 ]ik—lu +0§i+j§k~2 at‘Au }.

Since J;,---+J;,_, are the permutation from J,, -, J,, we can apply the
assumption of the induction to A and get for positive constant C, and C,

1 . 2
o ANu

R

o<iti<k-2

1.24 A=C,
(1. 24) z¢ 5 |2

i+j=k-1

Combining (1.21)-(1. 24) we can prove (1.20) for the general case. Q.E.D.

Lemma 4. Let Hr) ((=1, -,k for k=2) be singular integral operators
defined in (0)-Space with r as a parameter and satisfy the assumption of
Lemma 4.

We set ],:aiw-lH,-A G=1, k) and JiJoy - Top., Gy-tin for
/4

v =) are the product operators for the permutations from J,, J,, -, and J,.
Then, we have for positive constants C and C’

(125) ) ,',,Z,,' _H]il.]z.z....,]ik_luuz
O N i

2
_C' 2 r—Z(k—l—i)
dri

0o<iti=k-2

>C 3 pEeD

i+i=E-1

i A"u’
ori |

Proof. We can prove it by the method parallel to that of Lemma 4,

but we must remark the fact that 2r“HAu—r“HAQu = (2 (r"H))Au
or or or

and (Ar'HA—r""HA)u=r""(AH—HA)Au, then using (1. 2) we get (1.25).

Q.E.D.
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Lemma 5. Let H(t)=PF;(¢)+iQit) ¢=1, .- , k) be singular initegral opera-
tors defined in (x)-space with t as a parameter, and assume each of P;
and Q; (i=1, ---, k) satisfies the condition (1.6) of M. Matsumura [8].

Set ]':8% +HA (¢=1, -, k), then we have for the operator A=],-

oo Ju, and a positive constant C

!a_iAfu}g

oti |
u€BY,
where r=t+h and h is a sufficiently small constant depending only on P;

and Q;.
Especially, if |o(P;)|=8">0, then we have for a positive constant C’,

(1. 26) Shr‘ZHAuHZdt =C (h-Zn)k—fS"r-Z" dt

<itj=T=<k-1

2

o dt

h 1 3 | B i
wen (rejadrazcl s eyl 2o
0 n 0 ott

0<<i+ti=T=k

ueFP.

Proof. (a) The proof of (1.26). For the case k=1, the proof is trivial
from (1.7) of Lemma 3.

For the general case k=2, we use for example the equality J,J,— ],/
- (a% (H, —H2)>A+ (HAHA — HAHA) = (582 (H,— H)) A— {H.(\H,— HA) +
(HH,— HoH)A—(H,oH,— HH)A— H,(HA — AH)} A. Then, applying
(1.2) to the above equality we can write with a singular integral operator
H’ and a operator H” which for every ¢ has a singular integral operator
H, such as Ai(H'—H,)A? (0<i+j<q) bounded,

(1.28) JieJ.:—J.J. = HA+H".
If we use (1.28) for any J;J;—J,;J;, we get for a constant C,(>0)

I o 2
ot

(@, F=1i, for v ==p),

(1.29) Wi oo e Jo=Tiye e s JullP=C, 33 Au

0<<iti=k-1

hence for constants C, and C,(”>0), we get

2

o ANu

ott

1.30) AP =C, 33 ;e o Jopul - C,
i, 0

oiti=k-1

Now, we épply (1.7) to the operators J; « - Ji, and use (1.30), then we
get for constants C, and C, (—>0)
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(1. 31) Shr“z"HAullzdt

h i 2

=Chrny) S N Joye oo o Jaull’dt—C, - X3 Shr-z" %—,Afu dt.
Qg ip V0 I<itisk-1Jo :
By the assumption of the induction,

-2 h - ” ai H 2
(1.32) n~n 7ol o JlFdt = 6C_ 3 Grmyr |l O at

0 0 it+j=T<k-2 0 : I

€>0).

Then, if we apply Lemma 4 to the first term of the right hand side of
(1. 31), and use (1. 32) for sufficiently small €, we get (1. 26) for sufficiently
large n.

(b) The proof of (1.27). By the assumption we can apply (1.8) of
Lemma 3 to J;- - «J; (¢,==i, for v==p), and using (1.30) we obtain
for constants C, and C, (">0),

h 13 2
Sn 7’_2’1”Au”2dt2 CG% Z So r_2"< agt]iz. .-]iku +”A]i2' e jikuH2dt
h h i |2
+lg 2% Aul"d¢ —C, S ron| 9 Ay dt .
2 Jo o<iti=e-1Jo oté

In the first term of the right hand side in the above inequality we

estimate the commutators <—aa—t],~2- oo Jig— Jiye e Ji"%)“ and (AJ;,- - -

Jiw—Ji,s - +JiuA)u by (1.2) and apply Lemma 4, and we apply (1.26) to
the second term, then we have for constants C, and C,(>0)

h 1 R 5 h i .2
S r| AulPdt = C, L S S r= O niul di—c, S rn| 2 piu| at
0 nif=r Jo ot 0<iti=k-1J0 oti
h ai 2
+C = (k‘zn)k‘TS r | = Au| dt.
o<itimr=<p-1 0 ot?
Then, for sufficiently large » we get (1.27). Q.E.D.

Lemma 5. Let H(r)=Pr)+iQ;r) G=1, --- , k) be singular integral opera-
tors defined in (6)-space with v as a parameter, and assume |o(P;)|=6 >0
(l:]-) Ty k)'

Set L=§,+7’1(Pg+iQ,-)A (¢=1, -, k), then we have for the operator

A=J,+ -« Jp and a positive constant C
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(1. 33) S'°r2ﬂ exp {2ar-1} ||Aulfdr

=Ca X l“’f‘”gr‘)r?ﬂ"*”-f’ exp {2ar~'} Ha—i.A"u dr
0<iti=r<k-1 0 ori
ue®;ﬁ?l)
and for amother positive constant C’
(1. 34) S "y exp {2ar-1} || Aull*dr
0
s 1 2= (0 2Bs-20k- - |2 Ad,l°
=C= > 1 auall 'exp{Zar}?A’udr
rl

A 0<iti=T<k 0

ue®Y,.

Proof. The proofs are played by the same process with that of Lemma 5.
Corresponding to (1.30) we have

2

AulP=C, Y |1 Ji,- -+ Jell*—C, L A
i, i 0 ar‘

<iti<k-1

)

and

2 o
S AR ] I [ AR

>C ou |* -2 . 2
= G| Joy oo o Jin, +r7 Joye oo o Jup Autl|
or
_on-p|l OF s P
. 2(k—-$) J
C40§£§§k-lr ‘ ——ariA u

where C,, C,, C, and C, are positive constants. Remarking the above
inequality, if we apply (1.14) of Lemma 3’ according to the proofs of
(1.26) and (1.27), we get for positive constants C, and C,

(1. 35) S"’rw exp {2ar-"| Aulldr

7, i 2
=Cc, 2 (alz)k‘fy *pBoIk-D-2k=D exp {2ar=1} O A dr
0 i+i=T=<<k-1 0 or?
and
(1. 36) S "y exp {2ar-1} || Aul*dr
1 NE-17 "o 28— 1Ck—1-T)—20k- ) -1 ot i
=>Ci— > (ah v Dexp {2ar~} | = Au| dr
o o<ifi=r=t 0 or?

respectively.
Hence, if we note 7 ** =y forv<k—1and r'* "=y for Tk



194 H. KuMmANO-GO

because of 0<r<r,<1, and (@/®)* "=a/**™ for r<k—1 and (a/?)* "
=[*k™ for v<k, then from (1.35) and (1.36) we can easily obtain
(1.33) and (1. 34) respectively. Q.E.D.

§2. Main theorems. First we shall prove a theorem which will be
used for the uniqueness of the Cauchy problem.

Let L,(¢ 2,7, &) =$ H(t, x, A"/ be a homogeneous differential
polynomial where H;(¢, x, E)zl S ault, x)& (H,=1) are differential poly-
Ki=;

nomials with respect to § with complex valued infinitely differentiable
caefficients «.(¢, x) defined in a neighborhood of the origin.
Now we resolve L, into the form

@21) Lyt % 8 = TOADE 5 T A-AG2,8)  O=k=m),

and we write

A';1)(1"7 X, E) = _Qil)(t X, §)+Zp(1)(t X, S) (l = 1; AR k) ’

@2 AP, %, E) = —qP @, %, O +ipP (%, 8 (G=1,-,m—k).

Theorem 1. Let L=L({t, x, A, §)=L,(¢ x, A, &)+ N b; u(2, X)NIE* be

0<it+[pl<m-1
a differential polynomial of order m with bounded measurable coefficients
b; u(2, x).
Suppose NP(E=1, .- k) and AP (j=1, - ,m—k) in (2.1) are distinct
for E==0 respectively and infinitely differentiable, and p® and ¢ (i=
<, k) in (2.2) satisfy the condition of M. Matsumura (8], that is

(¢} o (1) a (1) [E (1)} — p.Hpb ; — 1, ... k
xjp af ax,- af —=D v;Di (¢ ’ , k)
in a neighborhood of the origin for some v;=vt, x, &) €C; , » (§-=0), and
p? (j=1, -, m—k) in (2.2) do not vanish for £==0.

Then, there exist positive constants C and h such that

@.3) p‘”+ z{

2

oT
—U
ot ax"

(r =t+h, ucF™)

h h
2. 4) Sr—znnLunZdtgc 2 h‘“"‘“”gr“z"

O<it+IEET<m-1 0

for sufficiently large n.

Proof. By Theorem 4 we may consider that (2. 1) and (2. 3) hold for every
(¢, x). Let PV +iQ® (i=1, ---,k) and PP +iQ% (=1, .-, m—Ek)-be singu-
lar integral operators with o(P{"+iQ5")=—i\{"’|§|™* and o(P{® +iQ)=
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—iA® | €| respectively, then they are of type Cy (8=cc) in the sense
of [2].
Set A,— 1f1( oy (pw +Q§1’)A> and Azszf(% (P +iQP)A). Then,

ot
using (1.2) of Lemma 1, we have for a positive constant C,,
z .2
(2.5) (A, A,— Dyul < C, 2 Au
oiti=m-1|| OFf

By the assumptions of the theorem, we can apply (1.26) and (1.27)
of Lemma 5 to A, and A, respectively. Hence, first using (1. 26)

h h i 2
2. 6) S rAAMPdE=C (h‘zn)”"g r| O AiAul dt

0 O<it+j=T=<k-1 0 ot
and using (1.2) we get for positive constants C, and C,

o ial?

2.7 N -ANAu

o<iti=r<k-1| OfF

H .2 i’ . 2
=C, A, o -Au|| —C, “8 LA u
o<i+i=T=<k-1 ot 0i/+j/ =1 ST+m-p>-1 || Ot

Now, by (1.27) for a positive constants C,

@.8) SV (et S"r-zn A, % piu|a
0<i+i=T<<k-1 0 ottt
1 -2, \m— " —zn‘ ai j *
>C, = ™ O N .
=Coh > ) N | Nt

From the second term of the right hand side of (2.7) we get k—7=
m—1—/, hence combining (2.6)-(2.8) we have for positive constants
C, and C,

2

h h ¢ .
S roAAudE=C S (h‘zn)""*g oo O niylas
0 M o<itijzmr<m-1 0 ‘81,"
13 a," 2
—C, N (h'zn)"‘“**'g |2, A u| dt
0 i/ +j =" <m-2 0 oti .
) oi+Ikl i
Then, if we use (2.5) and I —y | <|| Z—A"™yu|, and note m—1—7=0
otiox* ot¢
for t<<m—1, we can get (2.4) for sufficiently small %. Q.E.D.

Corollary 1. Let L; (=1, ---,5) be differential polynomials of order m;,
and assume each of them satisfies the conditions of Theorem 1.
Then, there exist positive constants C' and h such that
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h 2

h
2.9) Sr*Z”HLI- e Lalldt=C ) h-2<M—f>S oo

O itHR|=TM -5 0

Sfor sufficiently large n.

Proof. If we consider L, «Lu as L,---- +L,_ (L), and apply the
assumption of the induction, then by using the inequality for M,=M—m,
and sufficiently small #% '

J XM= or ’
O it+IMI=TZ Ms— (-1 otiox*
2
=c_ 5 L Oy
0 it II=TE M= (- 1) otiox*

or

—C.n JpxM-7 T
g 2= otiox*

Oit+Id[Sr< M -5

u1 C,, C,>0)

we can easily prove (2.9). Q.E.D.
Next we shall prove the theorem concerning the unique continuation
for elliptic differential operator.
Let L=L(x, n):méma,‘(x)n" be an elliptic differential polynomial with

complex valued bounded coefficients defined in a neighborhood of the

origin in the (»+1)-dimensional Euclidean space, and assume for con-
stants 6, and 8, (—>0)

(2.10) =3 aun*1=8,>0  (In] =1).

Now we transform the coordinates (x) to polar coordinates (7, 6),
for example

X = (xu e, Xy, xv+1) = r(/)(e) = 7(01) e, 0, \/1— |0|-2)
(16] = {3 < 1),

2.11)
T . .
r=aSa, 6= ki (=1, (£,.,>>0).
i=1 Z x‘f
Then,
o %) _ (5]
= H’-__ ! 81_010 e :]—’ ’ >
ox; arH 2 O 2 00, g )
(2.12)
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Hence, if we define a matrix D by

1-63, -04,,---,—040,, 0,
2.13) D=D@) =|-0,6,, —6.,6,,-,1—6%, 0,
—O0N1—101%, -, —0,/1—[0]% V1I—10]|*

then, the principal part L,,=L,,(r, 6, A, §) of the above differential poly-
nomial L as the operator with respect to (7, 6), is obtained inHZ] a.(x)n*
M:M

by replacing a.(x) by a.(*¢(0)) and transforming » by

"7_1 r—-l‘fl
2.14) ,]'v =D r“"E,,
A yty A
respectively.
We write L,
(2.15) L,=a* @ P+ 237 i Hr, 0, V7

where H(r, 0, &)= 310.(r, O)%", a*(x):“”Z:ma,L(x)<%)M and by (2.10) and

* =1 we have
7
(2.16) 8, =la*(x)] =8,>0.

ReMARK 1. Since the elements of the matrix D is analytic, b.(r, 6) are
infinitely differentiable with respect to (7, 6) if a.(x) (|| =m) are infinitely
differentiable with respect to (x).

2. Since D(0)=unit matrix, for the associated differential polynomial

(2.17) Lk, 6,2, &) =\" +§'"1: roiH(r, 0, ENE = T —r"\(r, 6, §),

Ai(r, 0,8 (=1, .-+, m) are distinct if the equation > a.(x)»* =0 has
1=m
distinct roots as the polynomial with respect to 7,.,.

Theorem 1’. Let L(x, ”):,#,Zma"(x)"“ be an elliptic differential polynomial

of order m defined in a neighborhood of the origin which satisfies (2.10),
and leading coefficients are infinitely differentiable and remaining coefficients
bounded measurable.

Suppose for any representation of polar coordinates we can write L}
of (2.17) such as
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@.18)  Lir, 0,0 8 = [10—r 220, 6, ) TTO—r NP0, 6, )
0=k m),

where NP(E=1, -, k) and NP (j=1, ---, m—E) are distinct respectively, and
infinitely differentiable for &--0.

Then, there exist positive constants C and [, depending only on L such
that

2.19) SW 7% exp {20r~'} | Lu|’dx

_2_ C E lz(m—ul-[)S rZB—Z(M-]IltI) exp {2057’_’} zdx

1l
—u
0 IET=m-1 Ixl<rg ox*

u€ O

for every | (=1,) and sufficiently large c.

Proof. For L% of (2.18), we define A,— H( +r“(P“’+zQ“’)A> and

A, =" (a% +r‘1(P§2’+zQ‘,"'>)A> where P& 4+iQ® (i =1, -, k) and

ji=1
PP +iQ®(j=1,-- ,m—k) are singular integral operators with symbols
—iAP &7 and —iA®|E| 7" respectively.

Then, the assumptions of the theorem it is easy A, and A, satisfy
the conditions of Lemma 5.

We remark here by estimating commutators using (1. 2)

2. 20) L* r 6,2 a> AA) —c, > o] 2 asl
or’ 26 T ogifixma ori
and considering L as a operators with respect to (7, 6)
(2. 21) (L—a*Liylr=C, 51 rmo| 2 gy
0<iti=m-1 arl

for ueC{,, and positive constants C, and C,.
Now, if we apply (1.34) to A,, we get

(2.22) Sror”’ exp {2ar~'}||A,Au||’dr

=cl 5 pan (i exp ar "dr
0

Qo<ifi=r<ek

_8; A Au
or

ue @,

and if we estimate the commutators by (1.2) we get



UNIQUENESS OF THE SOLUTION OF THE CAUCHY PROBLEM 199

1 . 2
2‘7 AN Au

(2.23 SV [k
or

0<i+Hj=T<k

2

2C3 2 J2Ck=T2p = 2k=) Az o ANu

0t =T<k oré
N P
-C Z lz(k—r),,-—z(m—i’) QLAi'u ’ (C C >O)
4 o/ 3 4 .
0<i/+j/=1/<TH+(m-p)-1 dri

Noting k—7<m—1—7" and *"<m—1, and replacing ¢, 7/ and *’ by 1, j
and T respectively, we can see that the second term of the right hand

H . 2
side in (2.23) is not larger than CJ/~? M [Ty 2D 9% A
0<itj=T<"-1

oré
(Cs>0). Hence, if we replace the right hand side of (2.22) by that of

(2. 23) and apply (1. 33) to the terms Srorz‘” -2k exp {2ar~'} Azai;_ Au 2dr
0 £

then we get

2. 24) S'“ﬁﬁ exp {2ar-1}||A,Auldr

2

ii ANu|dr

=C.,_ 3 oo exp pary | 2
rl

o< i+i=T<m-1 0

2

¢ = rszm-ﬂg *p-2m-0 exp {207~} dr
0

A ogitj=T<m-1

‘EL ANu
oré

(€, €, >0).

By (2.20), (2.21) and (2.24), if we consider L as
L = (L—a*L¥) +a*(L¥—A,A,) +a*AA,,

then, by (2.16) we have the following important inequality for positive
constants /, and C,

(2. 25) S'Orz" exp {2ar~'}||Lu||’dr

7, : . 2
=C, N l“"’“”S "pH-xm-D exp {2ar=*} ‘84. Au| dr

0<Litj=rm-1 0 ort

ue®r,

for every / (=/,) and sufficiently large «a.
Now we use the partition of the unity such that
(2. 26) ®; <|i|) €Ciuy G=1,,5), SO =1,
X =1

for any wu(x) € O, u;=(®u)(rp(f)) belong to &, and we can apply the
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inequality (2.25) to each #;. It is easy that such partition of the unity
exists from the assumption of Theorem 1’.
We have for such #; the following inequality

aml
ox l-'~

i=1

@2 2% <c, >
8x

;lLu;|2§2|LuI2+C90 3 e

<IBT=m-1

S ILNE
@u‘ (€. >0).

On the other hand by (2.12) and (2.14), if we set r*drd6=+(x)dx, then

%g«p(x)gz for sufficiently small 6. Hence, we have for any uv(x)

IU(r, 0) € ®;oo)l

(2. 28) 2& | r*®vexp {2ar~'} lvl"dxggrorzB exp {2ar"}||v||2dr2%
xl<ry 0
S r*®vexp {2ar~'} |v|*dx ,
lxi<7r,
and for any vé@i‘f)‘,'{ we have
(2.29) pom-wn (127 x| O Aiy T (€, >0).
o’ CozifTemi ori 1
From (2.25), (2.28) and (2.29), we get
(2. 30) S rexp 2ar ) | Lu|'dx =C, 31w
lxl<ry O |HTm
S pBY R ED exp {2077} *Au “dx (C,,>0).
lxl<7g oxt

In the above inequality we replace 28—v by 28 and using (2.27) we get
(2.19) for sufficiently large /. Q.E.D.

Corollary 1. Let L; (¢=1,---,5) be elliptic differential polynomials of
order m;, and assume each of them satisfies the conditions of Theorem 1.
Then, there exist positive constants C' and ' such that

2. 31) qu ® exp {207} | Lo+ Lu|*dx

=C X lz‘M‘”“"S r? 2=k exp {2074} gi 2afx
0 M-S »%

|
U
lxl<rg K

(M= 3 m;, ue D)

for every I (=1,) and sufficiently large «.
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Proof. We can easily prove it by the method of the induction. Q.E.D.

§3. Uniqueness and unique continuation.

First we shall state the uniqueness of the Cauchy problem. Let
L(y, n)= 12 a.(y)n" be a differential polynomial defined in a neighbor-

K=<
hood of the origin in the (v+1)-dimensional Euclidean space.
We take Holmgren’s transformation to y=(y,, -, ¥y+1)
(‘3' 1) t=y1+ Zlﬁu, Xi = Yin (Z: 1)"'»V)’
=

and we consider only the operator L such that after that transformation
the principal polynomial of L is of the form &*L,, (|a*|=6">0), where

(3.2) Ly=Lut 58 = 11 A2t 5, 8) TT A—AP(E, 1, 5).
O=k<m)
Theorem 2. Let L=L(y, )= | IZ a(y)n" be a differential polynomial of
pi=m

order m defined in a neighborhoog of the origin of which leading coefficients
are infinitely differentiable and vemaining coefficients bounded measurable,
and let u=u(y) €Ch, defined in a neighborhood of the origin satisfy the

differential equation L( A —aa—> u(y)=0 and the initial conditions
'y

j—1
3.3) O w0, 3, 3) =0 (G =1, m).
on
Suppose after the transformation (3.1) the roots AP = —qP+ip®
(@=1, -, k) and NP=—q®+ip® (j=1, - ,m—k) of the associated poly-
nomial L, in (3.2) are distinct respectively and infinitely differentiable,
and p¥ and ¢ (i=1, --- , k) satisfy the condition (2.3) of M. Matsumura
[8], and p* (j=1, -, m—k) do not vanish for £==0.
Then, u(y)=u(t, x) vanishes tdentically in a neighborhood of the origin.

Proof. From the assumption of Theorem 2 &* 'L as the operator with
respect to (f, x) satisfies the assumptions of Theorem 1.
Now we take a function @(¢) € C;, such that

2
3
then by (3.1) and (3.3) w(¢, x) =p(f)u(t, x) belongs to FL™.

Applying (2.4) of Theorem 1 to ¢* 'L and w and remarking
la*|=6">0 we get

3. 4) o) =1 on [o, é‘—] P(8) = 0 for t=21,
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@5 (|riLelrdzc N K P
.5) 07’ wl - 1O_S_iﬁl—lﬂ-lz=;ré’m—1 or at"ax“w l
(r=t+h)

for sufficiently large » and C,=6"*C.

By (3.4) Lw=Lu=0 for tE[O, g] and because of A<r<2r<1
for 0<¢t<h we get

h h/2
S r""llell’dthIS -l dt .
hl2 0
. -1 h 2,0 h 1 r\™?
Hence, noting 0< ' 7+h “@h forfgrgh and r = h+§

:%h“ for 0§r§%, we have

() " izwipde=(" pat

and letting #— ~ we get # vanishes identically in Ogtg%.
This completes the proof. Q.E.D.

Exampie 1. L,(4 x, \, E):N‘+2(g EBY N4 ( g £ —a(t, x)g £,  where

a(t, x)e C=(t, x) in a neighborhood of the origin and (0,0)=0 but
a(t, x)=E0 in any neighborhood of the origin. We can write this operator

L, = v+ (S +alt, )(STENI} M+ (8 —alt, x)(STE)")
= IO M) LA -A) = A4,

where AP =e¥*@-2v=1p (j=1,--,4) and AP =e**-V=1p, (1=1, .-+, 4)
with b,=(( &) +a, x)(ZEHHY" and b,=((2] &) —alt, x)( X EHVH

respectively. Then, A, and A, have distinct roots respectively and in-
finitely differentiable, but at the origin A{"’=A{® (=1, -, 4).
Hence, for the operator L=L,,+ >3 bWt x)NE* the uniqueness

Oé‘i-HlLl_g_m—l
of the Cauchy problem holds. We must note that we can not write L,
as the product of two differential operators; see L. Hormander [6].

Corollary 2. Let L,(i=1,:-,s) be differential polynomials of order
m; and each of them satisfy the conditions of Theorem 2.
Then, if wu=u(y) satisfies the differential equation L,---Lu
= > au y)ﬂu (M= i m;) in a netghborhood of the origin, and satisfies
eSS o i=1
the initial conditions
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97! .
ayﬁ]u (O,yz’ “':yvﬂ) =0 (]:1; "';M)»
1

then u(y) vanishes identically in a neighborhood of the origin.
Next we shall prove the unique continuation theorem.

Theorem 2. Let L=L(x, )= ‘?_] a(x)n" be an elliptic differential
W=m

polynomial of order m which satisfies the conditions of Theorem 1'.
Suppose u=u(x) € Ct, satisfies the differential equation Lu=0 in a
neighborhood of the origin, and

m +
lim exp {ar"}%u(x) — 0 for every @ (|ul=m, r={3 23")
70 X i=1

for sufficiently lavge | for which we can apply Theorem 1'.
Then, u=u(x) vanishes identically in a neighborhood of the origin.

Proof. We take a function o(x)€Cgx<,» such that @(x)=1 on

{x;lxl<%}, then w(x)=(pu)(x) belongs to HI;.

Hence by the same process with the proof of Theorem 2 we can
derive an inequality

exp {2ar"} | Lw|*dx=C, S exp {20~} lu|dx  (C,>>0)

Sro/zélxkro x| =7y/3

and letting @ — o we have # vanishes identically in {x i x] g%} Q.E.D.

ExaMpie 2. a) A(x, 7) = 1_1 (72 + a;(®)nd) (@;(x)>0; i=1, -.-,s) where

ai(x)eCg, and a;(x)==a;(x) for i=4=j in a neighborhood of the origin in
(x)=(x,, x,)-space. Then, the associated operator A} in (2.17) for A has
distinct roots in any representation of polar coordinates, hence for the
operator L=A2+W<Z“ 1b,L(x) 7" the unique cotinuation theorem holds.

b) L= A%‘*‘EZ(A%_'_A%)_%(A1A2+A2A3+A3Al)
= {AIHE(\/K?+ \/_A-a)z} {Al_e(\/A—z_ \/A—a)z} = A1A2
A;=ni+jn3;j=1,2,3 and €& =&(x, x,)€Cy).

By the remark of a), after any orthogonal transformation aa VA;
71
1 2 . . .
= — —-A; (j =2,3) are bounded in a neighborhood of (7,, =
NN (J ) neig 00 (1, 72)

(%7, £1), so that for sufficiently small & the roots of A4;=0 (j=1,2) are

distinc and belong to C7,, because of 768— A;=+0 at A;=0 respectively.
71 .
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Hence, for L Theorem 2’ holds, but we can not represent L as the
product of two second order elliptic polynomials.

Corollary 2. Let L; (i=1,---,s) be elliptic differential polynomials of
order m; which satisfy the conditions of Theorem 1.
Suppose u=u(x) satisfies a differential equation L, +Lu

| s
= bﬂ(x)g?”:u (M= 3"m;) in a neighborhood of the origin, and

|0 B -5
18]
satisfies lim exp {ar~'} -g—#u(x)zo (|| < M) for every o and sufficiently
750 X

large ! for which we can apply Theorem 1’ for each L; (=1, ---,5s).
Then, u=u(x) vanishes identically in a neighborhood of the origin.

ExampLE 3. Let L; (=1, ---,s) be elliptic differential polynomials of
order 2 with real valued leading coefficients and sufficiently smooth
remaining ones.

In this case the principal parts of L; have distinct roots for every
direction respectively.

Then, by the remark 1 in the chapter 2, each pair L,; ,L,;

(1 <j g[%]) satisfies the conditions of Theorem 1/, consequently for

the operator L=L,*----L.+ > b.(x)%" the unique continuation theorem
1 < 03/2 5

holds ; see [9] and [12].
Finary we shall state the local existence theorem for the operator
concerning Theorem 1.

Theorem 3. Let LP=L™ (¢ x, N, &) be an elliptic differential poly-
nomial of order m and LP=L® (¢ x,\, & (@=1,-,s) be differential
polynomials of order m; which satisfy the conditions of Theorem 1.

Set LP=L{»«--«LP+ > b; u(t, x)ME (M= Z_s] m;) and L=LPL®

iHRI=M-
a; u(t, X)NEY, and suppose the coefficients are sufficiently smooth.
iR S HAm—s
Then, the equation L<t, x, a—at' ai>u= f has, for any feL*(Q) (Q is
x

a sufficiently small neighborhood of the orvigin) at least one maximal solu-
tion u in the sense of L. Hormander [5], that is ue L[ Q] and

3.6) (f, v) = (u, L*v) for any veCy(Q).

Proof. The conditions of Theorem 1 are determined by the principal
parts of L®® (i=1, .-+, s), so that the formal adjoint polynomials L{»* of
L® satisfy the conditions of Theorem 1 respectively. Hence we can
apply Corollary 1 to (L§®s-.+« L®)* = L®%....c [{(#*,
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Remarking the condition # € & is required so that the boundary
value may vanish together with its derivatives in integrating by parts,
we get for sufficiently small domain Q,(C {(¢, x); #*+ |x|*<K*/4}),

g r—znl(L(lm,... -L§2>)*L(”*vlzdtdxgcl Z Jm XM=
2

PHRET M-S
[y
2

Remarking |(L®* — (L{®.-.-« L®)¥*) L% |*<C,

itMST M-

L(l)*v

at’ax" “dtdx (C,>0, vECH(Q,)) .

oT L% z
ot oxt

if we take domain Q, , such as (Z—i—?) = ; for (t;, x)€Q, , (=1,2),

then

3.7) Sah | Lo L% | didn = L

L —-2(M-T)
LC Bk S

PHIMST M-S

Lo%p|” dtdx

otiox*

2
>c, S I 2<M-T>S Lo 97 _ o\ dtdx
S a s Q. n otiox"
B 3 aq_/ 2
_C h 20M 'I‘)S td
4;’4-[#'[:7’;‘:‘:”-741 Q,n atf'ax“'v o

EIIWIZ (Car C4>0) .
By Galding’s inequality [4] and (1.3) of L. Hormander [7] we get
oT+'

ofiti oty v

3.8) L[=C, S hEmm > k‘”"‘*')S "dtdx

i-IR=T M-S i =T m Q0

or

7 vl dtdx (€., C0),
tox

=C, N h—sz+mﬁ—r>S

il =TZ MAm s

Qp,n

and for I,, remarking M—s<M+m—7"—1 we get

ot
oti'dx

— 0 dtdx
y7x

(3. 9) L,<Cn = h_Z(M+m_T/)S

i =T < Mm-S

Q.

ai+|F| 2

. _ 3. L*_ (2)*L(l)>l< chs ~
Hence, from (3.7)-(3.9) and |( L Yo < aﬁax"v

i S s

we get for sufficiently small #(>0)

oT
otiox*

o | dtdx

S | L*v|*dtdx=C, h—2(M+m—1-)S
Q. n

i+H=T < MM~ Qp,n

=cpmm | (plrdtdx (€0, veCi() -

Qp,n

This shows L*' is bounded, and by Lemma 1.7 of L. Hérmander [5]
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proves the existence theorem of maximal solutions for Lu=f in Q .
(&, n; fixed). Q.E.D.

§4. Appendix. Let H= fja,h, be a singular integral operator in the
=0
sense of M. Yamaguti such that for every p (0<|p|=Fk)

¢a| lao(x) = A1, 2lfb;lbdr(x) <A, 7t (r=12,-);
(4.1) ox
n® = 1 a"}(f)'szskw LEE r=1,2, )

whose meaning is stated in Definition 0 of §1.

We consider a convolution operator « defined by an— a@aé) (weL?
where @(£) is an infinitely differentiable function such that

4.2) ag) =0 on {£;]5|<1},

and for every k there exists a constant B, such that

“. 3) : E"

Tnen, setting E;={x;|x|< 8} (6_>0) we have the next

*(E)FB’IEI MO0 |p<E).

Lemma 6. Let H be a singular integral operator in the semse of M.
Yamaguti and & is a convolution operator which satisfies (4.2) and (4. 3).

Suppose o(H)= Z}O a,(x)h,(E)=0 for x €E,; and E€car. &E). Then,

for every mon-negative integer p there exists a constant C depending only
on H,a, p,v and & such that

4.4) |HA?etu|| 2 < Cllull2  for ueC(Es).

Proof. Take a function ¢(x)€Cg(E,s) such that @(x)=1 for x €E;.
Then, for # € C5(E;) we have

HA?au = 33 a,(h, A = p(h, ) ut 3 a,ip(h, A*a)u

— 210, | (1 M) (2~ 3)((9) — p() w(3) dy-+ p HaePu

(in the distribution’s sense)

=Bawi_3, D" e [ E L harn-pucdy

<=k~

-

+ 2 s (x =) (h A?a)(x — y) po(x, y)u(y) dy} +pHaA?y
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=2 Gl et S (Gar @t 81 Jae ot

+ Do) 2 (-9 haan@—)pus Huxdy .

From the assumption of o(H) and @ €Cy(E,;) we have

o8 p(x)o(H) &) = 0,
ox

hence the first term vanishes, and by an well known theorem for the
convolution operator, i.e. |[vxul| » <|[v||,1+||u||,» for v € L' andu e L? (p=1),
we have

(4.5) || HA%au||2 < 33 Max |a,(x)| 33 Max |2,(x, 9)] |2 0h,@A?) @)Ul 12

Now we consider x*(h,@A?)(x) (| x| =Fk).
Since BLe"(haA?)W)®) = i* 2. (i @ 2@ €17),
we have by (4.1)-(4.3)

SLa"(h,an?)]E) =0 on {£;]&|<1}
and | BLat(h,aA?)(x)](E) | = C,, 7"+BBL|E|?7% .

We take k=p+v+1, then for every x

)@= || et aA D) dE | <C, . 4Be,

\/2
and for x (|x|=1)
| 2*(h, @A) (x)| = | x| *EED] | x| XVEED(h,aAP) () |
—2([v/2]+1 1 (v/21+1 ak 7 ~
<lxpmome 2l Iapee TG ) 817

<C. .1 B x| 224D b v{]
<Cp v, 4By 1| (ot =k =k2([ 2 ]+1)).
so that we have
(4.6) 2R, ALY ()| < Cpp 4 v, ¥ By .

In (4.1) we take /=/;/+2 then by (4.5) and (4.6)

[[HA?aul| 2 < C) 4,4, ado, 1ty Bir(1+ 2 r ) llullz<Cllullz. QE.D.

Set Q, ={(t x); £+ |x|°< 73} and S,=SH={&;|&—&,|< 8. Then,
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by the compactness of S={&; |§'| =1} there exist positive constants 7,
and & such that we have the representation (0.2) in each S,,=S{}
(s=1,++,$) and in Q,,, and SC 3} S,,.

Now we take V(t, ) € C5(Q,,.) such that
4.7 1=9Y(t, x)=0, y(t, x) =1 for (4 x)€Qy,,

and for af(t, )=t Da, (4, 1)+ 1LVt 2)a, 0,0 G+ ul=m)
consider the associated polynomial L¥(¢ x, A, &)= +l§|_“, ar(t, x)E"A.
i+ fET=m

Then, we have

(4.8) Lm<t, x, 2, i>u=L;5<t, x,?_,-i) for u€CP(Q),
ot ox ot ox

and we can represent L¥ as the form

(4.9) L% = SYHA

where HF are singular integral operators of type Cp (8=c0) with
o(HF)=1 >3 af(t, x)§"|&]77 in the sense of [2].
IET=5

According to S, (s=1,--+,p) we take the following real valued
functions «}(&) (s=1, -+, p) and B(£’) such that

)€ Ci(Se) (5=1,++,p), BBE) = 15
BB =0  for £ (EI=D)

(*-10 BE €CH, { 0<CBE<L for & A<|E1<C2)
BE =1 for & (1§1=2).
Setting
.11) @& = 1-BE)")",

a8 = BE)EIEI™) (s=1,-,p)

we consider the convolution operators «, defined by

4.12) a,; au = a®a® (s=0,-,p) for uel?,
then a, (s=1, ---, p) satisfy the conditions (4.2) and (4. 3), and

(4.13) ul = 3 llel* for welL?

For each a; (s=1,--,p) we take 7:(&)€C5(S) such that yi(§)=1 on
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car. a/(&), and set v,(§)=vi(|E|""). Now we write L, (¢, x, A, £) simply
L,= ﬁ A —=X (2, x, ). We define

A’?{(t) X, é:) = "lf(ty x)A’J(t, X, 5)‘{'(1_'\!’(,7 x))k;k(o’ O» f) ’
AEs(t, 2, 8) = v NS 1, O+ A — v, OV, x, &, 1€])
(S:]-’ »1’) ’

then M}, €C . ¢ for £4-0 and are homogeneous of order 1 with respect
to &.

Set L*(¢, x, N, £)= T (L, —2%,) = SV h¥,(4 x, £)|£]7A"~7 and define the
j=1 j=0
associated operator L¥ , by

(4. 14) i, =S H A D (s

T 6=Lp)

where H¥, are singular integral operators with o(H¥,)=4’h%*, which are
of type C; (B=c0) in the sense of A.P. Calderén and A. Zygmund [2].
Then, by the definition it follows that

Hgfs:H:)k:]-y

WD s Hr) = o@h) for ()0, Ecar a@ (=1 -.p).

Taking the number p sufficiently large we may assume L¥(Z, x, A, §) have
the form (0.2) on the whole unit sphere and for every (¢4, x), and the
condition (0.3) of M. Matsumura is satisfied for (¢, x)€Q,, and
Eecar. @, é).

Theorem 4. Let differential operators in (0.1) and (0.4) satisfy the con-
dition stated in §0. Introduction respectively. Then, the inequalities (2. 4)
of Theorem 1 and (2.9) of Theorem 1’ hold respectively.

Proof. We shall prove the theorem only for the operator in (0.1), the
proof for the operator in (0.4) is played quite similarly.

Let a function u=u(¢, x) be of class Fy™ (h*+K*< r3). We consider
ay (s=1,.-,p) defined by (4.12) and for each au we operate L}
defined by (4. 14).

Considering the process of the construction of L¥ , we can write the
associated polynomials L} (¢, x, A, §) as

Lt 5,0 8 = ITO-AB(E, 1, H) TT —AE(E, 1, 9)

so that A{} and A% may satisfy the conditions of Theorem 1 for every
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(¢, x, &) (-=0), but the condition (0.3) or (2.3) of M. Matsumura is
satisfied only for (4 x)€Q,, and £€car. & (F)

Now, we consider the operators J{!)= —a— +PRHIQINA (=1, -+, k)

and ](2)~?+(P(2)+ZQ(2>)A (j=1, -+ ,m—k) where PL+iQ: and Pj%

+zQ(2’ are singular integral operators with the symbols —A{L|&| ™' and
iAB |7 respectively.
Then, by Lemma 3 and Lemma 6 we get for €%

[rmiraupar= 5| v ol —Celuiry at
<S=1, D3 z:]-) o 7ks)

and for a positive constant C,

_au

h h 1 h
R e U N L A W

0 0 0
(321,"';1’;j:1>"',m_ks)-

\ + Al at

Using the above inequalities we proceed the same step with the proofs of
Lemma 5 and Theorem 1, then we get

S r|LE au|Pdi=C, SV R

z+|Ml:T<m—1
h 2
o] nl" o] 27l Y
0 otiox* ot? ax"
(S_ v by Cz,C >0 ue%“")

We write @, L,u (s=1, -, p) as
alu=calfu = (alLf—L¥)u+(LX¥—Lk Y u+ L ou

then estimating (@ Lfu—L}a)u by (1.2) and (L¥—L¥,)au by Lemma
6 we get important inequalities

(4.16)

2

P
S ra L ulPdt=C, J-xm-m
oT . _Cn

i+ ST -1
13 2
R o
0 otiox" ottt ax”
(s=1,-,p; C,, C;>0; ueFm).

On the other hand we have for «,L,, and € F,

Uu

o
ot

oL u = lLiu = acoaa?” u+a, El H¥AI u
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and

“u = ZaO(H*A AH¥) AT 1; - u+aAZAJ A

o™i

a“EH’A o™

Since a,(HfA— AHY¥) and a,A are bounded operators we have for a constant
C, '

As a special case of Lemma 3 (P=Q=0) we get

” — 5 2 m l am—l 2

=C u
i+=m-1 || Ofiox*

aoéH}“A"a u,

ot

h 7 2 h 72—~ 1
Sr-z"aa dt—g n a<a 0)dt>C8nh2
0 0 ot \ot”™?
S i am 1
0 o™
and so on we get
h m—1 R h ai 2
4.17) S r‘Z”IIaOLmullzdthQEh‘z“”"’s r 7| Z—au|| dt
0 i=0 0 ot
C h —om am—l 0
N 10i+u‘-|2:m—1 Sor 8tiax”u » Co>0).
By (4.13) we get ||L,u||’= Z ||aL ul|?, a
. Qi+m 2 N N o 2
since | ———au|| = |a&,(&)E* _C —~—u
otiox* * o(OF at = Mot
we get for 7 and u ({+ |p| =7)
e - ]
ot | &) oror”
> R or . I? Mk
au|l = aul| +|—aul| +C, ——u
2 | ot ax'* =1 | otioxt “ o’ °§<Tl8t’
Hence, combining (4.16) and (4.17), and remarking ||(L—L,)u|]
itlel |2
=C, 8. u| we get
i+ Zm-1| Otioxt

(4.18) g"r-znuLuwdtg C, p- = Shr‘z”(l—C“hz)

2
u‘dt

so that we get (2.4) of Theorem 1 for sufficiently small fixed 2. Q.E.D.

0 itiMl=r<m-1

(r=t+h; C,, C,>0; uecyFm),




212 H. KuMmANO-GO

OsAkA UNIVERSITY

(Received March 5, 1962)

Bibliography

[1] I S. Bernstein: On the unique continuation problem of elliptic partial differ-
ential equations, J. Math. & Mech. 10 (1961), 579-606.

[2] A.P. Calderon & A. Zygmund: Singular integral operators and differ-
ential equations, Amer. J. Math. 79 (1957), 901-921.

[31 A.P. Calderon: Unigueness in the Cauchy problem for partial differential
equations, Amer. J. Math. 80 (1958), 16-36.

[4] L. Garding: Dirichlet’s problem for linear elliptic partial differential equa-
tion, Math. Scand. 1 (1953), 55-72.

[5]1 L. Hormander: On the theory of general partial differential operators, Acta
Math. 94 (1955), 161-247.

[61 L. Hormander: On the uniqueness of the Cauchy problem II, Math. Scand.
7 (1959), 177-190.

[7] L. Hormander: Differential operators of principal type, Math. Ann. 140
(1960), 124-146.

[8] M. Matsumura: Existence des solution locales pour quelques opérateurs différ-
entiels, Proc. Japan Acad. 37 (1961), 383-387.

[91 S. Mizohata: Unicite du prolongement des solutions des equations elliptiques
du quatriéme ordre, Proc. Japan Acad. 34 (1958), 687-692.

[10] S. Mizohata; Systémes hyperboliques, J. Math. Soc. Japan 11 (1959), 205-
233.

[11] S. Mizohata: Une note sur le traitement par les operateurs d’intégrale
singuliére du probléme de Cauchy, J. Math. Soc. Japan 11 (1959), 234-240.

[12] M. H. Protter: Unique continuation for elliptic equations, Trans. Amer.
Math. Soc. 95 (1960), 81-91.

[13] M. Yamaguti: Le probléeme de Cauchy et les opérateurs d’intégrale singuliére,
Mem. Coll. Sci. Kyoto Univ. Ser. A, 32 (1959), 121-151.





