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Let BP denote the Brown-Peterson spectrum for a fixed prime p. This
spectrum gives us a multiplicative homology theory BP*( ) defined on the
category of CW-spectra, with coefficient ring BP*=Zcp^[v1, ••, vny •••]. Recall
that the only invariant prime ideals of BP* are those of the form IM=(v0> vly •••,
©„_!), O^n^oo, where we put vo=p. Using Baas-Sullivan technique we
can kill the generators υ09vu —, vn-19 vm+ly vm+2i ••• of BP* to construct a
homology theory BP\n, m+l)*( ) represented by a certain BP-module
spectrum BP\n, w+1), where O ^ w ^ m + l ^ o o . In particular BP[n, oo) is
the Brown-Peterson spectrum with modulo In coefficients, denoted by P(n) [4].
According to Morava's geometric computation, P(ri)*(X) becomes a module
over the coherent ring P(n)*=BP*IIn. Morava and also Johnson-Wilson[4]
have obtained rich results concerned with the J?P-module spectrum P(n) and
its operations.

Define horn dimPCn^M to be the projective dimension of M as P{n)*~
module. Johnson-Wilson[3] gave completely satisfactory conditions under
which horn dim5 F +βP ί | ί(X)^m, where they assumed that X is a based finite
CW-complex. The proof was based on Wilson's splitting theorem. Later
Landweber[7] introduced the category -S^o of coherent comodules over
BP*(BP) which has BP*{X) as object for every based finite CW-complex X.
He then proved algebraically the result of Johnson-Wilson, applying two
powerful tools called Filtration theorem and Exact functor theorem. The pur-
pose of this note is to give the P(n)*( )-version of the result of Johnson-
Wilson without the finiteness assumption on X> i.e.y the characterization of
numerical invariant horn dimPCn^P(n)*(X) for a connective CW-spectrum X
(Theorem 4.8). In the proof we will use Landweber's methods.

Let X be a connective CW-spectrum. Using structure theorem of
P(n)*(P{n)) we can see easily that P(w)#-modules P(n)*(X) become comodules
over BP*(BP) when n<2(p— 1) (see [4, Remark 2.14]). But the author
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doesn't know whether P(n)*(X) are always so for all n. So we must con-
struct a nice abelian category in which all P(ri)*(X) are contained as objects.
Fortunately P(ri)*(X) possesses a certain structure like a comodule over
BP*(BP). Denote by <£(*) (or S(^)o) the category of connective (or coherent)
P(#)*-modules equipped with the certain additional structure of operations.
Of course our category ί?(0)0 coincides with the category JδίP0 of coherent
comodules over BP*(BP). For this category ${*ϊ) (or £P(**)0) we will give &(n)-
versions of Landweber filtration theorem and exact functor theorem (Theorems
3.4 and 4.2). These are useful in giving a number of characterizations of
homological dimension in $>(*) (Theorem 4.5).

In §1 we study homological properties of connective modules over a
graded polynomial ring k[xly ••-,#,-, •••]> particularly in the case when k is a
field or a subring of the rationals Q, by arguments of the sort given by Land-
weber [7]. In §2 we investigate conditions that P(n)*(X) is P ^ - f r e e and
then indicate that [4, Lemma 4.10] implies the existence of a geometric P(w)*-
resolution. We next construct a natural spectral sequence

EU = TotT$ (BP[k, /+1)*, P(n)*(X)) ^ BP[k,

where X is connective and 0^n^k^l-\-l^oo, This spectral sequence is
needed to give necessary and sufficient conditions that μί'1: P(n)*(X)^
BP[k, l+l)*(X) is epic (Theorem 2.7).

The pairing mn: BP/\P(n)^P{n) makes P(w)*(P(w)) into a BP*(BP)-
comodule. In §3 we first observe behavior of coaction on P(w)*(P(w)) and
also product formula of P(w)-operations. These allow us to introduce the
abelian category £P(>*) which has enough projectives. Then, using Landweber
technique of [5, Lemma 3.3] we can reduce the proof of Filtration theorem in
ίPMo to that of Landweber's. In §4 we prove Exact functor theorem on
&(H) aPplying 0 U Γ Filtration theorem as Landweber did. This useful tool is
applied to the homology theory P{ή)*( ) so that we study homological
properties of connective modules P(n)#(X). Finally we discuss P(fl)*( )-
versions of Johnson's result[2] dealt with low projective dimension.

The author would like to acknowledge to Professors Johnson and Wilson
for sending him their preprint[4], and particularly to the former for several
suggestions which have been very helpful in the development of this paper.
He would also like to thank Mr. Yagita who indicated to him a program for
proving our main result. Since they have jointly proved P(n)*-versions of
Filtration theorem and Exact functor theorem along the program, some of our
results will be restated with minor alternations by Yagita [10].

1. Connective modules over a polynomial ring k[xly x29 *••]

1.1. Let k be a commutative ring with unit and Λ be a graded polynomial
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ring over k in infinitely many variables x{ with degree x^i. We shall deal
throughout with graded Λ-modules on which the gradings are bounded below,
called connective Λ-modules. We first introduce ideals J[n, m+1) in Λ defined
by J[n,m+l)=(xly —,**-!, xm+19 xm+2, •••) for l ^ r c ^ m + l ^ o o . Putting
A[nym+l)=AlJ[n, m+1) we have an isomorphism A[n,m+l)^k[xny •••, xm].
In particular Λ[l, oo)=Λ and A[n, ή)^k. Obviously there exist short exact
sequences

0 — Λ[n, m+1) - ^ A [ n , ifi+1) -> A [ Λ + 1 , m+1) — 0

0 -» A[Λ, m+1) - ^ A[n, m+1) -> A[n, m) -> 0

where •#,-, ί=Λ or m, acts as multiplication by x{.

Notice that each generator xξ has positive degree. As is easily checked,
we get

(1.2) If a connective A-module M satisfies A[n, m+l)®M=0, then M=0.
Λ

Moreover using (1.1) an induction on degree shows

(1.3) Let M be a connective A-module, s^O and assume that TOΓ^(Λ[Λ, m+l)>
M)=0. Then also Ύor^(A[n—lfm+l)9M)=Ύoτ^(A[nίm+2)>M)=0.

Lemma 1.1. Let M be a connective A-module and
i) // Tor,Λ(Λ[w, oo),M)=0, then Tor^i(Λ[w+l, oo),M)=0.

ii) If Tor,A(Λ[l,w+l),M)=0, then Tor,Λ

+1(Λ[l, m), Λf)=0.

Proof, i) An iterated application of (1.3) yields that Tor^(Λ[w—j, oo),
M ) = 0 for all j^O. This then implies that Tor,Λ

+i(Λ[l, oo), M)-+Ύor$n
(Λ[w+1, oo),M) is epic, and so Tor,Λ

+1(Λ[w+l, oo), M)=0.
ii) We use repetition of (1.3) to get Tor£(Λ[l, m+j), M)=0 for all

y ^ l . Hence we see that Tor*_i(Λ[l, m+j\ M)-^Tor^+1(Λ[l, m), M) is epic
for all j}£l. However Tor^+i.c(A[l, m+j), M)=0 for sufficiently large j9 and
so Tor,Λ

+i(Λ[l, m\ M)=0.

An iterated application of Lemma 1.1 ii) gives

Corollary 1.2. Let M be a connective A-module and s^>0. If

Tors

Λ(Λ[l, m+1), M)=0, then Ύortm(k, M)=0.

Making use of (1.3) and Lemma 1.1 we obtain

Proposition 1.3. Let M be a connective A-module and ί^O.
i) Tor,Λ(Λ[fl, oo), M ) = 0 if and only if Tor,Λ

+<(Λ[w, oo), M)=0for all i^O.
ii) Tor,Λ(Λ[l,m+l),M)=0 if and only if Tor,Λ

+<(Λ[l,m+l), M ) = 0 for all
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Let f:M-+N be a homomorphism of connective Λ-modules for which
l®f:k®M->k®N is epic. Since Λ(g)Coker / = 0 , (1.2) says that / is epic.

Λ . A A . Λ

We now add t o / t h e assumption that 1®/: k®M = > k®N and Tor£(l,/):
A A A

Tor£(£, M) - ^ > Ύoτ^k, N). Then our hypothesis implies that A®Ker/=0
A

and so / is monic. Consequently we get

(1.4) /: M->N is an isomorphism if and only if both \®f: k®M > k®N

and Totf (1,/): Torf (*, M) > Totf(Λ, N) are so.

Lemma 1.4. Let M be a connective A-module. M is A-free if and only
if k®M is k-free and Tor£(&, M)=0.

A
®
A

Proof. It is sufficient to show only the "if" part. Putting F=A®(k®M)
k A

it is a connective free Λ-module. Obviously there exists a Λ-homomorphism
/: F-^-M such that 1®/: k®F->k®M coincides with the identity. By means

A A A

of (1.4) we find that / is an isomorphism, and so M is Λ-free.

Define horn dimΛM and w dimΛM respectively to be the projective dimen-
sion and the weak dimension of M as Λ-module. Note that M is Λ-
projective when homdimΛM=0, and that M is Λ-flat when wdimΛM==0.

Proposition 1.5. Let M be a connective A-module and assume that k is
afield. The four conditions in I) are equivalent and the three in II) are so for each

I) 0) M is A-free, Ί)Mis A-projective, ii) M is A-flat, and iii) Tor^A, M)=0.
II) i)m homdimΛM^mΛ ii)OT wdimΛΛί^m, and iii)m Tor£+1(£, M)=0.

Proof. I) is immediate from Lemma 1.4. II) is obtained by induction
on m.

1.2. Let R be a subring of the rational numbers Q with unit. It is just
the integers localized at / where / is the subset of primes which are not divisible
in R, and it is frequently denoted by Z,. We now restrict our interest in the
case k=R, a subring of Q.

Lemma 1.6. Let M be a connective A-module and assume that k is a sub-
ring R of Q. If A[l, m+ί)®M is torsion free and M®Q is A-flat, then for

A R

each j,l^ij^o°, A[l,m-\-j)®M is also torsion free and in addition

l , m), M)=0.

Proof. Our hypotheses mean that Λ[l, m+\)®M->A[\, m+l)®M®Q
A A 22
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is monic and Tor£(Λ[l, m+j)y M®Q)=0 for allj^O. Since xm+1 has posi-®

tive degree, an induction on degree shows that Λ[l, m-\-2)®M-*A[l, m-\-2)
A

®M®Q is monic, thus Λ[l, m-\-2)®M is torsion free. Moreover we see easily
A R A

that Tor£(Λ[l,m+l), M)->Torf (Λ[l, m), M) is epic. A repetition of this
argument shows that Λ[l, m+j)®M is torsion free and Tor£(Λ[l, tn+j), M)

A

->TorΛ(Λ[l, m)y M) is epic for every ^ 1. Notice that Mt^(A[\, m+l)®M)t
A

and Tor£ f(Λ[l,m+/), M ) = 0 for sufficiently large /. Then it follows im-
mediately that M is also torsion free and Tor£(Λ[l, m)y M)=0.

Lemma 1.7. Let M be a connective A-module, m^>0 and assume that
k is a subring R of Q. Then w άimAM®Q^tn if and only if Tor£+ 1(ρ, M)=0.

Proof. The "only if" part is immediate because Tor£(g, M)^
Tor£(RyM®Q). Putting F=A®(Q®M), it is a connective free A®Q-

R R Λ R

module. We then obtain a Λ-homomorphism /: F-+M®Q for which 1®/:
R A

R®F->R® (M®Q)^ Q®M is the identity. First we suppose that TorΛ(Q, M)
A A R A

^Ύorf(R,M®Q)=0. Noting that A®Q is Λ-flat, we find by (1.4) that/
R R

is an isomorphism. Thus M®Q is Λ®O-free and so it is Λ-flat. The "if"
22 R

part is easily shown by induction on m.
Proposition 1.8. Let M be connective A-module and assume that k is a

subring R of Q. The three conditions in I) are equivalent, the three in II) are
so and also the four in III) are so for each m^l:

I) 0) M is A-free, i) M is A-projective, and ii) R®M is R-free and M®Q is
A 22

A-flat.
II) iii) M is A-flaty iv) ΎorHQ/R, M)=0 and M®Q is A-flat, and v) R®M

R A

is R-flat (i.e.y torsion free) and M®Q is A-flat.
R

III) ϊ)m homdim Λ M^w and w dimAM®Qt^m— 1, iii)m wdim Λ M^m and
R

y iv)mΎor£+1(QIRy M)=0 and Tor£(£), M)=0, and v)m

Proof. I) 0)->i)-*ii) are obvious and we use Lemmas 1.4 and 1.6 to show
the implication ii)->0).

Ill) Evidently i)m->iii)w and iv)w-^v)w, and iii^-^iv)^, are immediate
from Lemma 1.7. It remains for us to show the implication v)w-^i)m. Since
Tor£(£), M)^Tor£(Λ, M)®Q=0y we note by Lemma 1.7 that wdimAM®Q

R R

^m—ί. We first suppose that T o r ^ i ^ M ^ O and choose a short exact
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sequence 0->N-^>F->M->Q of connective Λ-modules with F Λ-free. Then
this yields short exact sequences 0->R®N->R®F-+R®M->0 and 0-»

Λ Δ Λ

N®Q->F®Q^M®Q-^0. So we see that R®N is Λ-free and N®Q is
R R R A R

Λ-flat. Therefore I) says that N is Λ-free and so horn d i m Λ M ^ 1. By induc-
tion on m we get the result as desired.

II) Evidently iii)->iv)->v). We shall show the implication v)->iii).
By use of Lemma 1.6 we note that M is torsion free. Applying the short exact
sequence 0^M-+M®Q-+M®Q/R->0 we obtain Torf(R, M®Q/R)=O.

R R R

Then III) gives us that w dimAM®QIR^l and hence M is Λ-flat.

2. Homology theories BP[n> m+1)* ( )

2.1. Let BP denote the Brown-Peterson spectrum at a fixed prime p.
It is a ring spectrum which gives the multiplicative homology theory BP*( )
defined on the category of CW-spectra. It has coefficient ring BP*=
Zcp)[vi> '">Vny "'] where Z ( / ) ) is the ring of integers localized at the prime p
and the polynomial generator vn has degree 2(pn~ 1). It is often convenient to
put vo=p. Using Baas-Sullivan theory of manifolds with singularities [1], we
can kill the generators v0, vly •••, vn-19 vm+1J vm+2y ••• of BP* to construct a
homology theory BP[n,m+l)*( ) which is represented by a certain CW-
spectrum BP[n, w+1), where O ^ w ^ m + l ^ o o . Its coefficient is

BP[n, m+l)* = BP*j{py vlf ••-, vn.u vm+ιs •••)

( ί K ,ί>J if n=0

Zp[vn,.. ,vm] if n ^ l .

In particular we write

BP[n, oo) = P(Λ), BP[n, n+1) = k(n) for O g n £ oo , and

BP[0, m+1) = BP<w> for -l^m^oo (see [3] and [4])

and note

BP[0, oo) = P(0) = JSP, BP[0, 1) = Λ(0) - i/Zc/>) and

BP[ny n) = HZp for 0£

Remark that BP[Λ, WI+1)*(J?) and J E * ^ Λ J5P[Λ, W + 1 ) ) are always Haus-
dorff whenever n^> 1 and τr*(£')®Z(/,) is of finite type, and also BP[0, m+ 1)2*(X)
is so if n2^ι(X)®Q={) (use [12]). Since BP[ny m+l) # ( ) becomes a BP*( )-
module,

(2.1) BP[n,m-\-\) is a BP-module spectrum whose skeletons are finite where
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For 0^n^k^l+ί^m-\-l^oo we have a BP-module map μn.L'
BP[n, m+\)->BP[ks l+ί) such that μl\2=ίd and μl\rι-μk

n\
ι

m=μl:r

m. As a basic
relation between BP-module spectra BP[n, m+1) we obtain cofibering
sequences

(2.2) i) S^-^BPln, m+l)-^+BP[n, m+l)^BP[n+l, m+ί)

ii) S2Cpm-ΌBP[n, m+1) -^ BP[ny m+\)->BP[ny m)

where viy i=n or m, is given by composition S2ίp'~ΌBP[nί m-\-l) — — >
BP/\BP\ny m+l)->BP[n, m+1). Because there exist natural exact sequences

(2.2)' . ^

of BP*( )-module homology theories in which viy i=n or /«, acts as multi-
plication by vf. (Cf., [13, Appendix] for n=0). Notice that the cofiberings
are of BP-module spectra except in the case ii) n=0.

According to a geometric observation of Morava's (see [4]),

(2.3) P(n)*(X) is a module over P(n)*=BP*l(p,Ό19 •• ,^Λ_1) for any CW-
spectrum X.

Then μnl: P(ή)-+BP[k, /+1) gives rise to a homomorphism μ£ι:
BP[k,l+l)* ® P(n)*(X)^BP[k, I+1)*(X) when

2.2. By a connective CW-spectrum we mean one which is /-connected for
some integer /. We may assume that a CW-spectrum X has no cells in dimen-
sion less than l-\-l if it is /-connected.

Lemma 2.1. Let X be a connective CW-spectrum and n^rO. The follow-
ing three conditions are equivalent:

i) P{n)*(X)isP{n)*-flaty

ii) μn: P(n)*(X)-*HZf(X) is epic, and
iii) μn induces an isomorphism μn: Zp ® P(n)*(X)->HZP*(X).

-PC")*

Proof. Trivially iii)->ii). If P(n)*(X)->HZp*(X) is epic, then the Atiyah-
Hirzebruch spectral sequence for P(n)*(X) collapses. Therefore ii)-*!) and
ii)-^iii) are easily checked. So it is sufficient to show the implication i)^ϋ).
The exact sequence (2.2/ yields a short exact sequence

Torf « (P(fi+1)*,
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If P(n)*(X) is P(w)*-flat, then we get

Torfn+1>*(M, P(n+1MX)) » Torf *>*(M, P(n)*(X)) = 0

for all P(fl+l)*-modulesMand s^l. Thus P(w+l)*(X) is also P(w+1)*-
flat and P(fi)#(JSr)->P(«+l)#(^L')isepic. A repetition of this argument shows
that P(ri)*(X)->P(m)*(X) is epic for every m^n. Observing that P(m)t(X)^
(HZp)t(X) for sufficiently large mf we obtain the required implication.

Notice that BPQ*(X)^HQ*(X)®BP* and it is J3P*-flat. Putting
Proposition 1.8 and Lemma 2.1 together we have

Corollary 2.2. Let X be a connective CW-spectrum. The conditions
I) and II) are respectively equivalent (cf., [11, Proposition 6]):
I) 0) BP*(X) is BP*-free, i) BP*(X) is BP*-projective, and ii) HZcpy*(X) is

Zcprfree.
II) iii) BP*(X) is BP*-flat, iv) Tor?p (Z,, BP*(X))=0, and v) HZcp^X) is
ZcpΓflat (i.e., torsion free).

From Proposition 1.5, Lemma 2.1 and Corollary 2.2 it follows immediately

(2.4) P(n)*(X) is P(n)*-free (or P(n)*-flat) if and only if so are P(n)*(Xs) for
all s where Xs denotes the s-skeleton of a connective CW-spectrum X.

The cofibering (2.2) gives short exact sequences

(2.5) 0-P(m)*(P(n))->P(m)ϊiί(P

for m>n^0 [4, Lemma 2.8]. Using these exact sequences an induction on n

shows

(2.6) P(m)*(P(n)s) and P(m)*(D(P(n)s))^P(m)-*(P(n)s) are P(m)*-free for
m^n^O where D(P(n)s) is the Spanier-Whitehead dual of the s-skeleton P(n)s.

By a partial P(n)^-resolution of a connective CW-spectrum X, w^O, we

mean a cofibering sequence W >XdY of connective CW-spectra such
that P(n)*(W) is P(n)*-free and the induced map / * : P(n)*(W)->P(n)*(X)
is epic.

The existence of partial P(n)%-resolutions was implicitly given by Johnson-
Wilson [4, Lemma 4.10].

Proposition 2.3. Let X be a l-connected CW-spectrum and n^O. Then
there exists a partial P(n)^-resolution W-+Xa Y of X consisting of l-connected
CW-spectra.
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Proof. All generators x of P(ri)*-module P(n)*(X) are realized in forms

S* -^X/\P(n)*-ι-λc:Xf\P(n). The duals of x' give a map/: W=
*-/-1)->X for which f*: P(n)*(W)-*P(n)*(X) is epic. PF is evi-

dently /-connected and P(ή)*(W) is P ^ - f r e e by (2.6).

Proposition 2.4. Let X be a connective CW-spectrum and
l-\-1 <̂  oo. T/im ί λ ^ ixάfc a natural spectral sequence

BP[k,

whose edge homomorphistn coincides with the reduced map

Kι:BP[k, /+1)* <g> P{n)*{X)^BP[k, l+l)*(X).

Proof. Making use of Proposition 2.3 we establish a diagram

X =
\ \ \

w0 wx ws
such that WS-^XSCZXS+1 is a partial P(w)*-resolution of Xs for any ί^O. Note
that Wsi Xs and the union X00=l)Xs are all connective, and in addition that
P(w)*(Xo)=0. By means of Lemma 2.1 we see that i/Z/,*(Zoo)=0 and so
BP[&, /+1)#(X»)=O. We now observe the spectral sequence for £P[Λ, /+1)*
(X) arising from the increasing filtration {Xs+1/X}. By definition and use of
Lemma 2.1 we obtain an exact couple with

DU = BP[k, 1+1),+#+1(*,+1/*) and

EU « BP[A, l+\)s+*(Ws) « BP[A, /+

Since the above diagram gives rise to a free P(»)!(:-resolution

of P(w)^(X), a standard argument shows that this spectral sequence is a
satisfactory one.

2.3. Let X be a connective CW-spectrum and O ^ w < ^ ^ / + 1 <Jw+1 ̂  oo.
Suppose that BP[w, m+l), (X)^βP[&, /+1), (Z) is epic for any i^t. Making
use of the exact sequences (2.2)7 an induction on degree shows

(2.7) i) BP[n,m+l)i(X)'+BP[k-l,l+l)i(X) is epic for any i^t when
n^k—ί and k^2, and also

ii) J3P[^m+l), (Z)->5P[^/+2), (Z) is so when l^l+l^m.

On the other hand, we note that when BP[0, /+1), (^) is torsion free for
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any i<:t, then so is BP[0, r+l)i(X) for r^l. This then implies that
BP[0,r+l)y(A:)->5P[0,r)y(JS:) is epic for j ^ ί + 2 p r — 1 . Hence we get

(2.8) JSPyίJίJ-^JΪPfO, r)y(Z) is epic for each j^t+2pr-l and r^l if
BP[0,1+l)i(X) is torsion free for i<>t.

By iterated applications of (2.7) and use of (2.8) we have

Lemma 2.5. Let X be a connective CW-spectrum and O^n^k^l+1^
m+l^oo. If BP[n,m+l)i(X)-+BP[k, l+l)g(X) is epic for any ί^ί, then
BP[nim-\-\)i{X)-^BP[qyr^r\)i{X) is so where n^q^k and m^r>l.

We next apply the above result to obtain a useful tool (cf., [8, Corollary
4]).

Lemma 2.6. Let X be a connective CW-spectrum, W-^Xd Y a partial
P(n)*-resolution of X and 0^n^k<l+l^°o. If P(ή)i(X)-^BP[k9 l+l)i(X)
is epic for each i^t, then P(n)j(Y)-*BP[k, l)j(Y) and P(n)j(Y)-+
BP[k+l, /+1), (F) are both

Proof. We first remark by use of Lemma 2.5 that P(n)i(X)->BP[q, r + l ) ,
(X) is epic for i^t, where n^q^k and / ^ r ^ o o . Hence 5 P [ ί , r + l ) , (F)->
BP[q, r+tyi-iζlV) becomes monic. Therefore, for q^s^r the multiplication

ΌS: BP[q, r + l) t ( Y)->BP[q, r-\- 1), + 2 C^-D( Y) is nionic. In particular this means
that BP\g9r+l)j(Y)-+BP[q,r)j(Y) and BP[q,r+l)j(Y)-+BP[q+l,r+l)j(Y)
are epic for all j^t+2p*—I. Observing that P(n) (Y)^BP[n,m+l)j(Y)
for sufficiently large m> we get the required result immediately.

Theorem 2.7. Let X be a connective CW-spectrum and n^k^l+ί. The
following three conditions are equivalent:

ii) μ> 1: P{n)*{X)^BP[k, 1+ 1)*(X) is epic, and
iii) μk1 induces an isomorphism μ^1: BP[k, l+l)* ® P(n)*(X)^BP[k,l+

Proof, iii)—>ii) is trivial and i)->iii) is an immediate consequence of Pro-
position 2.4.

ii)-*i): We first suppose that P(n)*(JΓ)->5P[n, /+1)*(X) is epic. If n=
/ + 1 , then our hypothesis means that P(ή)*(X) is P(w)#-flat. So we assume
that n<l-\-\ and proceed inductively. Choosing a partial P(n)%-resolution
W-^XCLY of X, then Lemma 2.6 asserts that P(fi)*( F ) - * B P [ Λ , /)*(F) is
epic and so Torf(w)*(^P[w, /)*, P(n)#(y))=0 for all j ^ l . We now use (1.3)
when / ^ l and Corollary 2.2 when 1=0 to compute that Torζm*(BP[n, /+1)#,

)=0 for all j ^ l , and hence BP[n,I+l)* ® P(n)*(Y)^>BP[n, /+!)*( F)
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is an isomorphism. Then we see easily that Torf ™*(BP[n, 1+1)*, P(n)*(X))=
0 because BP[n, /+1)*(Y)-*BP[n, l-\-\)*_λ{W) is monic. Moreover we note
that Torfί? (βP[if, /+1)*, P(n)*(X))^Torf™*{BP[n, /+1)*, P(ή)*(Y))=Q for

We now apply induction on k (^n). Assuming that k>n, P(n)*(X)->
BP[k—l,l-{-l)*(X) becomes epic by Lemma 2.5. So induction hypothesis
says that Torζw*(BP[k-ly /+1)*, P(n)*(X))=0 for all s^ί and so
BP[k-l9l+l)* ® P(n)*(X)^BP[k-l,l+l)*(X) is an isomorphism. Since

-PC")*

BP[k— l,I+l)*(X)^>BP[k,I+l)*(X) is epic, it follows immediately that
Torζ™*(BP[k, /+1)*, P(n)*(Z))=0 for all j ^ l .

3. The abelian category ίP(«) and Filtration theorem

3.1. Let £ be the collection of all exponent sequences E=(ely -- ,eiy •••)
of non-negative integers with all but finitely many are zero, and Cn that of all
exponent sequences C=(cOi •••, cn-^j consisting of:zeros and ones. We put
\E\= Σ 2(^-1)*,. and | C | = Σ (Ip-X)^. For each £eE£ there exists

a EP-operation r £ : BP-+S{EϊBP with the following properties:

(3.1) i) r0 is the identity,
ϋ) rE.?n0= Σ tno(rFArG)eBPW(BPABP)

E=F+σ

where tn0: BPABP^BP denotes the pairing of the ring spectrum J5P, and

in) rG.rF =

in which λ ^ e J 5 P l £ : l _ | F , _ l G l is zero when \E\ ^pjp-\{\F\ + \G\)y [9, L e m m a

7.11].

Recall that P(n) is a J?P-module spectrum with the pairing mn\ BP/\P(n)->

P(n)y and that S^^P(n) - ^ P(n)-^P(n+l)—^S2^-ψ(n) is a BP-
module cofibering. For k^>0 we define a P(&+l)-operation {Q^)k+1:P{k-\-\)-^
S2pk~1p(k+1) by putting {Qk)k+i=gk hk Obviously we have

(3.2) (Qk)k+1'fnk+1 = ^^( lΛίρ^O^P^+ir^-X^PΛP^+l)) .

Making use of (2.5) we construct (non-unique) P(/z)-oρerations (rE)n:
P(n)->SιEιP(n) such that (ro)n=id, (rE)0=rE andg^, •{rB)n.1={rE)n*gn.1. Simi-
larly P(β+l)-operations {Qk)k+i gives rise to (non-unique) P(τz)-operations
( ρ , ) Λ : P ( / z ) - 5 2 ^ - 1 P ( ^ n > A + l , so that gn.λ-[Qk)n-MQk)n-gn-r To each
C = (cO9—,cM-1)^CH we correspond a P(rc)-operation (Qc)n: P(n)-+S]CΨ(n)
given by the composition (Q^n^Qoήn'-iQn-l1)^

Fix such P(rc)-oρerations (rE)n and (QC)Λ. By R we denote the (graded)
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free Z(/))-module whose basis is given by all exponent sequences E in 6 with
degree |J?|, and by En=E[A0, •••, ΔΛ_J the (graded) exterior algebra over
Zp in /^-variables Δ, with degree 2pi—l. Identifying Δt with the exponent
sequence C— (c0, •• ,^Λ_1) with c£=l and Cj=O, /Φj, all C in C^ form a basis
of the Z^-module En. Note that each element of P{n)* has non-positive degree
as P(w)*^P(w)_*, but that P(n)*(P(n)) is Hausdorff. We here obtain a P(w)*-
module isomorphism

(3.3) Φn:P(n)*®R®En-*P(n)*(P(n))

defined by ΦM (λ®E®C)=\(rE)n.(Q c)n [4, Lemma 2.12]. This induces a
P(w+l)*-module isomorphism

ΦnΊ P(n+l)*®R®En^P(n+l)*(P(n))

which is defined by Φn(λ>®E®C)=\(rE)n+1 (Qc)n+1 gn. Consider the com-
mutative diagram

0-^P(n+ψ®R®En->P(n+ψ®R®En+1->P(n+ψ®R®En->0

4 4 i

in which rows are exact and vertical arrows are all isomorphisms. We then
remark

(3.4) Any element in Image λ* is expressed in formT[XE c(rE)n+1 (Qc)n+1'

(Qn)n+1,

where the formal summation Π runs over all Em 6 and all C in CH and \E c

are elements of P(w)*.

3.2. The pairing mn\ BPΛP(n)->P(n) gives us a homomorphism

ψn:P(n)*(P(n))^P(n)*(BPΛP(n)) <^-BP*(BP) ® P{nY{P(n)) making P(w)*
J3JP*

(P(n)) into a jBP*(J5P)-comodule. Note that the composition (**®l) ψΛ is the
identity where ι: S°-+BP denotes the unit.

Lemma 3.1. The coproduct actions on (rE)n and (Qj)n> 0^j^n—lf are
uniquely given informs of

ψn(rE)n= Σ rF®(rG)n+ Π Σ K\iκ.o

ψn(Qj)n=l®(Qj)n+ Π Σ ^B

where the formal summations Π run over all i/φO, K in 6 and all C in d, and
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X's are elements of P(w)* with suitable degrees.

Proof. The n=0 case is valid by (3.1) and (3.2). Assume inductively
that ψn(rE)n and ψn(Qj)n are expressed as

Ψn(rE)n= Σ±rF®(rG)n+π Σ rjsrΦM'V (£?<)«

Then we can choose P(w+l)-operations (^ < ) f t + 1 for 0^/^w—1, and (ωίfi)M+ι

for j<i^n— 1 which satisfy ^ Λ . ( ^ <)Λ==(^ < ) Λ + 1 ^
Consider the short exact sequence

P(n+\)*{P(n)) - ^ Λ BP*(BP) ®

P(n+l)*(P(n))->0 .

A routine computation shows that l®g%(ψn+i(rE)n+i)=l®gi(ΣrF®(rG)n+1+
Π Σ ^J5Γ®(^H *)«+i (β<)«+i) ^° w e u s e (3-41) to gain the satisfactory expansion
of ψ*+i(rjB)ίl+1. Similarly we get the required expression of ψn+1(Qj)n+1 for
0^j^n—l. On the other hand, thej=ncase is immediate from (3.2). Finally
we observe that (pott)n=(cύi'i)n=0 because (t*®l) ψn=id.

Lemma 3.2. For each F,G<=β and B)C^.CK the products {rG)n*{Qc)n-
(rF)n (QB)n a?e uniquely expanded to

(rG)n (rF)n = ^\V(rE)n+U Σ λj*.,(»*)•

in the special case when B=C=0, and

in which we denote by I the largest number j such that bj or Cj is non-zero when
B=(boy •••, i^.JΦO or C=(c0> ..., ^ . J + O . Here the formal summations Π run
over all K in 6 and all D in Ci} X's are elements of P(#)* and particularly the
elements X^ F given in (3.1) are viewed as those o/

Proof. Making use of (3.1) iii) a similar discussion to Lemma 3.1 shows
the first special case. In the second case we first note that (rG) / + 1 (£)c)/ + 1

(rF)ι+1 (QB)ι+i gι=0 because (Ql)l+1.gl=0. By induction on n (^/+1)
using (3.4) we see easily that the product (*G)«*(i3c)*i"(*>)*i*(£?B)* has the
formal sum expansion as desired.

If n<2(p-l), then g*: P(n+ψp-Ό*(P(n+l))->P(n+ψp-Ό*(P(ή)) be-
comes an isomorphism. Therefore both ψn(rE)n and (rG)n (rF)n don't have
supplementary terms. Thus
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(3.5) ψn(rE)n= Σ rF®{rG)n and (rG)n.(rF)H = Σ X5'(re),,

when n<2(p-l). (Cf., [4, Remark 2.14]).

3.3 By £P(*ί) we denote the category of connective P(ri)*-modules Λf

which are equipped with operations sE on M of lower degree | E | corresponding

to all E^6 and £)y of lower one 2 ^ — 1 for O^j ^n— 1, satisfying the following

relations:

(3.6) i) s0 is the identity,

ϋ) sE(\x)= Σ rF(x)sG(x)+
EF+σ s^o

Σ
iϋ) % . ί F ( Λ )

ί G . ρ c . % . ρ B ( Λ ) = Σ Σ

when CφO or BφO, for any λeP(fl)* and Λ?eM. Here λ's are the elements

of P(n)* obtained in Lemmas 3.1 and 3.2, the non-negative integer / was defined

in Lemma 3.2 and we write ρ c ^ ρ j o . . ρ ^ 1 for each C=(c0, ••-, c^), l^i^n.

Let ^ ( ^ o denote the full subcategory of £P(̂ ) consisting of finitely

presented P(w)*-modules. Notice that &(*i) and S'^ήo are both abelian

categories.

Let M be an object of i?(^). Since sE(vnx)=vMsE(x) and Qj{vnx)=vnQj{x)

for all X E M , the multiplication by vn on M becomes a morphism in £P(^).

This implies that P(n+1)* ® M is an object of &(*). Taking Qn=0> the

PΓw+lJ^-module P ^ + l ) * ® M is regarded as object of £P(>z + i). Therefore

an iterated application shows

(3.7) P(m)* (g) M feί in the category &{*), m>n,if M does in ίP(«).
-PC)*

Every comodule M over BP*(BP) is provided with coaction mapψ:

M-^BP*(BP) ® M which is a PP^-module homomorphism. This means

that a connective comodule over BP*(BP) is just regarded as lying in i?((9).

Thus the category j?(0) consists of all connective comodules over BP*(BP).

Therefore a connective P(n)*-module lies in ίP(^) whenever it admits a struc-

ture of comodule over BP*(BP). Conversely we remark by (3.5) that the

category ίP(^) is just the full subcategory of i?(0) consisting of P(w)s(ί-modules

when n<2(p—\).
Note that rH(\)=0 for \H\>degree λ and (rE)n-(Qc)n(x)=0 provided

I E\ + I C\ >t for some positive integer t. By means of Lemmas 3.1 and 3.2

we have

(3.8) P(ri)*(X) lies in the category £P(^) if X is a connective CW-spectrum.
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Recall that there exists a P(rc)*-module isomorphism Φn: P(n)*®Rξ§En->
P(n)*(P(ri)). Let J ( s ) be the submodule of R®En spanned by all E®C with
degree \E\ + \C\>s. Putting F^=P(n)*(P(n))lΦn(P(n)*®Γs>)y it is a
finitely generated free P^)*-module which is — (s-f-l)-connected. Evidently
ΦM(P(/z)*®/(s)) is closed under the P(rc)-operations (rE)n and (Qj)n. As (3.8)
we use Lemmas 3.1 and 3.2 to verify that P ( 5 ) lies in the category ίP^o

We now show that the categories 9?{n) and 9?(")0 have enough pro-
ject ives.

Proposition 3.3. For any object M of i?(^) there exists an object F and a
morphίsm /: F^M in this category so that F is P(n)*-free and f is epic. If M
is finitely generated, then F can be taken as so.

Proof. The proof is essentially due to Landweber [7, Proposition 2.4].
We may assume that M is (—l)-connected. Take any element χ(=M with
degree s. Note that sE-Qc(x)=0 whenever \E\ + \C\>s. We define a
P(ff)*-module homomorphism / / : SsP(n)*(P(n))->M by putting fx'(SsΦn

(\®E®C))=\sE Qc(x). As is easily checked, fj is compatible with the
operations, i.e., sE fx'=fx' (rE)n and Qj fx=fx (Qj)n. Therefore this induces
a morphism fx: SSFCS^M in £P(«) which has x in its image. When x runs
over a set of generators of the P^)*-module M, we get a morphism/: F—>M in
5>(n) so that F is P^^-free and/is epic.

3.4. Since P(n)* is finitely presented as jBP^-module, we find

(3.9) A P(n)^-module M is finitely presented if and only if it is so as BP^-module.

Let M be an object of 9?{i)Q. If x^M has lowest degree, then sE(\x)=
rE(\)x and Qj(\x)=0. Therefore P(ri)* x is invariant under all operations
of M, thus it is an invariant submodule of M. So it lies in 3?(n\> and hence
it is finitely presented as BP*-module. Then the annihilator ideal λxmBP^{x)=

; λ#=0} becomes an invariant finitely generated ideal containing

(
We now show Filtration theorem in ίP(«)o, reducing it to Landwever's one

[7, Theorem 2.3βP]. In the following proof the idea was suggested by Yagita.

Theorem 3.4. "Filtration theorem in ff(«)o

w

Each object M of 9?{*\ has a finite filtration

Λf = M

in the category ίP(«)0 so that for 0^i<s, Mi/Mi+1 is stably isomorphic to

P(ki)* in ίP^o where

Proof. Applying the method of Landweber [5, Lemma 3.3] we obtain

a sequence
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by invariant submodules so that M f /M, + 1 ^ β P * / / , in 9>{v)Q where J{ is an
invariant finitely generated ideal containing In={ρ) vlt •••, vn.1). Notice that
the P(w)*-module 5P*//, are coherent comodules over BP*(BP). Landweber
filtration theorem combined with Invariant prime ideal theorem ([4] and [5])
asserts that there exists a filtration

BP*IJ< = M, i 0DM, f lD.-. DM,, r = 0

by invariant submodules such that M, jlMiJ+1^P(kij)* as comodule over
BP*(BP) where kij^n. Consequently we get a satisfactory filtration of M,

REMARK. In the proof of our Filtration theorem we required only the
assumption that the operations sE and Q5 on M satisfy the relation ii) of (3.6),
although Proposition 3.3 demanded that they satisfy all explicit relations i),
ii) and iii) of (3.6). (Cf., [10]).

Let AssBPt(M) denote the family of associated prime ideals of a .BP^-module
M. Landweber [6, Theorem 3.1'] showed that AssBP£P(n)*)= {Ply - , Pr)
where P, is one of the prime ideals Ik=(p, vly •••, vk_^)> n^k<°°. By virtue of
[5, Lemma 3.2] our Filtration theorem implies

(3.10) AsSβpJ^M) consists of a finite number of prime ideals Ik={p, vlt •••, vk_λ),

n^k < oo, far any object M of

4. Exact functor theorem on £P(̂ ) and its applications

4.1. Let M be an object of i?(^) and {Ma} the family of all invariant
finitely generated submodules of M. Suppose that x is a non-zero element
with lowest degree in M— U MΛ. Then we can choose Mβ so that the

Λ

submodule Mβ(x) generated by Mβ and x is closed under the operations sE

and Qj, Evidently Mβ(x)=Mcύ for some a, and so x& U MΛ. This is
Ob

a contradiction. So we see

(4.1) M is equal to the join of all MΛ.

A P(tt)*-module G is said to be 2>(*)-flat when Torf Cw)*(G, M)=0 for all
s^l and all Λ f e ^ ) . If a P(n)*-module G is ^(^-flat, then the functor
G ® - on ίP(>*) is exact.

•PC")*

Lemma 4.1. Let G be a P{n)*-module. If Torfn)*(G,iV)=0 for all
,,, then G is $

Proof. By virtue of Proposition 3.3 and (4.1) it is sufficient to show that
Torf <W)*(G, M)=0 for any M G ^ ^ ) which is finitely generated. Choose an
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exact sequence 0-+D-+F-+M-+0 in $(«) such that F is finitely generated and
free. Let {Da} be the family of all invariant finitely generated submodules
of D. Since M is direct limit of P(w)#-modules F/D^ lying in £P(")0, our hypo-
thesis yields that Torf (W)*(G, M)^lim TorfW*(G,

We here give the £P(>*)-version of Landweber exact functor theorem [7,
Theorem 2.65F], applying our Filtration theorem.

Theorem 4.2. "Exact functor theorem on ^ W
Let G be a P(ή)%-module. The following three conditions are equivalent:

ii) Torf (W)*(G, P(k)*)=0for all k^n, and
iii) multiplications by vk are monic on G\{py vu •••, vk^)G for all k^n.

Proof. Evidently i)-^ϋ) and the converse follows from Theorem 3.4 and
Lemma 4.1. ii)-»iii) is obvious and the converse is also valid because iii) implies
that Tor f^CPinJ^-^Tor f^G,/>(*)•) is epic.

As consequence we get

Corollary 4.3. If a P(n)*-module G is S{π)-flaty then G ® P(m)* is

&{m)~flat for any m^n.

Proof. We observe that Torf ^ ' ( G ® Pirn)*, P(Λ)*)^Torf (W)*(G,P(A)HC)=0

for each

4.2. If M lies in the category &(*)09 then Filtration theorem implies
that M[ΌnX] is P(ή)*[v~ι]-free and so it is P(n)?lί-flat. The same argument as
before shows

(4.2)* M[Ό?] is P(n)*-flat for each M e Φ ( H ) .

Proposition 1.8 combined with (4.2)0 shows

Proposition 4.4. Let M be a connective comodule over BP*(BP). Then
the following conditions in I) and II) are respectively equivalent (cf., Corollary
2.2):

I) 0) M is BP*-free, i) M is BP^projective and iii) Z c / 0 ® M is ZipTfree.

II) iii) M is BP*-flat, iv) T o r ? p * ( ^ Λf)=0, and v) ZCp> ® M is ZcpΓflat (i,e.,

torsion free).

Taking G=BP[n,m+l)*[vJ1] for n^k^m we apply our Exact functor
theorem to obtain

(4.3) BP[n, m+l^vj1] is g(*yflatfor n^k^
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We now have the following characterization of homological dimension
in &{H) (cf., [7, Theorem 4.2]).

Theorem 4.5. Let M be a P(ri)*-module lying in the category S(**).
I) Assume that m^l when n=0 and that m^O when ri^λ. Then

horn dimPCn^M^m if and only if w dimP ( M HM^m.
II) The following four conditions are equivalent for m^n—ί:

i) wdimPCn^M^m-n+\, ii) Ύoxp

m™n\2(Z p> M)=0,
iii) Torf Cnh(BP[n, rn+1)*, M)=0for all s^l, and
iv) Torf (n) (βP[fi, m+1)*, M)=0.

Proof. I) and the equivalence of II) i) and ii) follow from Proposition
1.5 and Proposition 1.8 with (4.2)0. The equivalence of iii) and iv) is imme-
diate from Propositions 1.3 and 4.4, and iv)-^ii) is obtained by Corollary 1.2
and Proposition 1.8 with (4.2)0. We here apply Exact functor theorem to show
the implication i)->iv). We proceed by induction on m (^n— 1), the m=n— 1
case being trivial. Suppose that w dimP ( Λ ) j l tM^m—w+1 and then choose an
exact sequence O^N-^F^M-^0 in j?(^) with F P(/z)*-free. The induction
hypothesis says that Torf (w)*(5P[^ m)*, M)^Ύorϊm*(BP[n, m)*, JV)=O. So
we find that the multiplication by vm is monic on Torf(w)*(PP[τz, τw-f-1)*, M).
However (4.3) implies that Tor^n)*(BP[n, w+1)*, M ) [ U ; 1 ] = 0 and hence

[^ m+1)*, M)=0 as desired.

4.3. Recall that P(n)*(X) lies in the category £>(*) if X is connective.
Since (4.3) means that the functor BP[n, ffi+l)*^!1] ® - on ^ ( Λ ) is exact for

n^k^m, we gain a new homology theory BP[n, m+1)* ® P(w)^( )[^ΓX] on

the category of CW-spectra.

Proposition 4.6. Lef X fe a CW-spectrum and n^k^m. Then μ%:
P(n)-*BP[n, m+1) induces an isomorphism

•PC")*

of homology groups.

A P(w)*-module M is said to be υk-torsion free, k^>n, if multiplication
by υk on M is monic, i.e., if the localization homomorphism M-^Mfyj1] is
monic.

Lemma 4.7. L*f X be a connective CW-spectrum and n^k^m. If
BP[n,mJrί)^(X) is vk-torsion free, then BP[n, m+j)*(X) is so for each
j , lίg/r^oo, and in addition P(n)*(X)->BP[n, m)*(X) is epic.

Proof. Suppose that BPln^m+j^X^BPl^m+j^X^vJ1] is monic
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for 7 ^ 1 . As immediate consequence of Proposition 4.6 we have a short
exact sequence 0^BP[n, m+j+ l^X^vJ^BPln, tn+j+ l^XftvJ1]-*
BP[n, m-]rj)^(X)[vj1]->0. Using ^this an induction on degree shows that
BP[n, m+j+\)*{X)->BP\n,mJ

rj
Jr\)*{X)[v-;1'\ is monic. Moreover our as-

sumption implies that BP[n, m-\-j)*(X)^>BP[n, m-\-j—l)*(X) is epic. Noting
that P(n)t(X)^BP[nfm+l)t(X) for sufficiently large /, a repetition of this
observation yields the desired result.

We now give our main result which is a characterization of homological
dimension of P(n)*(X) (cf., [3, Theorem 1.1]).

Theorem 4.8. Let X be a connective CW-spectrum.
I) Assume that m}>\ whenn=0 and that m^iO whenn^ 1. Then horn dimP(Λ))|e

P(n)*(X)<Lm if and only if w dimP(:n^P(ή)^(X)^m.
II) The following seven conditions are equivalent for m^tn—l:

i) w
ii)

iii) Ύorζ™*(BP[n,m+l)*,P(ή)*(X))=Ofor all ^ 1 ,
iv) Torf ™*(BP[n, m+1)*, P(n)*(X))=0
v) μ~: P(n)*(X)-»BP[n, m+ 1)*(X) is epic,

vi) μZ induces an isomorphism p%: BP[n,m+l)* <g) P(n)*(X)^>BP[n,

(X), and

vϋ) rfS+i: BP[n, m+2)*(X)-+BP[n, m+ 1)*

Proof. Since all P(ή)*(X) are contained in the category ίP(«), I) and
the equivalences of II) i), ii), iii) and iv) have already established in Theorem
4.5. On the other hand, the equivalences of iii), v) and vi) have done in
Theorem 2.7. So it is sufficient to show the equivalence of v) and vii). Evi-
dently v)->vii) and for the converse we use Lemma 4.7 because vii) means
that BP[n, tn-\-2)*(X) is ϋm+1-torsion free.

4.4. Let X be a connective CW-spectrum and Xs denote its ^-skeleton.

As is easily seen, we get

(4.4) i) vi:BP[0,2)s+t(Xs)^BP[0,2)s+t+2ίp-Ώi(X°)

for —2(p—ί)<t^0 and ί^l, and

ii) .»i: BP[n, n

for —2(pn—l)<t£0 and i^ί when w^l.
Making use of (4.4) we have

(4.5) BP[0,m+l)*{X) is ZipΓfree (or Z(pΓflat) if and only if so are
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BP[0, m+l)*(Xs) for all s, under the condition that m=0 or 1.

Lemma 4.9. Let X be a connective CW-spectrum and O^n
m + l ^ o o . Assume that l= — 1, 0 or 1 when k=0 and that l=k—ί or k when
k^l. Then BP[n, m+l)i(X)->BP[k, 1+ 1){(X) is epic for i^s if and only if so
is BP[n,

Proof. The "if* part is immediate.
The "only if" part: BP[n} m+l),(X')->.BP[*, l+ί)i(Xs) is epic for any

i^s as is easily checked. If k=0 and /= — 1 or 0, or if k^l and l=k—l,
then BP[k, l+l)£(Xs)=0 for i}>s+l. So we get the required result in these
cases. On the other hand, we use (4.4) to get the required one in the case
when k=0 and 1=1, or when k7>l and l=k.

Combining Theorem 4.8 with Lemma 4.9 and Corollary 2.2 with (4.5)
we obtain the P(ή)*( )-version of [2, Theorem 1].

Proposition 4.10. Let X be a connective CW-spectrum and assume that
m=0f 1 or 2 when n=0 and that m=0 or 1 when n^>l. Then
i) horn dimP<in^P(n)^(X)^m if and only if horn dimPCn^P(n)*(Xs)^ m for all s,

and
ii) w dimPCn^P(ή)*(X) <^m if and only if w dimPCn^P(ή)*(Xs) ^m for all s.

Proposition 4.11. Let X be a connective CW-spectrum and O^n^m.
P(n)*(X) is vn-torsion free and w dimPCn^P(ή)*(X)^m—n if and only if
BP[n, m-\-\)*{X) is vn-torsionfree.

Proof. The "if" part is immediate from Lemma 4.7 and Theorem 4.8.
The "only if" part: Consider the short exact sequence 0-*P(n)*(X)

- ^ P(n)*(X)^P(n+ l)*(X)^0. By means of (3.8) we note that P(n+ l)*(X)
lies in the category ίP(«), and also that w dimPCn^P(n+l)*(X)^m—n+1.
Then Theorem 4.5 insists Torf ( w )*(βP[^ tn+l)*9P(n+l)*(X))=0. This
yields that BP[n, m+\)*{X) is ^-torsion free because BP[n, m+1)* ®

P(n)*(X)-*BP[n, m-\-l)*(X) is an isomorphism.

Finally we give another result of Johnson [2, Theorem 2] as corollary of
Proposition 4.11.

Proposition 4.12. Let X be a connective CW-spectrum. The following
four conditions are equivalent:

i) BP[0, 2)*(X) is torsion free,
ii) BP[0, 2)*(XS) is torsion free for every s,

iii) BP*(XS) is torsion free for every sy and
iv) BP*(X) is torsion free and horn dim^
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Proof. i)->ii)-^iii) and iv)->i) follow from (4.5) and Proposition 4.11.
It remains for us to show the implication iii)-»iv). We see immediately
that Ker {BP*(XS)-+BP*(X)}=Ker {BP*(XS)->BP*(XS+1)} because
Ker {BPQ*(XS)-*BPQ*(X)}=Ker {BPQ*(XS)->BPQ*(XS+1)}. This means
that the Atiyah-Hirzebruch spectral sequence for BP*(X) collapses and so
BP*(X)-*HZcp^(X) is epic. Therefore horn dimBPβP^X) ^ 1. On the other
hand, it is trivial that BP*(X) is torsion free.
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