<table>
<thead>
<tr>
<th>Title</th>
<th>Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Dao, Quang Duy; Hori, Tetsuo; Hukumura, Kaoru et al.</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://hdl.handle.net/11094/75666</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University
Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives

Cite as: Appl. Phys. Lett. 101, 263301 (2012); https://doi.org/10.1063/1.4773519
Submitted: 11 October 2012. Accepted: 13 December 2012. Published Online: 27 December 2012

Quang Duy Dao, Tetsuro Hori, Kaoru Fukumura, Tetsuya Masuda, Toshiya Kamikado, Akihiko Fujii, Yo Shimizu, and Masanori Ozaki

ARTICLES YOU MAY BE INTERESTED IN

Two-layer organic photovoltaic cell
Applied Physics Letters 48, 183 (1986); https://doi.org/10.1063/1.96937

Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques
Applied Physics Letters 109, 153302 (2016); https://doi.org/10.1063/1.4964741

Organic field-effect transistors with high mobility based on copper phthalocyanine
Applied Physics Letters 69, 3066 (1996); https://doi.org/10.1063/1.116841
Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives

Quang Duy Dao,1 Tetsuro Hori,1 Kaoru Fukumura,1 Tetsuya Masuda,1 Toshiya Kamikado,1 Akihiko Fujii,1,a) Yo Shimizu,2 and Masanori Ozaki1

1Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
2Research Institute for Ubiquitous Energy Devices, Kansai Center, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan

(Received 11 October 2012; accepted 13 December 2012; published online 27 December 2012)

Bulk heterojunction (BHJ) solar cells, fabricated by spin casting processes, with phase-separated small molecules including a phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM), have been demonstrated to have a power conversion efficiency exceeding 4.1%. The C6PcH2:PCBM BHJ surface morphology and the phase separation have been controlled by utilizing processing additives in various solvents. The effects of the processing additives on the crystallization of the discotic C6PcH2 columns in hexagonal structures have been discussed.

V 2012 American Institute of Physics [http://dx.doi.org/10.1063/1.4773519]

Recently, organic solar cells (OSCs) have attracted considerable attention for the low-cost conversion of sunlight into electricity using lightweight and flexible cells.1 In particular, bulk heterojunction (BHJ) solar cells have emerged as a promising technology because they can be manufactured by solution-based coating methods.2–4 Despite a continuing increase in the power conversion efficiency (PCE) of solar cells over the past few years, mostly due to the development of potential donor and acceptor materials,5–6 the relatively poor device performance of the cells remains a problem.

As a part of our efforts to synthesize potential donor materials, we have recently introduced a mesogenic phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), as a promising small molecule for use in BHJ solar cells.7 C6PcH2 exhibits not only excellent processability for a thin film but also appropriate electronic characteristics for a solar cell, such as a deep highest occupied molecular orbital energy level, a relatively small band gap, strong optical absorption, and particularly high hole and electron drift mobilities exceeding 1.4 cm2 V−1 s−1 and 0.5 cm2 V−1 s−1 in the crystalline phase, respectively, which were evaluated by time-of-flight measurement. Despite their prominent characteristics, solar cells, the active layer of which was composed of C6PcH2 and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM), showed relatively low performance (PCE > 3%) owing to poor BHJ-separated phases.8,9

Herein, we report the high performance of C6PcH2:PCBM BHJ solar cells fabricated with separated phases. The BHJ nanomorphology and the separation of donor and acceptor phases were improved by using two different methods: (i) changing the solvents used and (ii) utilizing processing additives.

The molecular structure and energy level diagram of the small molecule C6PcH2 are shown in Fig. 1. C6PcH2 was synthesized in accordance with the literature10 with slight modifications and fully purified by column chromatography (silica gel with toluene as the eluent), followed by repeated recrystallization from toluene-methanol (1:2) solution.7 PCBM was purchased from Frontier Carbon Ltd.

BHJ films were prepared under optimized conditions in accordance with the following procedure reported previously:11 An indium tin oxide (ITO)-coated quartz substrate was cleaned with detergent, ultrasonicated in water, chloroform, acetone, and isopropyl alcohol, and subsequently treated with UV ozone. 6-nm-thick MoOx films were thermally evaporated onto ITO substrates at a rate of 0.1 A˚/s under a vacuum of about 2 × 10−6 Pa. After transferring to a N2-filled glove box, a solution containing a mixture of C6PcH2:PCBM

FIG. 1. Molecular structures of C6PcH2, PCBM, and DIO and energy level diagrams of the solar cell in this study.
(2:1) in various organic solvents, such as toluene, trichloroethylene (TCE), and chloroform with or without a 0.2% v/v 1,8-diiodooctane (DIO) solvent additive, was spin-cast onto the MoOx layer. The thickness of the active layer was approximately 140 nm. Finally, a 0.3-nm-thick LiF buffer layer and 80-nm-thick aluminum films were deposited through a shadow mask by thermal evaporation under a vacuum of about 2×10^{-6} Pa. The active area of the device was 4 mm2. The current density-voltage (J-V) characteristics were measured using a Keithley 236 source measure unit under the illumination of an XES 301 (AM 1.5 G) full spectrum solar simulator with an irradiation intensity of 100 mW/cm2. Otherwise, the external quantum efficiency (EQE) spectra were measured with a programmable electrometer using a xenon lamp light passing through a monochromator used as a light source. The absorbance spectra and X-ray diffraction (XRD) patterns of the C6PcH2:PCBM BHJ thin films were measured using a spectrophotometer (Shimadzu UV-3150) and an X-ray diffractometer (RINT 2000), respectively. The morphology of the thin films was observed by atomic force microscopy (AFM, Keyence VN-8000).

Figure 2 shows the absorbance spectra of the C6PcH2:PCBM thin films fabricated on quartz substrates with and without the DIO solvent additive in toluene solution. The addition of DIO to the toluene solution induced a clear red shift of 2 nm at the Q-band and greater absorption at the B-band. Such a shift of the absorption peak to lower energies associated with the $\pi-\pi^*$ transition when the films were processed with DIO indicated that the discotic C6PcH2 columns in hexagonal structures interact more strongly and that there is an improvement in local structural order, compared with the case when the films were processed from pure toluene.12,13 The slight blue shift with the addition of PCBM to the C6PcH2 thin films indicated the diffusion of PCBM into the discotic C6PcH2 columns in hexagonal structures, as reported by Nekelson et al.14

As shown in Fig. 3(a), the C6PcH2:PCBM devices without DIO in toluene showed a higher PCE of 3.1%, with a short-circuit current density (J_{sc}) of 7.4 mA/cm2, an open-circuit voltage (V_{oc}) of 0.83 V, and a fill factor (FF) of 50%, than the devices fabricated using chloroform and TCE as solvents. By using processing additives to control the nanomorphology, the performance of BHJ solar cells was markedly improved. As depicted in Fig. 3(b), by adding 0.2% v/v DIO to TCE, the EQE was improved from 38% to 54% at the Q-band and the shoulder of the B-band emerged at 450 nm, which were in good agreement with the results observed for the absorbance spectra. The dependence of the cell characteristics on the addition of DIO to the various solvents is shown in Table I. With the addition of 0.2% v/v DIO to TCE, J_{sc} and FF markedly increased to 9.1 mA/cm2 and 58%, respectively. Together with a V_{oc} of 0.78 V, the PCE was estimated to be 4.1%.

The surface morphologies of C6PcH2:PCBM composite films, with and without the incorporation of processing additives, which were observed by AFM, are shown in Fig. 4. On the smooth surface of the C6PcH2:PCBM composite thin films, a number of islands, which are considered to be discotic C6PcH2 domains, appeared with the incorporation of DIO as a processing additive. This suggests that utilizing DIO as a processing additive caused the separation of donor and acceptor phases. Moreover, the higher uniformity of the discotic C6PcH2 domain islands on the C6PcH2:PCBM composite thin films with TCE probably caused the higher PCE compared with the other films. These results imply that there is a relation between solvents for the optimum control of the nanomorphology, and hence the device performance of solar cells with C6PcH2 and PCBM.

![Figure 2](image2.png)

Figure 2. Absorption spectra of the C6PcH2 and PCBM composite thin films with (empty circles) and without (filled circles) DIO and the pristine C6PcH2 (filled triangles).

![Figure 3](image3.png)

Figure 3. J-V characteristics (a) and EQE spectra (b) of cells with DIO (empty symbols) and without DIO (filled symbols) in the various solvents: chloroform (triangles), TCE (circles), and toluene (rectangles).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>DIO</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>FF (%)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>None</td>
<td>0.83</td>
<td>7.4</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.2%</td>
<td>0.75</td>
<td>8.8</td>
<td>56</td>
<td>3.7</td>
</tr>
<tr>
<td>TCE</td>
<td>None</td>
<td>0.85</td>
<td>6.2</td>
<td>43</td>
<td>2.3</td>
</tr>
<tr>
<td>TCE</td>
<td>0.2%</td>
<td>0.78</td>
<td>9.1</td>
<td>58</td>
<td>4.1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>None</td>
<td>0.84</td>
<td>4.8</td>
<td>37</td>
<td>1.5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.2%</td>
<td>0.77</td>
<td>8.8</td>
<td>58</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Figure 5 shows the XRD patterns of C6PcH2:PCBM thin films with and without DIO in various solvents. The decrease in the full width at half maximum of the XRD patterns upon adding DIO indicated the strong improvement of the crystallinity of the discotic C6PcH2 columns in hexagonal structures. The strong dependence of the crystallization of the C6PcH2 molecules on the addition of DIO is in complete contrast to previous reports indicating the absence of crystallization in films either with or without the processing additives. Although more effort should be made to understand the effects of the addition of DIO to C6PcH2:PCBM BHJ, it is implied that the processing with DIO affects the separation of donor and acceptor phases, and that PCBM molecules aggregate. This reduces the diffusion of PCBM molecules into the discotic C6PcH2 columns in hexagonal structures.

In summary, we reported significant improvements in the performance of BHJ solar cells based on C6PcH2:PCBM upon changing the solvent used or incorporating processing additives to the solution. By adding 0.2% of DIO processing additive, the PCE of the device was improved from 2.3% to 4.1%. The surface morphology of C6PcH2:PCBM thin films, as observed by AFM, exhibited C6PcH2 domains, therefore, the processing additives separated the donor and acceptor phases. Furthermore, the improvement of the crystallization of the discotic C6PcH2 columns in hexagonal structures by adding DIO to solvents might be due to the aggregation of PCBM molecules, which reduces the diffusion of PCBM molecules into the discotic C6PcH2 columns in the hexagonal structures.

This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by Advanced Low Carbon Technology Research and Development Program from the Japan Science and Technology Agency (JST-ALCA).