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Recent studies on topological defects in conventional and active nematic liquid crystals have revealed their
potential as sources of advanced functionality whereby the collective behavior of the constituent molecules or
cells is controlled. On the other hand, the fact that they have high energies and are metastable makes their shape
control a nontrivial issue. Here, we demonstrate stabilization of arbitrary-shaped closed disclination loops with 1/2
strength floating in the bulk by designing the twist angle distribution in a liquid crystal cell. Continuous variation
of the twist angle from below to above |π/2| allows us to unambiguously position reverse twist disclinations at
will. We also analyze the elastic free energy and uncover the relationship between the twist angle pattern and
shrink rate of the surface-stabilized disclination loop.
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The orientation of the nematic liquid crystal (LC) phase
exhibited by small rodlike molecules is described by the
so-called director, a unit vector with head-tail symmetry ori-
entated along the common average direction [1]. Topological
defects appear in nematic LCs as points or lines where the
continuous rotational symmetry of the director is broken. They
have recently attracted strong interest because of their unique
behavior distinct from LCs aligned in the bulk [1–3]. Defects
mediate spin-orbit interaction of light, leading to spin-angular-
momentum-dependent generation of optical vortices [4]. They
also change the rheological properties of the LC [5,6], lead
to novel photomechanical phenomena [7,8], and can act as
templates to position colloidal materials [9–12]. More recently,
it has been demonstrated that defects can localize guest
molecules (i.e., not just colloidal particles with sizes much
larger than the LC molecules) and promote self-association
[13–16].

The reports on the various functions suggest that defects
can become more than just imperfections in the alignment.
However, to exploit their potential as sources of functionality,
control of their shapes is necessary. Shape control of defects is
challenging because defects have high energies and thus are in
general metastable. There are two main approaches to stabilize
defects in LCs; either to dope colloidal particles [17–21] or
to impose spatially designed boundary conditions [12,22–25].
Colloidal inclusions generate topological defects following the
Gauss-Bonnét and Poincaré-Hopf theorems of topology, and
extremely complex defects such as those with linked or knotted
structures have been generated. However, defects generated by
particles are bound close to the particle surface and thus their
shapes are defined almost exclusively by the shapes of the
particles. Defect shape control through surface anchoring can
provide larger freedom in the achievable shapes. Line defects
running through the LC bulk have been generated by imprinting
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singular points in the easy axis distribution on the substrates,
and recently, a web of defect lines has been demonstrated by
creating orthogonal linear gradients in the easy axis of two
substrates [25]. However, the shape control of a closed single
loop had not been demonstrated.

In this Rapid Communication, we describe a general pro-
tocol to generate loop defects with arbitrary shape floating
in a slab of nematic LC. The method uses a unidirectionally
orientated substrate in combination with a substrate with
patterned easy axis distribution, so that a position-dependent
twist is induced in the bulk director. The achirality of the
nematic LC imposes the condition that the twist sense be such
that the twist angle is minimized, and where the twist angle
exceeds |π/2|, a twist reversal occurs, accompanied by the
generation of a twist disclination [12,25]. By continuously
varying the easy axis from below to above |π/2|, the exact
position at which twist reversal should occur can be defined,
leading to a stable closed loop.

Figure 1(a) schematically illustrates the easy axis design
for generating a circular defect loop, where the tangent of the
streamlines represents the local director orientation. The easy
axis on the patterned substrate, ϕp(r), is given by Eq. (1), where
we have employed cylindrical coordinates in consideration of
the symmetry of the loop. The origin is placed at the center of
the pattern, and r is the position from the center of the pattern:

ϕp(r) =
⎧⎨
⎩

0, r < r0 − a
r+a−r0

2a
π, r0 − a � r � r0 + a

0, r > r0 + a.

(1)

The easy axis rotates linearly by π over a distance of
2a, where r0 is the position at which the twist angle is
π/2. When a unidirectionally orientated substrate with ori-
entation along 0 radians [Fig. 1(b)] is used to assemble a
sandwich cell, the same expression also describes the twist
angle distribution in the cell [Fig. 1(c)]. However, the achi-
rality condition of the nematic LC causes the twist angle to
be wrapped to between −π/2 and π/2; the defect should
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FIG. 1. Schematic illustrations of the orientational easy axis
distributions on (a) patterned and (b) planar substrates to generate
a loop defect. (c) Twist angle distribution of the LC director between
the substrates. (d) Twist angle distribution considering twist reversal
in the bulk. Scale bars in the figure indicate 100 μm when the design
parameters are r0 = a = 66 μm. Note that when a < r0, a circular
region with unidirectional orientation appears at the center.

appear at the phase discontinuity, which is at r = r0 for this
design [Fig. 1(d)].

A sandwich cell is experimentally fabricated to confirm the
generation of loop defects. The uniform planar substrate is
prepared by coating a planar-orientation agent (JSR, AL1254)
and rubbing it unidirectionally. The patterned planar substrate
is prepared by coating a photoalignment agent (DIC, LIA-03).
The substrates were first assembled into a sandwich cell with
a cell gap of approximately 6 μm, and then the easy axis
distribution was imprinted on the patterned substrate using a
maskless photoalignment setup [26]. A LC display projector
was used as an electronic mask to control the spatial pattern of
light, and the light was irradiated sequentially on the sample
after controlling the polarization. The system has a resolution
of 1024 × 768 pixels with an approximate pixel size on the
sample of 1.3 × 1.3 μm2. The easy axis pattern was imprinted

on the substrate at an interval of 1◦, with light dosage of
45 μJ per pixel.

For observation, a nematic LC (5CB, Merck) was filled
into the cell in the isotropic phase and slowly cooled down
to the nematic phase. As the LC entered the nematic phase, a
disclination appeared close to the patterned region, and relaxed
to form a loop. Figure 2 shows polarizing optical microscope
(POM) images of the sample with design parameters r0 =
a = 66 μm. The transmittance of the cell between crossed
polarizers is highest at approximately r = r0 and is symmetric
about this position, implying that the twist angle distribution
is symmetric. The disclination loop is observed as a thin dark
line floating in the bright background near r0, and is observable
also when the analyzer is removed because of light scattering
[Fig. 2(b)]. Insertion of a retardation plate (530 nm, inserted at
45◦ to the crossed polarizers) confirms that the twist sense is,
in fact, reversed at this disclination to reduce the twist angle.
Judging from the interference colors in Fig. 2(c), the twist
angle sense is right (left) -handed inside (outside) the loop,
corresponding to the design of Fig. 1.

Disclination loops similar to the one in Fig. 2 can also
appear randomly at the isotropic-nematic phase transition in
a twisted nematic cell with twist angle of |π/2|. However, the
high energy of the disclination exerts a tension on the loop and
makes it metastable to shrink typically within seconds [1,27].
The disclination generated here also experiences a tension,
but is stabilized by the anchoring conditions imposed on the
substrates [12,25]. This means that in contrast to disclinations
in uniform cells, the loop reappears and settles at the same
position when the material is heated to above the clearing point
and then cooled back down.

The existence of a tension can be observed by measuring the
deviation of its length from the designed length. The expected
length of the loop in Fig. 2 was 415 μm(= 2πr0), whereas the
observed length was 342 μm. To investigate the relationship
between the easy axis pattern and shrink rate of the loop defect,
various patterns were created as functions of the pattern width
(a) and twist reversal position (r0), and compared with the
designed loop length.

Figure 3 shows the measured and designed lengths of
disclinations for various design parameters. The experiments
were carried out in three independent samples, and the average
lengths are plotted. In Fig. 3(a), the change in pattern width

FIG. 2. POM images of loop defects observed (a) between crossed polarizers, (b) without analyzer, and (c) with a 530 nm retardation plate
inserted in the optical path (X′ and Z′ indicate the fast and slow axes of the plate, respectively). The region inside the disclination has a green
tint, while the region outside has yellow tint. Arrow labels P and A indicate the directions of polarizer and analyzer, respectively. Scale bars:
100 μm.
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FIG. 3. Experimental, theoretical, and designed loop lengths as a function of (a) pattern width a and (b) twist reversal position r0.
Measurements were made for three independent samples. (c) Temperature dependence of the loop length in the sample with design parameters
r0 = 66 μm and a = 26.4 μm.

does not affect the designed loop length; however, the loop
length approaches the designed length as the pattern width
becomes narrower. From Fig. 3(b), the loop length approaches
the designed length as the twist reversal position becomes
larger.

To gain a physical understanding of the phenomenon,
we theoretically analyze the free energy of the system. As
mentioned earlier, the disclination experiences a line tension
because of the high energy, and there is always a tendency to
reduce its length. As the defect shrinks, however, the director
deviates from the most stable state imposed by the surface
anchoring conditions and increases in elastic energy. The
equilibrium position of the loop should be where these two
competing forces are balanced.

We first calculate the gain in elastic free energy due to
loop shrinkage. Considering the symmetry of the loop and
twist angle distribution, we model the system using cylindrical
coordinates. By definition of the twist disclination, the twist
sense reverses only at the disclination; however, from Fig. 2(c),
the director twist appears to be continuous up to the disclination
line, even when the loop has shrunk from its designed position.
This implies that when loop shrinkage occurs, the director
no longer reverses its twist sense at twist angles of ±π/2,
but at angles (π/2 − δ) and −(π/2 + δ), where the deviation
angle, δ, is defined by the boundary conditions at the position
of twist reversal. From Fig. 2(c) and the fact that the two
substrates have sufficiently small pretilt angles (1.4◦ and 0.1◦

for the rubbing and photoalignment cells, respectively [28]),
we further assume that there is no tilt induced (i.e., the
director always lies parallel to the substrates), and express the
director distribution, n, as n = [cos ϕ(r,z), sin ϕ(r,z),0], where
ϕ(r,z) is given by the following expression:

ϕ(r,z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r < r0 − a
π
2a

(r − a + r0) z
d
, r0 − a � r < (1 − α)r0

π
2a

(r − a − r0) z
d
, (1 − α)r0 < r � r0 + a

0, r > r0 + a.

(2)

Here, d is the cell gap where we have assumed the two
substrate surfaces to exist at z = 0 (planar substrate) and d

(patterned substrate), and α (0 � α � 1) is the shrink rate of
the loop. Note that ϕ(r,d) = ϕp(r).

The elastic free energy of LCs is related to three differ-
ent deformation modes of the director with different elastic
constants (K11 for splay, K22 for twist, and K33 for bend
deformations, respectively). For an analytical understanding
of the system, we employ the one-constant approximation
where the three elastic constants are assumed to be equal
(K = K11 = K22 = K33), and obtain an analytical expression
for the free energy:

FEL =
∫

1

2
K

{(
∂ϕ

∂r

)2

+
(

∂ϕ

∂z

)2

+ 1

r2

}
dV

= Kπ2r0d

6a
+ Kπ3

2da2

{
2

3
(1 − α)3r3

0 a − (1 − α)2r3
0 a

+ 1

3
r3

0 w
(
r2

0 + a2
)} + Kπd ln

r0 + a

r0 − a
. (3)

The change in free energy as the loop shrinks from the
designed position is given by Eq. (4), which is always positive
for 0 � α � 1.

�FEL = FEL − FEL|α=0 = Kπ3r0
3

2da
α2

(
1 − 2

3
α

)
. (4)

The free energy of the disclination core is expressed as a
combination of the core and interfacial energies, following the
treatment by Wang et al. [29]:

FD = 2πr0(1 − α)
{(

πr2
c εc

)
core +

[
2πrcσc

(
1 + w

2

)]
surface

}
.

(5)

Here, rc is the radius of defect core, εc is the free energy
density of defect core, σc is the isotropic-nematic interfacial
tension, and w is the surface anchoring energy coefficient
[2,6,30]. Note that we have omitted the elastic energy of
director deformation in the vicinity of the defect because we
have defined the orientation through the boundary conditions.
As the loop shrinks, the energy of the disclination decreases as
follows:

�FEL = FEL − FEL|α=0 = Kπ3r0
3

2da
α2

(
1 − 2

3
α

)
. (6)
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FIG. 4. Twist angle distributions to generate disclination loops resembling the Osaka University logo obtained by (a) solving Laplace’s
equation as a boundary problem in each region boundary, and (b) creating an outline with a width of 13 μm and varying the angle from 0 to π .
(c),(e) POM images of the disclination lines generated by pattern (a), and (d),(f) POM images of the disclination lines generated by pattern (b).
Scale bars: 200 μm.

The equilibrium shrink rate of the loop is found by placing
�FEL = �FD:

α = 3

4
−

√
9

16
− 6da

Kπr2
0

{
r2

c εc + 2rcσc

(
1 + w

2

)}
. (7)

Equation (7) explicitly describes the relationship between
the loop radius and design parameters. In Fig. 3, the theoretical
loop lengths are plotted as blue dashed curves, using the
following parameters: K = 6.26 pN, rc = 14 nm, εc = 5 ×
104 J/m3, σc = 10−5 J/m2, w = 10−2, and d = 5.5 μm and
r0 = 66 μm for (a), and d = 5.81 μm and a = 39.6 μm for
(b). Although many of the parameters concerning the defect
core are difficult to evaluate experimentally, good agreement
is observed between experiment and theory using values close
to those reported in the literature [31]. Importantly, the same
material parameters reproduce the experimental results for the
two independent experiments in Fig. 3.

Here, analytical treatment of the free energies has been
made possible by ignoring the elastic anisotropy and using
a symmetric pattern. In standard nematics, typically K11 ≈
K33 ≈ 2K22; however, the agreement of our simplified theory
with experiment implies that the effect of elastic anisotropy is
not significant to cause a drastic deviation in the theoretical
loop length in the lengths of several hundred micrometers
studied here. This is also supported from the small temperature
dependence of the loop length, as shown in Fig. 3(c).

As the pattern deviates from that for the circular loop, it will
become necessary to perform numerical simulations to predict
the degree of shrinkage. However, the proposed principle can
be applied as a general guide to stabilize disclination loops
of arbitrary shapes; a sufficiently narrow, linearly modulated

easy axis pattern around the desired position of the disclination
should surface stabilize the loop. As an example, Fig. 4
shows double disclination loops forming the Osaka University
logo. To demonstrate the difference in disclination shrinkage
depending on pattern, two kinds of easy axis patterns are
prepared: one with a smooth distribution, obtained by solving
Laplace’s equation as a boundary problem in each region
bounded by the disclination loop [assuming values of ±π/2
at each side of the boundaries and at the center of the logo,
Fig. 4(a)]; and another distribution creating an outline with
a width of 13 μm around each line composing the logo and
varying the angle from 0 to π [Fig. 4(b)]. Figures 4(c)–
4(f) show POM images of double disclination loops. The
disclination lines generated by the pattern of Fig. 4(a) shows
large shrinkage such that the disclinations almost become
circular [Figs. 4(c) and 4(e)]. On the other hand, disclinations
generated from the pattern of Fig. 4(b) maintain the designed
shapes [Figs. 4(d) and 4(f)], with shrinkage only seen at the
corners. The proposed principle thus enables disclinations to
be manipulated to resemble meaningful symbols.

In conclusion, we have experimentally demonstrated sta-
bilization of disclination loops floating in a nematic LC by
designing the twist angle distribution between two substrates.
The line tension of the disclination can be counterbalanced by
creating a continuous variation in the left- and right-handed
twist angles in the vicinity of the disclination. A narrower
distribution effectively increases the elasticity of the bulk LC,
suppressing shrinkage. So far, we have only been able to
stabilize simple loops with no knots or links with this method;
however, the addition of chirality in the nematic may lead to sta-
bilization of defects with more complex topologies [31]. While
a growing number of studies are reporting novel functions in
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LC defects, the study on defects is inherently difficult due
to their metastable characteristics. The development of defect
stabilization methods such as the one proposed here will enable
in-depth studies of their properties such as dynamics [32] and
interactions with matter, potentially leading to applications in
optics, materials, and biology.

The authors thank J. Fukuda and T. Ohzono for helpful
discussions, and DIC Corporation and JSR Corportation for
providing the photoalignment layer and planar alignment layer,
respectively. This work was supported by the PRESTO Pro-
gram (JPMJPR151D) from the Japan Science and Technology
Agency (JST).
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