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The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases
(BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the
reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for
BP II. Finite difference time domain and 4 × 4 matrix calculations performed on the theoretical director tensor
distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a
wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the
density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection
band width are supported by reflectance measurements performed on BPs I and II for light incident along the
[110] and [100] directions, respectively.
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I. INTRODUCTION

Liquid crystalline (LC) cholesteric blue phases (BPs) typ-
ically appear between the cholesteric phase and the isotropic
liquid in a chiral liquid crystal [1]. The submicron cubic
orientational order exhibited by BPs I (I4132 symmetry) and
II (P 4232) make them attractive, both as subjects of soft
matter physics and as candidate materials for next generation
electro-optic and photonic applications [2–6]. The invention
of the polymer-stabilization technology has substantially
improved their stability, leading them to be considered as
practical materials for displays and other tunable optical
applications [7,8].

One of the challenges for using BPs in optical applications
is their low contrast ratio, i.e., light leakage between crossed
polarizers. It is known that for propagating plane waves, BPs
act like a cholesteric liquid crystal (ChLC), which has a
one-dimensional helical structure [9,10]; therefore, the optical
activity induced by the helical modulation of the optic axis
reduces the contrast ratio in the vicinity of the Bragg reflection
peaks. Recently, Liu et al. have measured the the optical
rotatory power of polymer-stabilized BPs at three wavelengths
and proposed that the contrast ratio can be enhanced by
making slight adjustments in the analyzer angle [11]. They
have explained the phenomenon by simulating the optical
properties of randomly orientated twisted-nematic domains
as an approximation for the structure of blue phases. On the
other hand, we have previously shown by finite difference time
domain (FDTD) calculations that the optical properties of BPs
cannot be described correctly just by considering an array of
double-twist cylinders, but rather, the distribution of the tensor
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order parameter calculated from the Landau–de Gennes theory
must be used [12–14]. It is likely that an analysis of the optical
rotatory dispersion based on the tensorial order parameter
distribution would provide a more in-depth understanding of
the situation.

In this paper, we numerically investigate the optical prop-
erties of BPs I and II modeled from the Landau–de Gennes
theory by FDTD and 4 × 4 matrix calculations [13–16]. We
first present the photonic band structure of the two systems
obtained from FDTD calculations and show the difference
in the band gaps appearing in each system. We then focus
on the band gap with the lowest energy and calculate the
transmittance and optical rotatory dispersion for each BP. The
4 × 4 matrix calculations are performed on the dielectric tensor
averaged on the plane normal to the propagation direction and
are found to yield results close to those with three-dimensional
FDTD calculations in wavelengths near the lowest energy gap.
This is because light travels essentially as a plane wave in this
region and, as a result, enables us to significantly reduce the
computational load in predicting the amount of light leakage in
BPs with various optical pitches. We find that BP II possesses
a larger photonic band gap than BP I, possibly because of the
larger density of the double-twist cylinders in the system and,
consequently, larger light leakage between crossed polarizers
for the same material parameters. In the final section of the
paper, polarized reflection spectra of aligned BP samples are
measured to corroborate the numerical findings.

II. NUMERICAL SIMULATION

A. Methods

The Landau–de Gennes theory, which describes the orien-
tational order of the liquid crystal by a symmetric traceless
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tensor Q was used to describe the molecular orientation in
BPs I and II. Since the technical details of calculating the
order parameter tensor are described in detail elsewhere [17],
we do not repeat them here; for this paper, the order parameter
tensor distributions of the BP unit cells were calculated using
the conditions described in Ref. [17] on a 64 × 64 × 64
grid. The helicity of the system was right handed. The
numerical calculations provide us with what is called the
reduced order parameter tensor distribution; we normalized
the order parameter tensor so that the maximum local isotropic
order parameter Smax within the BP lattice is 0.7, where
S2 = 3/2 Tr(Q2) [13,14,18]. To simulate the optical properties
of BPs, the order parameter tensor was converted to the
dielectric tensor εij through the relation,

εij = 2
3�ε Qij + εaveδij ,

where �ε is the dielectric anisotropy of the host nematic, εave is
the average dielectric permittivity, and δij is Kronecker’s δ. �ε

and εave are related to the ordinary and extraordinary refractive
indices no and ne according to the equation �ε = (n2

e − n2
o)

and εave = (n2
e + 2n2

o)/3. We assumed values of ne = 1.7 and
no = 1.5 for our calculations.

A cholesteric liquid crystal, which has a sinusoidal distribu-
tion of the uniaxial director, was also modeled for comparison
purposes. Assuming that the helix lies in the z direction and
has pitch p, the dielectric tensor is given by

εChLC =
⎡
⎣

εe+εo

2 + �ε
2 cos 2φ �ε

2 sin 2φ 0
�ε
2 sin 2φ εe+εo

2 + �ε
2 sin 2φ 0

0 0 εo

⎤
⎦.

Here, εe = εave + 2 �ε Smax/3, εo = εave − �ε Smax/3, and
φ = 2πz/p. �ε was multiplied by Smax to purely compare
the effect of the structure on the optical properties.

Two kinds of calculations were performed on the three
LC phases. First, the photonic band structure was calculated
by imposing Bloch’s periodic boundary conditions in a unit
cell [15]. The spatial and temporal discretizations were set
so that �x = �y = �z and �t = 0.565 �x/c to ensure
convergence [15]. Also, a one-dimensional calculation was
performed for the cholesteric phase because the system is
uniform on the plane perpendicular to the helical axis. The
second set of calculations investigated the cross-polarized
transmittance of a BP layer sandwiched between two glass
substrates (with n = 1.6) to directly compare the optical
activity of BPs I and II in a standard device structure. Taking
the substrate normal as the x direction, the BP was assumed
to have the [101] and [100] directions parallel to the x

axis for BPs I and II, respectively, and the [010] direction
parallel to the y axis. The incident light was assumed to have
linear polarization along the y axis. The pitch length and,
consequently, the discretization steps were varied depending
on the target wavelength of reflection.

B. Photonic band structure

Figure 1 shows the photonic band structure of BPs I and II.
Reflecting the symmetry of each phase, the band structures are
different: The lowest band gap appears in the �-N direction
in BP I and along the �-X direction in BP II. Above the first
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FIG. 1. Photonic band structure of BPs I and II.

stop band, the degeneracy of the eigenmodes breaks, indicating
that the system is anisotropic. Therefore, depolarization effects
can be avoided only when the wavelength of light is longer
than that for the lowest stop band. Although polarization-
independent phase modulation has been proposed as one
possible application of BPs [19,20], it should be noted that
BPs are truly isotropic only in the limit λ → ∞ [10]. This
means that to remove the selective reflection peak from the
operating wavelength of a BP device, such as a display or a
lens without causing depolarization, BP materials with shorter
pitches must be sought.

We now focus on the region in the Brillouin zone where the
optical band gap with smallest energy appears. Figures 2(a)–
2(c) show the photonic band structure along the �-N direction
for BP I and along the �-X direction for BP II and the
cholesteric phase near the Brillouin zone edge. Similar band
structures are observed with a band-gap opening only for light
with the same handedness as the helical structure [right circular
polarization (RCP) for this case]. This corresponds to the
so-called selective reflection band where circularly polarized
light with the opposite handedness [left circular polarization
(LCP)] is transmitted without being affected. The difference
in the RCP and LCP eigenvalues is dispersive and reverses
sign at the central frequency of the gap; this corresponds to
anomalous optical rotatory dispersion, which is well known
in the cholesteric phase [21]. The photonic band structure
shows that the optical properties of cholesterics and BPs are
qualitatively the same with the only major difference being
the band-gap width. The cholesteric phase has the largest band
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FIG. 2. Closeup of the photonic band structure near the reflection band with lowest energy in (a) BP I, (b) BP II, (c) the cholesteric phase,
(d) the cholesteric phase with birefringence reduced to 22.8%, and (e) the cholesteric phase with birefringence reduced to 33.7%.

gap, followed by BP II and BP I, with relative stop-band widths
�ω/ωc = 0.0202, 0.0329, and 0.0883 for BPs I, II, and the
cholesteric phase, respectively.

The smaller band gaps observed in the BPs can be
viewed as a trade-off for stretching the band gap to exist
in three dimensions. Considering that the band-gap width
of a cholesteric liquid crystal is given by �λ = �n × p,
an effective birefringence for the corresponding directions
of each BP can be evaluated by comparing the band-
gap widths: �nBPI/�nChLC = 0.228 and �nBPII/�nChLC =
0.373. As shown in Figs. 2(d) and 2(e), almost identical
photonic band structures are obtained when the birefringence
of the ChLC is reduced to 22.8% and 37.3% of the original
value with �ω/ωc = 0.0206 and 0.0335, respectively. This
again supports the similarity in the optical behavior in the
BPs and cholesterics. The slight shift in band-gap frequency
corresponds to the difference in the average refractive indices
between BPs and ChLCs: The average refractive index of the
BPs is the isotropic average

√
(n2

e + 2n2
o)/3 whereas that for

the cholesteric phase is
√

(n2
e + n2

o)/2.
Hornreich and co-workers had calculated the photonic band

structures of BPs by the plane wave expansion method as early
as 1993 [22]. The main focus of their report, however, was on
whether a complete photonic band gap would open (which is
difficult with realistic material parameters), and the relative
widths of the reflection band had not been discussed. On the
other hand, there is an early experimental study by Marcus
that discussed the difference between BPs and cholesterics by
measuring the band width of reflection from the three phases
confined in thick (<0.5-mm) cells [9]: The results of our
numerical analyses are close to the values obtained in this
experiment (values of �λ/λ are approximately 0.013, 0.019,
and 0.054 in BPs I, II, and the cholesteric phase, respectively,
yielding effective birefringence values of 24% and 35%). A
possible explanation for BP II showing a larger band gap than
BP I could be that the density of the double-twist cylinders
in BP II is twice as large as that in BP I. Since the double-
twist cylinders contribute to the chirality of the system, the

modulation in the refractive index becomes larger in BP II,
leading to a larger photonic band gap.

C. Transmittance and optical rotatory dispersion

Figure 3 shows the transmittance and polarization spectra
for BPs I and II with p = 288.72 and 408.32 nm sandwiched
between glass substrates. The pitch was chosen so that the
band gap would appear near 640 nm for both BPs, and
10-pitch-length-thick BP layers (corresponding to 10 and 20
unit cells for BPs I and II, respectively) were assumed. For the
wavelengths near the lowest-energy band gaps, transmittance
calculations of three-dimensional FDTD and 4 × 4 matrix
calculations using the dielectric tensor distribution averaged
on the plane perpendicular to the direction of propagation
yield close results. This is because near the lowest-energy band
gaps, the wavelength of light is comparable to the period of
the structure and only experiences an averaged dielectric tensor
on the plane normal to the direction of propagation. Figure 4
shows the FDTD results of electric field amplitudes of light
transmitted through the BP, averaged on the plane normal to
light propagation. The minimum and maximum electric field
amplitudes within the plane, which are also plotted, fall within
±0.02 V/m from the average amplitude, implying that the
output light is a quasiplane wave.

The applicability of the 4 × 4 matrix method to BPs has
been shown by Berreman who used a simplified BP model de-
rived from Landau theory (along with two other models com-
prising only uniaxial or isotropic order parameter tensors) [23]
and Bohley and Scharf who used a model in which cylindrical
structures made from twisting uniaixal molecules (double-
twist cylinders) were floating in an isotropic medium [24]. Our
results show that 4 × 4 matrix calculations provide reliable
results also for BP models calculated numerically.

The fact that a one-dimensional calculation is sufficient
greatly simplifies the simulation of devices. As an example,
light leakage (cross-polarized transmittance) of 10-μm-thick
BPs I and II with 〈110〉 and 〈100〉 orientations are calculated
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FIG. 3. (a) Transmittance and (b) polarization spectra of BPs I and
II along the [101] and [100] directions by the FDTD assuming a three-
dimensional dielectric tensor distribution for the BPs (3D-FDTD)
and Berreman’s 4 × 4 matrix formulation using the dielectric tensor
distribution averaged on the plane perpendicular to the direction of
polarization [23].
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FIG. 4. Electric field amplitudes of light transmitted through BPs
I and II at wavelengths of (a) 550 nm, (b) 639 nm, and (c) 750 nm,
averaged on the plane normal to the propagation direction. The
maximum and minimum values within the plane are also plotted
to show the plane wavelike nature of light propagation in the BP.

at a wavelength of 400 nm for different lattice constants
and maximum order parameters. As long as the Bragg
wavelength is shorter than 400 nm, the light leakage is
smaller at longer wavelengths, therefore, this calculation
can be used as a guide to estimate the maximum light
leakage. The results are presented in Fig. 5. As the figure
shows, the cross-polarized transmittance increases as the pitch
or the birefringence increases because of increased optical
activity. Also, in agreement with the photonic band structure
calculations, BP II shows greater light leakage because of the
larger optical activity. These calculations can therefore be used
as a guide to select material or device parameters that fulfill
the specifications required for a particular application.
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respectively, and refractive indices of ne = 1.7, no = 1.5 are assumed
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We note that Dolganov et al. have investigated the ap-
plicability of the Kramers-Kronig equations to the circular
dichroism and optical rotation of ChLCs [25]. Because of the
similarity in the dielectric distribution of BPs and ChLCs,
application of the Kramers-Kronig equations to BPs yields
similar results where the difference between the experimental
and the calculated values increases at shorter wavelengths due
to the increased contribution of adiabatic polarization rotation
(polarization rotation through a twisted birefringent material
in the so-called Mauguin regime [26]). Because BPs show
different band gaps along different directions, it should be
of interest in the future to investigate circular dichroism and
optical rotation for propagation along different crystal axes.

III. EXPERIMENTAL SECTION

Experiments were performed to confirm the theoretical
prediction that BP II has a wider band gap than BP I.
The reflection spectrum of a monodomain BP sample was
measured as the sample changed phase from BP I to BP
II. As stated previously, Marcus has performed quantitative
comparisons of the relative band widths of BPs I and II by
measuring the reflection from a thick cell (but with an unknown
exact cell gap) [9]. On the other hand, Barbet-Massin and
Pierański have measured the reflectance from a monodomain
BP I and discussed its order parameter [27,28]. However,
measurements had not been made on a monodomain BP II.
Here, we (i) used a cell with known thickness (8.85 μm) and
(ii) confirmed the orientation of the platelets by Kossel diagram
observations to precisely compare the reflectance between
BPs I and II. We also performed 4 × 4 matrix simulations
to quantitatively compare the reflectance of the two phases.

The BP sample was prepared by doping a chiral dopant
[ISO-(6OBA)2, 6.5 wt %] in a nematic LC mixture (1×1
mixture of 5CB and JC-1041XX, JNC Corporation). The

FIG. 6. (a) Polarized optical microscope image of a sample as the
temperature is raised slowly to induce a transition from BP I to BP
II. The length of the scale bar is 100 μm, and the arrows indicated
the direction of the polarizers. (b) Kossel diagrams observed for BPs
I and II using a probe wavelength of 436 nm.

phase sequence of the sample determined from polar-
ized optical microscopy was approximately cholesteric
(45.6 ◦C)/BP I (46.7 ◦C)/BP II (47.7 ◦C)/isotropic using a
commercial hot stage (Linkam, LTS-350). The sample was
infiltrated in a glass sandwich cell assembled from two
substrates with a unidirectional rubbing treatment. The sample
was first cooled from the isotropic phase to BP I and then
heated and cooled several times within the BP I temperature
range so that the whole field of view was covered with BP
crystals with a 〈110〉 axis along the cell normal. The sample
was then slowly heated to the BP II temperature range to
induce a phase transition. The polarized reflectance spectra
were measured using a fiber-optic spectrometer (Ocean Optics,
USB-4000) equipped with a multimode fiber (core diameter
of 550 μm) and coupled to a microscopic optical system
with 10× magnification. The probe light, polarized linearly
by a wire-grid polarizer, was incident on the sample from
normalcy (through the objective lens) after being reflected by
a metallic half-mirror. The reflected light was detected through
the half-mirror after passing through a polarizer, which had its
transmission axis set perpendicular to the incident polarizer,
and a lens with a focal length of 200 mm.

Figure 6 shows polarized microscopy images of the sample
at the BP I-II phase transition. The black marks at the top of
the images are guides indicating the position of the sample. In
the BP I temperature, a uniform green texture was observed
[Fig. 6(a), first figure], which was found from Kossel diagram
observations [Fig. 6(b)] to correspond to BP I with the 〈110〉
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direction in the viewing direction. As the temperature was
raised, a sudden change occurred in the texture with blue and
black domains appearing where only green domains existed.
The black domains gradually disappeared whereas the blue
domains grew larger, and after some time, a uniform blue
texture was obtained [Fig. 6(a), final figure]. In some parts, the
color changed from green to blue without the appearance of
black textures (e.g., top left part of the figures). The lattice
plane giving the blue texture was confirmed from Kossel
diagram observations to be a {100} plane of BP II [Fig. 6(b)].
The BP lattice undergoes a rotation by 45◦ upon changing
phase from BP I to BP II [29,30].

Figure 7 shows the polarized reflectance spectra of the
sample near the point of transition (measurements were made
after a uniform texture was obtained). The most obvious
feature of the phase transition is the discontinuous shift in the
peak reflection wavelength (λpeak) from approximately 540.2
to 479.4 nm. Using the refractive index of the host nematic
LC available from literature [31] (Table I) and the relationship
dhkl = a/

√
h2 + k2 + l2 (where the lattice constant a is equal

to the pitch p in BP I and 2a = p in BP II), the pitch
is estimated to be 240.6 nm in BP I and 299.6 nm in
BP II. The helical pitch therefore elongates discontinuously
at the BP I → BP II phase transition. Although the precise
mechanism requires further investigation, this discontinuous
change in pitch at the phase transition could be one of the

TABLE I. Parameters used to simulate the reflection spectra in
Fig. 7.

Peak wavelength (nm) 540.2 479.4
ne 1.70431 1.72375
no 1.52621 1.53456
p (nm) 240.6 299.6
Lattice constant (nm) 240.6 149.8
Lattice number 26 59
Order parameter distribution BP I BP II
Smax 0.38 0.26

reasons why the lattice rotates from 〈110〉 along the cell normal
in BP I to 〈100〉 in BP II. At the phase transition, the period
along the 〈110〉 direction increases from

√
2 × p = 340.3 to

423.7 nm, but because the cell thickness is constant, the BP
must unwind to reduce the number of lattices present. On the
other hand, if the lattice changes its orientation to 〈100〉, the
period becomes 299.6 nm, which is shorter than the original
period along 〈110〉. Therefore, by rotating the lattice, the BP
can avoid the energy cost of having to unwind the helical
structure and reduce the lattice number.

Another observation we can make from the reflectance
spectra is the discrete shift in the reflection wavelength in BP I
from approximately 550.0 to 540.2 nm. Such a discrete shift
in the reflection wavelength has been observed in cholesteric
liquid crystals with strong surface anchoring, corresponding
to the winding or unwinding of the helix in half-pitch
intervals [32]. Although we did not see them in our sample,
the appearance of Grandjean steps, which are indicators of
the discrete change in molecular rotation number, has been
reported in BPs confined in a wedge cell [33]. Therefore, we
also infer that the discontinuous shift in wavelength is due to
a discrete change in the number of lattices existing in the cell.
The reflection peak shift corresponds to a change in pitch from
240.6 to 246.7 nm using average refractive indices 1.5878 and
1.5862 at the two wavelengths, respectively [31]. Dividing the
cell-gap (8.85 μm) by the pitch length yields approximately
26 and 25.5 as the number of periods (N ), implying that similar
to the cholesteric helix, the BP I lattice also winds or unwinds
in half-integer steps. An interesting question to consider is
at which position within the lattice the BP is anchored to
the substrate. Although this is out of scope of this paper,
an in-depth analysis of the order parameter distribution may
provide insight on the molecular configuration of a BP in
contact with a rubbed substrate.

As the temperature is increased in BP II, the reflection
peak shows a discrete redshift and reduction in peak re-
flectance, attributed to an elongation in pitch and reduction in
birefringence. However, broadening of the peak also occurs,
which contradicts the fact that a smaller birefringence should
result in a narrower reflection band. This implies that, as
the temperature approaches the isotropic clearing point, the
effective thickness of the BP decreases, possibly due to the
temperature gradient along the cell-depth direction. Although
this does not affect the findings of this paper where we are
focusing on the BP I → BP II transition, this calls for the need
to take extra care in suppressing temperature gradients in the
sample when comparing the spectra near the clearing point.

Since the refractive index, pitch, and the number of periods
existing within the cell are known, quantitative discussions on
the reflectance are now possible by numerical calculations.
The 4 × 4 matrix calculations were performed to simulate
the experimentally obtained spectra using the parameters
summarized in Table I. The wavelength of reflection is
determined primarily by the refractive indices and the lattice
constant, and other parameters, including the order parameter
distribution, contribute to the reflectance. Smax is the maximum
order parameter within the BP lattice and is used as an
adjusting parameter to yield the best matching spectrum. To
confirm the difference between BPs I and II, the reflectance
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Tiso + 0.09 ◦C in Fig. 7.

spectra were calculated also for the case when the numerical
parameters for the two peaks (ne, no, lattice constant, and
lattice number), and the order parameter distributions for
the two BPs (including Smax) were interchanged. Figure 8
shows the results of numerical calculations; good agreement is
obtained between theory and experiment using the parameters
shown in Table I. When the BP I dielectric tensor distribution
was assumed, but fitting parameters for the peak at 490.2 nm
were used (orange broken line in Fig. 8), the reflectance
became lower than that obtained experimentally. On the other
hand, when the parameters for the peak at 540.2 nm were used
with the dielectric tensor distribution of BP II, the reflectance
exceeded the value obtained experimentally (blue broken line
in Fig. 8). This implies that the increase in reflectance observed
at the phase transition from BP I → BP II simply is not only
due to a change in refractive index and number of periods,

but also due to BP II intrinsically possessing a larger photonic
band gap. It should be noted here, however, that the value
of Smax is 0.38 for BP I and 0.26 for BP II. If we assume
Smax = 0.38 for BP II, the reflectance becomes much higher
than that obtained in experiment (purple line in Fig. 8). One
possible interpretation of this is that the local maximum order
parameter decreases at the BP I-BP II transition as a result of
the rearrangement of the double-twist cylinders and shortening
of pitch.

IV. CONCLUSIONS

The optical properties of BPs I and II were investigated
by numerical analyses and experiment. The photonic band
structures of BPs show that BPs are only isotropic in the limit
λ → ∞ and that they show optical rotation with a reduced
effective birefringence, compared to the one-dimensional
cholesteric liquid crystal. Among the two cubic BPs, BP II
has a larger photonic band gap and thus larger reflectance
and light leakage possibly owing to the higher density of
double-twist cylinders in the unit cell. To select material
parameters that would fulfill the requirements of a particular
device, simulations should first be performed to estimate
the depolarization occurring in the device. To this end,
as long as light travels as a plane wave, that is, as light
propagates along the [110] and [100] directions of BPs I and
II, respectively, one-dimensional 4 × 4 matrix calculations can
replace three-dimensional differential calculations, thereby
greatly simplifying the process of searching for desirable
material parameters.
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Würflinger, Phys. Chem. Chem. Phys. 5, 924 (2003).
[19] Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and

W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[20] S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H.

Kikuchi, and M. Ozaki, Opt. Lett. 36, 3578 (2011).

042703-7

https://doi.org/10.1103/RevModPhys.61.385
https://doi.org/10.1103/RevModPhys.61.385
https://doi.org/10.1103/RevModPhys.61.385
https://doi.org/10.1103/RevModPhys.61.385
https://doi.org/10.1038/nmat727
https://doi.org/10.1038/nmat727
https://doi.org/10.1038/nmat727
https://doi.org/10.1038/nmat727
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1038/ncomms1250
https://doi.org/10.1038/ncomms1250
https://doi.org/10.1038/ncomms1250
https://doi.org/10.1038/ncomms1250
https://doi.org/10.1103/PhysRevLett.107.237803
https://doi.org/10.1103/PhysRevLett.107.237803
https://doi.org/10.1103/PhysRevLett.107.237803
https://doi.org/10.1103/PhysRevLett.107.237803
https://doi.org/10.1364/OME.3.000842
https://doi.org/10.1364/OME.3.000842
https://doi.org/10.1364/OME.3.000842
https://doi.org/10.1364/OME.3.000842
https://doi.org/10.1038/nmat712
https://doi.org/10.1038/nmat712
https://doi.org/10.1038/nmat712
https://doi.org/10.1038/nmat712
https://doi.org/10.1364/OME.1.001527
https://doi.org/10.1364/OME.1.001527
https://doi.org/10.1364/OME.1.001527
https://doi.org/10.1364/OME.1.001527
https://doi.org/10.1103/PhysRevA.25.2276
https://doi.org/10.1103/PhysRevA.25.2276
https://doi.org/10.1103/PhysRevA.25.2276
https://doi.org/10.1103/PhysRevA.25.2276
https://doi.org/10.1063/1.4799511
https://doi.org/10.1063/1.4799511
https://doi.org/10.1063/1.4799511
https://doi.org/10.1063/1.4799511
https://doi.org/10.1143/APEX.3.032001
https://doi.org/10.1143/APEX.3.032001
https://doi.org/10.1143/APEX.3.032001
https://doi.org/10.1143/APEX.3.032001
https://doi.org/10.1364/OL.38.003380
https://doi.org/10.1364/OL.38.003380
https://doi.org/10.1364/OL.38.003380
https://doi.org/10.1364/OL.38.003380
https://doi.org/10.1364/OE.22.003766
https://doi.org/10.1364/OE.22.003766
https://doi.org/10.1364/OE.22.003766
https://doi.org/10.1364/OE.22.003766
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1103/PhysRevE.80.031706
https://doi.org/10.1103/PhysRevE.80.031706
https://doi.org/10.1103/PhysRevE.80.031706
https://doi.org/10.1103/PhysRevE.80.031706
https://doi.org/10.1039/b211457g
https://doi.org/10.1039/b211457g
https://doi.org/10.1039/b211457g
https://doi.org/10.1039/b211457g
https://doi.org/10.1063/1.3360860
https://doi.org/10.1063/1.3360860
https://doi.org/10.1063/1.3360860
https://doi.org/10.1063/1.3360860
https://doi.org/10.1364/OL.36.003578
https://doi.org/10.1364/OL.36.003578
https://doi.org/10.1364/OL.36.003578
https://doi.org/10.1364/OL.36.003578


HIROYUKI YOSHIDA et al. PHYSICAL REVIEW E 94, 042703 (2016)

[21] P. G. D. Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Oxford University Press, Oxford, 1995).

[22] R. M. Hornreich, S. Shtrikman, and C. Sommers, Phys. Rev. E
47, 2067 (1993).

[23] D. W. Berreman, in Liquid Crystals and Ordered Fluids, edited
by A. C. Griffin and J. F. Johnson (Plenum, New York, 1984),
p. 925.

[24] C. Bohley and T. Scharf, Opt. Laser Eng. 43, 329 (2005).
[25] P. V. Dolganov, G. S. Ksyonz, V. E. Dmitrienko, and V. K.

Dolganov, Phys. Rev. E 87, 032506 (2013).
[26] P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed.

(Wiley, Hoboken, NJ, 2009).

[27] R. Barbet-Massin and P. Pierański, J. Phys., Colloq. 46, C3
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