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The nematic liquid crystal (LC) director field can contain defects that are both singular and nonsingular,
but nonsingular defects with an integer winding number of the director are typically metastable because of
their high energy. We demonstrate topology-mediated generation and stabilization of nonsingular wall
loops in a sandwich-type LC cell by combining a patterned substrate with a planar substrate. We implement
a design which imposes a topological constraint on a singular disclination loop such that it irreversibly
annihilates upon application of a field, and it results in the generation of a stable nonsingular wall loop
when the field is removed. Theoretical modeling agrees with experimental observations, providing insight
into the wall generation mechanism and its stability. The concept to stabilize high-energy structures through
orientation-patterning-defined topological constraints extends our ability to control orientationally ordered
matter.
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The nematic liquid crystal (LC) is a phase in which the
constituent rodlike molecules spontaneously orient along a
single direction, referred to as the director. The nematic
director field can accommodate defects that are either
singular or nonsingular, characterized by the number of
rotations of the director around the defect core [1,2].
Singular defects can exist as lines or points, and they have
been studied from various perspectives, from testing
topological theorems [3,4] to utilizing them to modulate
the local physical properties [5] or as templates for dopant
materials [6–12].
In comparison to singular defects, nonsingular defects

are much less explored. Nonsingular defects occur as
spatially localized excitations in the director field and have
continuous structures that are topologically equivalent with
a uniformly aligned nematic [2]. In a sandwich-type
nematic cell with planar boundary conditions, nonsingular
defects appear at the boundary of two topologically
equivalent regions in the form of walls, with the director
locally orienting perpendicular to the substrates [13–17].
However, the steep variation in the orientation makes them
high energy such that wall loops formed at the isotropic-
nematic phase transition shrink and disappear over time [13].
Also, the property of LCs to minimize their free energy
creates a tendency for walls to split into lower energy
disclinations (singular line defects) [6]. Consequently, the
study of walls had been mainly limited to those that appear
only under an external field [18], offering little freedom in
their control. While the growing interest in defects has led to
various strategies for the control of disclinations, such as the

inclusion of colloidal particles [3,4,19] and use of patterned
substrates [6,20–22], little attention has been paid on actively
controlling nonsingular defects.
In this Letter, we present a strategy to stabilize arbitrarily

shaped wall loops in an achiral nematic LC through the
surface anchoring design of a sandwich-type cell. A
combination of a uniform planar and a suitably patterned
substrate generates a looped disclination, which, upon
application and cessation of an electric field, is converted
into a stable wall loop. The conversion makes use of the
local incompatibility in director topology so that regener-
ation of the singular disclination is suppressed although it
has lower energy than the wall. The wall position is well
reproduced by theoretical modeling, clarifying the under-
lying stabilization mechanism. Our approach enables
selective stabilization of high-energy defect structures,
extending our control over orientationally ordered matter.
Figure 1 depicts the easy axis distributions to stabilize a

circular wall loop. The easy axis on one substrate (the
“patterned substrate”) is patterned such that the azimuthal
angle, φpðr; θÞ ¼ φpðrÞ, is given by Eq. (1) in cylindrical
coordinates, where the origin is placed at the pattern center:

φpðrÞ ¼ − π

r0
rþ 3π

2
; 0 ≤ r ≤

3r0
2

: ð1Þ

The azimuthal angle changes by π over a distance of r0 and
extends to 3r0=2. Another substrate (the “uniform sub-
strate”) is prepared to possess uniform orientation, and a
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sandwich cell is fabricated using the two substrates so that
the easy axis of the uniform substrate is parallel to the
region of 0 radian on the patterned substrate.
A ∼8-μm-thick sandwich cell was prepared using two

substrates coated with polyimide (JSR, AL1254) and
photoalignment agent (DIC, LIA-03). The substrate with
polyimide was rubbed unidirectionally, whereas the sub-
strate with the photoalignment layer was patterned to
possess the easy axis distribution of Fig. 1(a) using
maskless photoalignment [22]. The photoalignment setup
imprinted the local orientational easy axis over an area
of 1024 × 768 pixels, where each pixel size was
∼1.3 × 1.3 μm2. The pattern was digitized to 3° steps
and imprinted with a light dosage of 0.3 μJ=pixel. After
cell fabrication, a nematic LC (5CB, Merck) was injected
into the cell in the isotropic phase, and observed at 30 °C
using a polarized optical microscope [polarized optical
microscopy (POM), Nikon, LV100 POL].
Figure 2(a) shows a schematic of the LC-filled cell. A

nematic LC confined between two substrates with different
easy axis directions twists in the bulk to minimize the
elastic free energy [1]. Because 5CB is achiral, the director
twists in the direction that reduces the twist angle. The twist
angle distribution expected from the pair of substrates used
is shown in Fig. 2(c), where the twist angle is kept below
jπ=2j in all regions. At r ¼ r0, the twist angle changes
discontinuously by π and changes the twist direction from
left (r < r0) to right (r > r0). The π jump in twist angle is
accompanied by a singular disclination and appears as a
black line floating in the LC.
Figures 2(d)–2(f) show POM images of the sample with

r0 ¼ 107 μm. Between crossed polarizers, light is trans-
mitted where its polarization changes due to director
twisting. The disclination loop appears as a thin dark line
at approximately r ¼ r0, and it is also observed without the
analyzer. Insertion of a first order retardation plate
(λ ¼ 530 nm) shows that the twist sense is inverted at
the defect, but there is no tilt induced in the director since
no significant change in birefringence occurs near the
disclination.
Generally, disclinations possess a line tension and tend to

shrink [1,23]. However, the easy axis on the patterned

substrate is designed such that the elastic energy due to
director distortion increases with disclination shrinkage.
That is, because the twist angle can only change discon-
tinuously at the disclination, its displacement from position
r0 to (r0–Δr) causes the twist inversion to occur at twist
angles of (πΔr=r0 ∓ π=2) instead of ∓π=2. This increases
the twist component of the elastic energy, which is propor-
tional to the square of the twist rate [1]. The disclination
loop is stabilized where the free energy of the disclination
relieved by shrinkage is balanced by the increase in the
elastic energy [22] [see also Sec. I of the Supplemental
Material (SM) [24] ].
After confirming the generation of a disclination loop, an

electric field (1 kHz, 2.5 V) was applied between the
substrates. The electric field reorients the director
perpendicular to the substrates and untwists the director
[1], causing the disclination to shrink and annihilate over
time. When the field is removed after disclination annihi-
lation, the disclination does not reappear, but a nonsingular
wall loop is generated at r ∼ 1=2r0 [see Figs. 2(h)–2(j) and
Movie 1 in the SM [24] ]. The wall loop is stable and
disappears only when the sample is heated into the isotropic
phase, but upon reentering the nematic phase, the discli-
nation reappears, implying that the configuration with the
disclination has lower energy. The wall appears thicker than
the disclination and can also be observed without the
analyzer. Insertion of the retardation plate reveals a color
change in regions separated by the wall, implying again a
large change in twist angle at the wall. On the other hand,
the color changes inside the wall, implying that now there is
an out-of-plane tilt deformation of the director.
The above observations allow us to interpret the

disclination-to-wall transition mechanism as follows.
Consider a cross-section area of the cell containing a
section of the disclination that runs perpendicular to the
plane [Fig. 2(a)]. The topological properties of a line defect
can be analyzed by taking a circular path around the
disclination core and mapping the orientation along the
path on a sphere representing all of the possible orientation
directions (i.e., order parameter space) [2]. Defects in LCs
are also commonly characterized by their strength: it is the
number of 2π rotations of the director along a circular path
that surrounds the defect, and it can take half integers or
integers. In a three-dimensional nematic, defects with half-
integer strength can be continuously transformed into a
defect of strength 1=2, and those with integer strength can
be transformed into a uniformly aligned state with strength
0. Thus, the topological invariant, or charge, can take only
two values, either 1=2 or 0 (in terms of defect strength), and
must be conserved according to the following: 1=2þ 0 ¼
1=2 and 1=2þ 1=2 ¼ 0.
In Fig. 2(a), the disclination gives a contour on the order

parameter space terminating at diametrically opposite
points; it is a topologically stable singularity with charge
1=2. Because there is another defect with opposite strength

FIG. 1. Streamline representations of the orientational easy axis
on the (a) patterned and (b) uniform substrates.
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on the other side of the loop (at θ ¼ π), shrinkage of the
defect by the applied field causes the disclination to
eventually annihilate and give a net defect strength of 0.
When the field is removed, the most stable configuration
would be to have the two disclinations repositioned at their
initial positions (recall that this configuration is always
obtained through a thermal phase transition). However,
because the director is now everywhere continuous
and free of singularities, there is locally a topological
incompatibility that prohibits the regeneration of disclina-
tions. Instead of returning to a state with two defects of
charge 1=2, the system is required to relax into a state
with charge 0 everywhere, i.e., with 0 or integer defect
strength.
Since shrinkage of the disclination loop causes the right-

handed twist region (originally at r > r0) to extend to
below r0, a configuration with strength 0 corresponds to
one that is right-handed everywhere. On the other hand, the
configuration with strength 1 corresponds to one that
accommodates a wall with a 2π jump in twist angle
[23,25]. A completely right-handed configuration would
require the maximum twist angle to reach 3π=2 at r ¼ 0,
whereas, although the wall has high energy density and its

energy is proportional to its length, the maximum twist
angle can be reduced to ∼jπj if it is accommodated at
r ¼ r0=2, where the easy axes on the substrates are parallel
[Fig. 2(g)]. Thus, there is a competition between wall
shrinkage and minimization of director twist acting in
opposite directions, similar to the case of disclination.
Stabilization of the wall occurs as a result of the LC
relaxing into a topologically allowed configuration with
lowest energy.
We analyze the free energy landscape of the director

configuration with a wall loop and show that there is indeed
an equilibrium loop radius that minimizes the energy. We
base our analysis on a model for the wall proposed by
Turner [15], which describes the director distribution using
an analytical function with no singularities (Sec. II of the
SM [24]). The Turner distribution has been found to be a
close approximation to that obtained by minimizing the free
energy numerically [17]. A cylindrical coordinate system is
employed, with the uniform and patterned substrates placed
at z ¼ −d=2 and d=2, where d is the cell gap. A LC with
splay, twist, and bend elastic constants ofK11,K22, andK33

fills the cell and accommodates a circular wall loop with its
center at the origin and radius rw.

FIG. 2. Schematic of a LC cell with a (a) disclination loop and (b) wall loop. (c) Twist angle distribution between the substrates when a
disclination is present. Microscope images of the disclination loop (d) between crossed polarizers, (e) without a polarizer, and (f) with a
530 nm retardation plate, where X0 and Z0 are the fast and slow axes. (g) Twist angle distribution between the substrates when a wall is
present. Microscope images after wall generation (h) between crossed polarizers, (i) without an analyzer, and (j) with a retardation plate.
Scale bars, 100 μm.
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To satisfy the boundary conditions set by orientation patterning, we modify the Turner distribution and use the following,
nwðr; zÞ, for a wall positioned at r ¼ rw:

nw;x ¼ cos

�
π

�
1þ

�
− r
r0

þ 1

2

�
tanh

�
m

�
r − rw

����
z
d
þ 1

2

��
;

nw;y ¼ sin

�
π

�
1þ

�
− r
r0

þ 1

2

�
tanh

�
m

�
r − rw

����
z
d
þ 1

2

��
tanh

�
m

�
r − rw

��
;

nw;z ¼ sin
�
π

�
1þ

�
− r
r0

þ 1

2

�
tanh

�
m
�
r − rw

����
z
d
þ 1

2

��
sech

�
m
�
r − rw

��
: ð2Þ

The director changes its twist direction at r ¼ rw as well
as orienting perpendicular to the substrates, with a wall
thickness defined by the parameter m (Sec. III of the SM
[24]). Here we use the following form, which minimizes the
free energy for a parallel planar boundary condition [16]:

m ¼ π

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11 þ K33 − 2K22

3K22 þ K33

s
: ð3Þ

In Sec. IV of the SM [24], we evaluate the topological
charge of the modeled wall in a single r-z plane using
Eq. (2) and show that it is indeed different from the
disclination.
We numerically calculate the Oseen-Frank free energy of

LCs, F, using nw (Sec. V of the SM [24]) [1]. Figure 3(a)
plots F as a function of rw, where d ¼ 7.95 μm, and

r0 ¼ 107.2 μm as in the experiment, and K11 ¼ 4.85 pN,
K22 ¼ 3.1 pN, K22 ¼ 3.1 pN, K33 ¼ 6.1 pN for 5CB [26].
F has a local minimum at rw ¼ 48.7 μm, which agrees with
the experimental equilibrium radius at 49 μm. Note that the
proposed mechanism yields an equilibrium radius that is
always smaller than r0=2, where, intuitively, thewall is likely
to appear. In fact, Video 1 in the SM [24] shows a two-step
transition for wall generation and stabilization, where the
wall first appears at r0=2 and then shrinks to the equilibrium
position.
The validity of the model was investigated further by

varying r0 from 26.8 to 134 μm. Figure 3(b) compares the
experimentally measured and theoretically predicted wall
radii (the POM images shown in Sec. VI of the SM [24]).
For r0 > 50 μm, the experiment agrees well with theory,
with the deviation between the two falling within 3%.
For r0 ¼ 40.2 μm, the wall had an equilibrium radius of
15.2 μm, whereas theory predicted an equilibrium at r ¼ 0,
i.e., the director configuration without the wall to have
lower energy. While this discrepancy is believed to be a
result of nw not fulfilling the Euler-Lagrange equations, we
note that the energy difference between director configu-
rations with and without the wall approaches 0 at the
crossover of the stable state, which makes both configu-
rations equally stable and thus prone to small fluctuations.
Overall, the model reproduces the phenomenon more than
satisfactorily, validating the stabilization mechanism.
We also investigate the effect of varying r0 and d on the

wall stability. Figure 3(c) shows stabilities of the director
configuration with the wall relative to those without, where
the dashed line represents the crossover condition of the
stable configuration. Clearly, increasing stability is pre-
dicted for larger r0 and smaller d, which can be attributed to
the fact that the wall has to move over a greater area for
larger r0, and, the director twist rate, and hence the elastic
energy penalty upon wall shrinkage, increases for smaller
d. The results also allow us to infer that a steep change in
twist angle near the wall stabilizes it since the energy rises
quickly even for small shrinkage.
Finally, we extend our strategy to stabilize an arbitrarily

shaped wall loop. Figure 4 shows disclination and wall
loops stabilized in the shape of our school logo. The wall
appears approximately where the substrates have parallel
orientation, and its stability increases with a steeper

FIG. 3. (a) F vs rw for a cell with d ¼ 7.85 μm and
r0 ¼ 107.2 μm. (b) Experimental and theoretical equilibrium
wall positions vs r0. The solid line indicates the ideal position
of the wall with no shrinkage. (c) Stability of the director
configuration with the wall loop relative to the wall-free state
for different cell parameters. The dashed line indicates the
crossover between the two configurations.
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change in twist angle. Following this principle, we create
four regions in the shape of the logo and obtain the easy
axis distribution in each domain as numerical solutions to
Laplace’s equation. For the domains labeled I, II, and III
in the figure, the outer and inner boundary conditions are
set to (0, −π=2), (π=2, 0), and (0, 4π=9). The sample first
shows a disclination loop approximately at the boundary
of domains I and II. Upon applying and removing an
electric field, the disclination annihilates and a wall loop
appears approximately at the boundary of domains II and
III [Figs. 4(c) and 4(d); see also Sec. VII of the SM [24] ].
This demonstrates the versatility of our approach,
allowing meaningful symbols to be represented by stable
walls.
In conclusion, we demonstrated a topology-mediated

pathway for the generation of high-energy, nonsingular
wall loops in a nematic LC. This Letter is distinct from
other works in that a pure nematic LC with no inclusions
was used in a planar cell structure, and the generated loop,
which can be designed arbitrarily, is stable without a
sustaining electric field. Other than motivating the search
for designs to stabilize even higher energy defects, our
Letter opens the door to detailed investigations of defect
structure and dynamics [27], as well as their interaction
with various dopants. Surface patterning allows position-
ing of the defect, which is usually not possible with
colloid-induced defects, and thus is advantageous for
potential applications of defects. Considering the fact
that steep changes in the director affect not only the elastic
energy of the system but also the dielectric and rheologi-
cal properties, we anticipate the emergence of novel
phenomena and applications through the investigation
of defect-matter interactions in a controlled environment.
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