<table>
<thead>
<tr>
<th>Title</th>
<th>A Computational Model of Phase Transformation for Welding Processes (Mechanics, Strength & Structural Design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ueda, Yukio; Murakawa, Hidekazu; Luo, Yu</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 24(1) P.95-P.100</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-07</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/7571</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
A Computational Model of Phase Transformation for Welding Processes†

Yukio UEDA*, Hidekazu MURAKAWA**, Yu LUO***

Abstract

A new computational model of phase transformation for welding processes is developed. In this model, the SH-CCT diagram is used to decide when the phase transformations start, while the TTT diagram is used to calculate the fraction of the new phase. Since this model is not strongly influenced by the time increment during a nucleation period, it is suitable for the thermo-mechanical-metallurgical analysis of welding processes. The evolution of phase transformation for bead on plate welding has been simulated successfully. A good prediction of the phase transformation is achieved using the present model.

KEY WORDS: (Welding) (Phase Transformation) (Computational Model) (SH-CCT) (Bead on Plate Welding)

1. Introduction

An accurate prediction of the evolution of phase transformation during welding processes is necessary for the analysis of thermal-elastic-plastic stress in which phase transformation has an important role. It is also important to evaluate the strength of the welded joint by considering metallurgical factors. In general, there are two methods for the analysis of phase transformation, one is based on TTT (Time Temperature Transformation, or isothermal transformation) diagrams, another is based on CCT (Continuous Cooling Transformation) diagrams. By using a TTT diagram, the fraction of a new phase can be calculated easily according to the Mehli and Avrami phase growth law, but it is difficult to decide accurately when the transformation starts during the continuous cooling process. In order to maintain accuracy of computation, it is necessary to use very small time increments. On the other hand, it is easy to decide the starting time of transformation if a CCT diagram is used, but it is difficult to calculate the fraction of a new phase.

In the present research, a new computational model is developed, in which the SH-CCT diagram (Continuous Cooling Transformation diagram of a Synthetic Heat-affected zone) is used to decide when the phase transformations start, and the TTT diagram is used to calculate the fractions of a phase. The model was applied to predict the evolution of phase transformations during bead on plate welding.

2. Computational Model

The solid state phase transformations that occur in welding processes can be roughly categorized into the diffusional and the diffusionless transformations. For welding structural steels, the diffusional transformations involve Ferrite, Pearlite and Bainite transformations. The diffusionless transformation usually is Martensite transformation.

2.1 Diffusional transformation

Simulation of diffusional phase transformation comprises two stages: nucleation and phase growth.

2.1.1 nucleation

When the TTT diagram is used, the nucleation time can be determined by the condition that the Scheil sum is equal to unity. However, the accuracy of computation is
A Computational Model of Phase Transformation for Welding

![Diagram](image)

Fig. 1 Schematic drawing for calculation of material constant b

![Diagram](image)

Fig. 2 The computational procedure of the fraction
greatly influenced by the cooling rate and time increment. Thus, a method based on the SH-CCT diagram is employed in present model. In this method the nucleation time is determined as the time when the cooling curve crosses with SH-CCT curve.

2.1.2 Phase Growth

The experimental kinetics is fitted using a law proposed by Johnson and Mehl and Avrami,$^{3-6}$ that describes the phase growth during the isothermal transformation:

$$y = 1 - \exp(-bt^n) \quad (1)$$

where,

- y: the fraction of new phase
- t: time of isothermal transformation
- b, n: temperature dependent material constants

In this paper, it is assumed that n is equal to 4 (for homogeneous nucleation) and b is a function of temperature given according to the TTT diagram. For example, 50% phase transformation time ($t_{0.5}$) can be used to determine the material constant b. Figure 1 is a reference diagram for the calculation of the material constant b.

In this paper, the function $t_{0.5}(T)$ is assumed to be expressed as:

$$t_{0.5}(T) = \left(\frac{C_1}{T - T_t} \right)^{m_1} \left(\frac{C_2}{T_h - T} \right)^{m_2} \quad (2)$$

where,

- $t_{0.5}$: 50% phase transformation time
- T: temperature
- T_t: higher limit temperature of 50% transformation
- T_h: lower limit temperature of 50% transformation

It is reasonable to suppose that C_1, C_2, m_1 and m_2 are constants dependent only on material.

From Eq.(1), it is found that,

$$1 - \exp(-b[t_{0.5}(T)]^d) = 0.5$$

$$b[t_{0.5}(T)]^d \equiv 0.7$$

$$b = \frac{0.7}{t_{0.5}(T)} = 0.7 \left(\frac{T_i - T_t}{C_1} \right)^{4m_1} \left(\frac{T_h - T}{C_2} \right)^{4m_2} \quad (3)$$

If TTT diagram is given, it is easy to determine constants C_1, C_2, m_1, m_2, T_i and T_t. Then the function b can be decided.

The procedure of computing the fraction of new phase during the cooling process is shown in Fig. 2. To calculate the fraction of phase at the i-th step, the fictitious time t_i^* is calculated first. The fictitious time can be considered as the time at which the fraction of the phase under fictitious isothermal transformation at temperature T_i becomes the value achieved before the i-th step in the real process. From the fraction of phase y_{i-1} formed up to the end of the preceding time step, the fictitious time t_i^* can be calculated, i.e.,

$$t_i^* = \left[\frac{\ln (1 - y_{i-1})}{b_i} \right]^{1/d} \quad (4)$$

Then this fictitious time is increased by an increment Δt_i and a fictitious fraction of phase y_i^* is computed according the following equation.

$$y_i^* = 1 - \exp\{ -b_i(t_i^* + \Delta t_i)^d \} \quad (5)$$

The fraction of new phase y_i can be computed from the fictitious fraction of phase y_i^*, further corrected to take into account the maximum amount of new phase, i.e.,

$$y_i = y_i^* y_{\max} \quad (6)$$

where y_{\max} is the maximum amount of new phase that can be taken as a temperature-dependent variable, found from isothermal kinetics data.

2.2 Diffusionless transformation
In a welding process, the diffusionless transformation is Martensite transformation.

2.2.1 incubation

The problem of deciding when the diffusionless transformation starts is similar to that for the diffusional transformation. At the moment when the cooling curve crosses the Martensite transformation starting curve on the CCT diagram, the phase transformation starts.

2.2.2 phase growth

The fraction of Martensite is given by the following equation:

$$y_m = 1 - \exp\left\{ \Phi(T) \right\}$$

(7)

Fig. 3 The flowchart of phase transformation calculation
A Computational Model of Phase Transformation for Welding

The dilatation-temperature diagrams experimentally measured under high cooling rate from austenite temperature are employed to express the function of $\Phi(T)$. For example, T. Inoue\(^7\) employed the following function $\Phi(T)$ for S45C steel:

$$\Phi(T) = \begin{cases}
-4.046 \times 10^{-5} (M_s - T)^2, & \text{if } M_s - T < 62 \\
-1.580 \times 10^{-2} (328 - T)^2, & \text{if } M_s - T \geq 62
\end{cases} \quad (8)$$

$$Q=18\text{cal/mm}^3\text{s}$$

![Fig.4(a) Bead on plate welding model](image)

![Fig.4(b) TTT diagram](image)

![Fig.4(c) SH-CCT diagram](image)

3. Computational Program

The temperature distribution during a welding process has been calculated by FEM. The flowchart of the phase transformation analysis is given in Fig.3. At first, it is necessary to find the time when the element is cooled to 800°C. From this point, analysis of phase transformation for each element is carried out step by step. The second step is to decide which transformations occur in the element according to the position at which the cooling curve crosses the CCT curve. Then the fraction of new phase can be calculated based on Eqs.(3) - (8).

4. Application

As an example, the simulations of phase transformation in bead on plate welding were carried out using the program developed in this research.

4.1 Model for analysis

Figure 4(a) shows an example model of bead on plate welding computed by FEM. The width and the thickness of the plate are 2000mm and 20mm, respectively. The heat input rate for the present model is $Q=18\text{cal/mm}^3\text{s}$. The thermal properties are assumed to be the same as mild steel. The temperature distribution is calculated by FEM. The time step (Δt) is chosen to be 0.5 second in the present analysis. In this example, both the weld metal and the base metal are assumed to have the same properties. The TTT diagram is shown in Fig.4(b), and the SH-CCT diagram is given in Fig.4(c). To decide the material parameter b, describing the diffusional transformation, the TTT diagram and Eq.(3) are used. However, it is assumed that $m_1=m_2=C_1=C_2$ for simplicity. Then, the functions of b for Ferrite, Pearlite and Bainite transformations are given as follows, respectively

for Ferrite transformation:

$$b_f = 0.7 \frac{(T_i - 450)^{8.4}(720 - T_f)^{8.4}}{200^{16.8}} \quad (9)$$

for Pearlite transformation:

$$b_p = 0.7 \frac{(T_i - 450)^{8.4}(720 - T_f)^{8.4}}{200^{16.8}} \quad (10)$$

for Bainite transformation:

$$b_b = 0.7 \frac{(T_i - 380)^{9.2}(540 - T_f)^{9.2}}{150^{10.4}} \quad (11)$$

The function of $\Phi(T)$ which describes the Martensite transformation is assumed to be expressed as Eq.(8).
Fig. 5 The relation between cooling curve and SH-CCT diagram

Fig. 6 The evolution of phase fraction in bead on plate

4.2 Computed results

Figure 5 shows the cooling curves for the positions in the bead and the HAZ, superposed on the SH-CCT diagram. The average cooling rate from 800°C to 250°C is 4.35°C/sec. and 4.29°C/sec. for the surface (y=0mm) and HAZ (y=10mm), respectively. On the surface, the starting time of Ferrite, Bainite and Martensite transformations is 15sec., 35sec. and 105sec., and

Fig. 7 The phase fraction distribution on phase transformation zone
A Computational Model of Phase Transformation for Welding

Table 1 Model Comparison

<table>
<thead>
<tr>
<th>Transformation beginning time</th>
<th>Model I</th>
<th>Model II</th>
</tr>
</thead>
<tbody>
<tr>
<td>When Scheil Sum is equal to unity</td>
<td>When cooling curve crosses with SH-CCT</td>
<td></td>
</tr>
<tr>
<td>Calculation of b and n</td>
<td>According to two points on TTT</td>
<td>According to taso of TTT curve</td>
</tr>
<tr>
<td>Merit</td>
<td>CCT is unnecessary</td>
<td>Accurate prediction of nucleation time</td>
</tr>
<tr>
<td>Demerit</td>
<td>Poor accuracy for nucleation period</td>
<td>CCT is necessary</td>
</tr>
</tbody>
</table>

temperature is 531.3°C, 441.1°C and 276.0°C, respectively. In the HAZ, the starting time is 20sec., 40sec., and 110sec. The temperature is 587.9°C, 451.8°C, and 279.6°C, respectively. From Fig.5, it is seen that the differences between the cooling process on the plate surface and that at the HAZ are observed essentially in the time and the temperature at which the cooling curve crosses with CCT curve, not in the cooling rate. The evolution of phase fraction on the plate surface (x=0, y=0) and that at the HAZ (x=0, y=10) are shown in Figs.6 a) and b), respectively. From Fig.6 a) and Fig.6 b), it is seen that the structure on the surface is Ferrite 19.1%, Bainite 24.3% and Martensite 56.6%, while at the HAZ, that is 44.9%, 16.5% and 38.6%, respectively. It is clear that the fraction of each phase is very different. From Fig.5 and Fig.6, it can be summarized that the starting time of transformation plays an important role in phase transformation. Figure 7 shows phase fraction distribution near the welding bead after welding process. Figures 7. a), b) and c) show the phase fraction of Martensite, Bainite and Ferrite, respectively.

(2) The evolution of phase transformation for bead on plate welding has been simulated successfully. It has been shown that a good prediction of the phase transformation during welding process is achieved using present model.

(3) Since the proposed model is not strongly influenced by the time increment during nucleation period, it is suitable for the thermo-mechanical-metallurgical analysis.

Acknowledgment

The authors would like to thank Prof. Jacek RONDA for the valuable advice and suggestions.

References