Osaka University Knowledge Archive

Title	Limiting absorption principle for Dirac operator with constant magnetic field and long-range potential
Author(s)	Yokoyama, Koichiro
Citation	Osaka Journal of Mathematics. 2001, 38(3), p. $649-666$
Version Type	VoR
URL	https://doi.org/10.18910/7573
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

LIMITING ABSORPTION PRINCIPLE FOR DIRAC OPERATOR WITH CONSTANT MAGNETIC FIELD AND LONG-RANGE POTENTIAL

Koichiro YOKOYAMA

(Received December 20, 1999)

1. Introduction

The Dirac Hamiltonian with magnetic vector potential $\mathbf{a}=\left(a_{j}(x)\right)_{j=1, \ldots, d}$ is expressed by the following form

$$
\begin{equation*}
H(\mathbf{a})=\sum_{j=1}^{d} \gamma_{j}\left(P_{j}-a_{j}\right)+m \gamma_{d+1}+V \tag{1.1}
\end{equation*}
$$

where $P_{j}=1 / i \partial_{x_{j}}, V$ is a multiplication of an Hermitian matrix $V(x) . m$ is the mass of electron. The matrices $\left\{\gamma_{j}\right\}$ satisfy the following relations

$$
\begin{equation*}
\gamma_{j} \gamma_{k}+\gamma_{k} \gamma_{j}=2 \delta_{j k} \mathbf{1} \quad(j, k=1, \ldots, d+1) \tag{1.2}
\end{equation*}
$$

Here $\delta_{j k}$ is Kronecker's delta and $\mathbf{1}$ is an identity matrix. We assume that the speed of the light $c=1$. When $V \equiv 0$, the square of $H(\mathbf{a})$ has the form

$$
\begin{equation*}
H(\mathbf{a})^{2}=\sum_{j=1}^{d}\left(P_{j}-a_{j}\right)^{2}+m^{2}+\frac{1}{i} \sum_{1 \leq j<k \leq d} b_{j k}(x) \gamma_{j} \gamma_{k} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j k}(x)=\partial_{x_{k}} a_{j}(x)-\partial_{x_{j}} a_{k}(x) \tag{1.4}
\end{equation*}
$$

It is called Pauli's Hamiltonian. The skew symmetric matrix $\left(b_{j k}(x)\right)$ is the magnetic field associated with a. We say the magnetic field is asymptotically constant if it satisfies the following conditions as $|x| \rightarrow \infty$:

$$
\begin{equation*}
b_{j k}(x) \rightarrow{ }^{\exists} \Lambda_{j k} \quad(1 \leq j, k \leq d) \tag{1.5}
\end{equation*}
$$

where $\left(\Lambda_{j k}\right)_{j, k}$ is a constant matrix.
The aim of this paper is to prove the limiting absorption principle for $H(\mathbf{a})$ with a constant magnetic field $\left(b_{j k}(x)\right)$ and a long-range electric potential $V(x)$ when $d=3$.

Let us recall some known facts about the Dirac Hamiltonian with a constant magnetic field for $d=2,3$. As can be infered from (1.3), the spectrum of $H(\mathbf{a})$ is closely related with that of magnetic Schrödinger operator appearing in the right hand side of (1.3), which depends largely on the space dimension. Suppose $d=2$ at first. For simplicity we consider the case that the magnetic field $b(x)=\partial_{x_{2}} a_{1}(x)-\partial_{x_{1}} a_{2}(x)=\lambda>0$. In this case, the Dirac Hamiltonian $h(\lambda)$ is represented by

$$
\begin{equation*}
h(\lambda)=\sigma_{1}\left(P_{1}+\frac{\lambda}{2} x_{2}\right)+\sigma_{2}\left(P_{2}-\frac{\lambda}{2} x_{1}\right)+m \sigma_{3} \tag{1.6}
\end{equation*}
$$

with $\quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
They are called Pauli's spin matrices. Obviously $\left\{\sigma_{j}\right\}$ satisfy the relation (1.2) and by an elementary calculus we have

$$
\begin{equation*}
h(\lambda)^{2}=\left(P_{1}+\frac{\lambda}{2} x_{2}\right)^{2}+\left(P_{2}-\frac{\lambda}{2} x_{1}\right)^{2}+m^{2}-\lambda \sigma_{3} . \tag{1.7}
\end{equation*}
$$

The right hand side is a de-coupled 2 dimensional magnetic Schödinger operator. So it suggests that the spectrum of $h(\lambda)$ is discrete and

$$
\sigma(h(\lambda)) \subset\left\{ \pm \sqrt{2 \lambda n+m^{2}} \quad \mid n=0,1,2 \ldots\right\}
$$

In fact we have

$$
\sigma(h(\lambda))=\left\{\sqrt{2 \lambda n+m^{2}}, \quad-\sqrt{2 \lambda(n+1)+m^{2}} \mid n=0,1,2 \ldots\right\}
$$

by using Foldy-Wouthuysen transform. (See 7.1.3 in [10].) Therefore the spectrum of $h(\lambda)$ is of pure point with infinite multiplicities.

Next we consider the case of $d=3$. We assume

$$
\mathbf{a}_{0}(x)=\left(-\frac{\lambda x_{2}}{2}, \frac{\lambda x_{1}}{2}, 0\right) \quad(\lambda>0)
$$

Then the associated magnetic field is constant along x_{3}-axis :

$$
B(x)=\left(b_{32}(x), b_{13}(x), b_{21}(x)\right)=(0,0, \lambda)
$$

We denote the associated Dirac Hamiltonian as $H_{0}(\lambda)$. It is the following operator acting on $\mathbb{H}=L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$:

$$
\begin{equation*}
H_{0}(\lambda)=\alpha_{1}\left(P_{1}+\frac{\lambda x_{2}}{2}\right)+\alpha_{2}\left(P_{2}-\frac{\lambda x_{1}}{2}\right)+\alpha_{3} P_{3}+m \beta \tag{1.8}
\end{equation*}
$$

where $\left\{\alpha_{j}\right\}$ and β are 4×4 Hermitian matrices such that

$$
\alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \tag{1.9}\\
\sigma_{j} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right)
$$

We can easily see that these matrices also satisfy the relation (1.2). It is known that $H_{0}(\lambda)$ is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$. (See Theorem 4.3 in [10].) Now we consider the spectrum of $H_{0}(\lambda)$. At first we rewrite $H_{0}(\lambda)$ as follows.

$$
H_{0}(\lambda)=Q_{0}+m \beta=\left(\begin{array}{cc}
0 & D_{0} \tag{1.10}\\
D_{0} & 0
\end{array}\right)+\left(\begin{array}{cc}
m & 0 \\
0 & -m
\end{array}\right)
$$

with $D_{0}=\sigma \cdot\left(P-\mathbf{a}_{0}\right)$ and $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.
By using Foldy-Wouthuysen transform, explained in detail in the following section, $H_{0}(\lambda)$ can be diagonalized by a unitary operator $U_{F W}$.

$$
U_{F W} H_{0}(\lambda) U_{F W}^{-1}=\left(\begin{array}{cc}
\sqrt{D_{0}^{2}+m^{2}} & 0 \tag{1.11}\\
0 & -\sqrt{D_{0}^{2}+m^{2}}
\end{array}\right)
$$

From the commutation relation (1.2) we have

$$
\begin{equation*}
D_{0}^{2}=\left(P_{1}+\frac{\lambda x_{2}}{2}\right)^{2}+\left(P_{2}-\frac{\lambda x_{1}}{2}\right)^{2}+P_{3}^{2}-\lambda \beta \tag{1.12}
\end{equation*}
$$

We can easily see that $\sigma\left(D_{0}^{2}\right)=[0, \infty)$. So we have

$$
\sigma\left(H_{0}(\lambda)\right)=(-\infty,-m] \cup[m, \infty)
$$

Therefore in the 3 dimensional case, the spectrum of $H_{0}(\lambda)$ is absolutely continuous.
Let us consider the perturbation of $H_{0}(\lambda)$: We put

$$
\begin{equation*}
H(\lambda)=H_{0}(\lambda)+V \tag{1.13}
\end{equation*}
$$

Our aim is to show the so-called limiting absorption principle, namely the existence of the boundary value of the resolvent $(z-H(\lambda))^{-1}$ on the real axis. The precise assumption on V will be given in Section 3. It is closely related to the absence of singular continuous spectrum of the operator and the asymptotic completeness of the wave operator associated with $H_{0}(\lambda)$ and $H(\lambda)$. To prove the limiting absorption principle, we use Mourre's commutator method, which makes great progress for various Schrödinger operators. (For example, see [8].)

Suppose we are given a self-adjoint operator H on a separable Hilbert space. For a closed interval $I \subset \mathbb{R}$ we denote the spectral measure, corresponding to the interval
as $E_{I}(H)$. Once we find some self-adjoint operator A satisfying the following inequality, we obtain many informations about H :

$$
\begin{equation*}
E_{I}(H) i[H, A] E_{I}(H) \geq \alpha E_{I}(H)+K \tag{1.14}
\end{equation*}
$$

where α is a positive number and K is a compact operator. To be accurate, we can see the following properties hold.
(i) $\sigma_{p p}(H) \cap I$, the eigenvalues of H in I, are discrete.
(ii) The boundary value of the resolvent on $I \backslash \sigma_{p p}(H)$ exists in some weighted Hilbert space. (limiting absorption principle)

For example, we consider a usual Schrödinger operator

$$
H=-\Delta+V(x)
$$

Here $V(x)$ is a real valued function, which is decaying as $|x| \rightarrow \infty$. In this case we choose $A=1 /(2 i)\left\{x \cdot \nabla_{x}+\nabla_{x} \cdot x\right\}$ as the conjugate operator. Then the Mourre's inequality holds for any compact interval $I \subset \mathbb{R} \backslash\{0\}$. As a result one can show that $\sigma_{p p}(H)$ is discrete with no accumulation point except $\{0\}$. We denote $\langle\cdot\rangle=\left(|\cdot|^{2}+1\right)^{1 / 2}$. Then we can also see the boundary values

$$
\langle x\rangle^{-s}(H-\mu \mp i 0)^{-1}\langle x\rangle^{-s}
$$

exist in the operator norm for $s>1 / 2$ and $\mu \in \mathbb{R} \backslash\left(\{0\} \cup \sigma_{p p}(H)\right)$.
As for the Schrödinger operator with constant magnetic field, Iwashita [6] shows the limiting absorption principle for long-range potential by using commutator method. In [6] the following self-adjoint operator is considered.

$$
\begin{equation*}
\tilde{H}=\left(P_{1}+\frac{\lambda x_{2}}{2}\right)^{2}+\left(P_{2}-\frac{\lambda x_{1}}{2}\right)^{2}+P_{3}^{2}+V(x) \tag{1.15}
\end{equation*}
$$

A self-adjoint operator $A=1 / 2\left(P_{3} \cdot x_{3}+x_{3} \cdot P_{3}\right)$ is used as the conjugate operator. As a result, the existence of the boundary values

$$
\left\langle x_{3}\right\rangle^{-s}(\tilde{H}-\mu \mp i 0)^{-1}\left\langle x_{3}\right\rangle^{-s}
$$

is proved for $s>1 / 2$ and $\mu \in \mathbb{R} \backslash\left(\{\lambda(2 n+1) \mid n=0,1,2, \ldots\} \cup \sigma_{p p}(\tilde{H})\right)$.
Commutator method is also used for the free Dirac Hamiltonian and that with a scalar potential, which is decaying as $|x| \rightarrow \infty$. (See [2].) As for the electromagnetic Dirac Hamiltonian, asymptotic behavior of the solution of the Dirac equation is investigated in [3]. In their paper, the time dependent electromaginetic field $a_{j}(x, t)$ is required to satisfy the following properties.
(i) Each $a_{j}(x, t)$ satisfies the wave equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) a_{j}(x, t)=0
$$

(ii) The initial data $a_{j}(x, 0)$ and $\partial_{t} a_{j}(x, 0)$ are compactly supported in \mathbb{R}^{3}.

Hachem [5] showed the limiting absorption principle for the following electromagnetic Dirac Hamiltonian with a short-range potential $V(x)$.

$$
H=\alpha_{1} P_{1}+\alpha_{2}\left(P_{2}+\lambda x_{1}\right)+\alpha_{3} P_{3}+m \beta+V(x) .
$$

His idea is roughly as follows. First let us consider the case $V \equiv 0$. By passing to the Fourier transformation with respect to x_{2}, x_{3}-variables we denote $F_{0} H F_{0}^{*}$ as $D(p)$ ($p=\left(p_{2}, p_{3}\right)$). Then we have

$$
\begin{equation*}
D(p)^{2}=A_{+}(p) \oplus A_{-}(p) \oplus A_{+}(p) \oplus A_{-}(p), \tag{1.16}
\end{equation*}
$$

where $A_{ \pm}(p)$ are harmonic oscillators defined as follows.

$$
\begin{equation*}
A_{ \pm}(p)=-\frac{d^{2}}{d x_{1}^{2}}+\left(\lambda x_{1}+p_{2}\right)^{2} \pm \lambda+p_{3}^{2}+m^{2} \tag{1.17}
\end{equation*}
$$

He then switched on the short-range potential $V(x)$ by perturbative argument. Roughly speaking, his assumption means that the absolute value of each component of V is dominated from above by $C\left\langle x^{\prime}\right\rangle^{-1-\epsilon}\langle x\rangle^{-\epsilon}\left(x^{\prime}=\left(x_{2}, x_{3}\right)\right)$ for sufficiently large x. We remark that $\epsilon>0$ is used as a sufficiently small parameter throughout this paper. To be accurate, $\left\langle x^{\prime}\right\rangle^{1+\epsilon} V(x)$ is required to be a $H_{0}(\lambda)$-compact operator.

In this paper we treat directly the following operator

$$
\begin{equation*}
H(\lambda)=\alpha_{1}\left(P_{1}+\frac{\lambda}{2} x_{2}\right)+\alpha_{2}\left(P_{2}-\frac{\lambda}{2} x_{1}\right)+\alpha_{3} P_{3}+m \beta+V(x), \tag{1.18}
\end{equation*}
$$

where $V(x)$ is a matrix potential. Our strategy is to apply Mourre's commutator method directly to this operator, which enables us to include the long-range diagonal components for $V(x)$. In this case it seems that an appropriate choice of the conjugate operator is

$$
\frac{P_{3}}{\left\langle P_{3}\right\rangle} \cdot x_{3}+x_{3} \cdot \frac{P_{3}}{\left\langle P_{3}\right\rangle},
$$

which is inspired by [11], when we proved the limiting absorption principle for timeperiodic Schrödinger operator. In fact the method of the proof shares many ideas in common with [11]. Namely we rewrite $H_{0}(\lambda)$ by a direct integral and the conjugate operator A acts on each space of fiber. Our main results are Theorem 3.4 and Corollary 3.7.

2. Conjugate operator

Let us recall

$$
Q_{0}=\left(\begin{array}{cc}
0 & D_{0} \tag{2.1}\\
D_{0} & 0
\end{array}\right), \quad D_{0}=\sigma\left(P-\mathbf{a}_{0}\right)
$$

with

$$
\begin{equation*}
\mathbf{a}_{0}(x)=\left(-\frac{\lambda x_{2}}{2}, \frac{\lambda x_{1}}{2}, 0\right) \tag{2.2}
\end{equation*}
$$

The Dirac Hamiltonian $Q_{0}+m \beta$ can be diagonalized by sandwiching it between a unitary operator U and $U^{*}=U^{-1}$. In the beginning of this section we introduce a unitary operator which diagonalizes the self-adjoint operator $H_{0}(\lambda)$. Secondly we give a conjugate operator associated with the diagonalized Dirac Hamiltonian. Finally we show Mourre's inequality for original Hamiltonians $H_{0}(\lambda)$ and $H(\lambda)$.

Let Q_{0} be the self-adjoint operator as in (2.1) and $\left|Q_{0}\right|=\sqrt{Q_{0}^{2}},\left|H_{0}(\lambda)\right|=$ $\sqrt{H_{0}(\lambda)^{2}}$. We define a unitary operator $U_{F W}$, which diagonalizes $H_{0}(\lambda)$, in the following way.

Definition 2.1. (i) At first we define a signature function associated with Q_{0} by

$$
\operatorname{sgn} Q_{0}=\left\{\begin{align*}
\frac{Q_{0}}{\left|Q_{0}\right|}, & \text { on }\left(\operatorname{ker} Q_{0}\right)^{\perp} \tag{2.3}\\
0, & \text { on }\left(\operatorname{ker} Q_{0}\right)
\end{align*}\right.
$$

We note that $\operatorname{sgn} Q_{0}$ is isometory on $\left(\operatorname{ker} Q_{0}\right)^{\perp}$.
(ii) We can easily see that $m /\left|H_{0}(\lambda)\right| \leq 1$. So we denote the square root of $1 / 2(1 \pm$ $\left.m /\left|H_{0}(\lambda)\right|\right)$ as $a_{ \pm}$. i.e.

$$
\begin{equation*}
a_{ \pm}=\frac{1}{\sqrt{2}} \sqrt{1 \pm \frac{m}{\left|H_{0}(\lambda)\right|}} \tag{2.4}
\end{equation*}
$$

(iii) Combining these operators we define the operator $U_{F W}$ as

$$
\begin{equation*}
U_{F W}=a_{+}+\beta\left(\operatorname{sgn} Q_{0}\right) a_{-} . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. (i) $U_{F W}$ is a unitary operator on $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$.
Further,

$$
\begin{equation*}
U_{F W}^{*}=U_{F W}^{-1}=a_{+}-\beta\left(\operatorname{sgn} Q_{0}\right) a_{-} . \tag{2.6}
\end{equation*}
$$

(ii) $H_{0}(\lambda)$ can be diagonalized by $U_{F W}$ as follows.

$$
U_{F W} H_{0}(\lambda) U_{F W}^{-1}=\left|H_{0}(\lambda)\right| \beta=\left(\begin{array}{cc}
\sqrt{D_{0}^{2}+m^{2}} & 0 \tag{2.7}\\
0 & -\sqrt{D_{0}^{2}+m^{2}}
\end{array}\right)
$$

Proof. See 5.6.1 in [10].
We denote the diagonalized Dirac Hamiltonian as $\hat{H}_{0}(\lambda)$. i.e.

$$
\hat{H}_{0}(\lambda)=U_{F W} H_{0}(\lambda) U_{F W}^{-1} .
$$

We rewrite (1.12) as follows.

$$
D_{0}^{2}=\left(\begin{array}{cc}
D_{-} & 0 \\
0 & D_{+}
\end{array}\right)
$$

Here $D_{ \pm}$are the operators acting on $L^{2}\left(\mathbb{R}^{3}\right)$ such that

$$
D_{ \pm}=\left(P_{1}+\frac{\lambda}{2} x_{2}\right)^{2}+\left(P_{2}-\frac{\lambda}{2} x_{1}\right)^{2}+P_{3}^{2} \pm \lambda
$$

It is well-known that $\left(P_{1}+\lambda / 2 x_{2}\right)^{2}+\left(P_{2}-\lambda / 2 x_{1}\right)^{2}$ has eigenvalues

$$
\{\lambda(2 n+1) \mid n=0,1,2, \ldots\} .
$$

We denote the eigenprojection on each eigenspace as Π_{n}. With these projections, $\sqrt{D_{0}^{2}+m^{2}}$ can be rewritten as follows.

$$
\sqrt{D_{0}^{2}+m^{2}}=\sum_{n=0}^{\infty}\left(\begin{array}{cc}
d_{n} \otimes \Pi_{n} & 0 \tag{2.8}\\
0 & d_{n+1} \otimes \Pi_{n}
\end{array}\right),
$$

with $d_{n}=d_{n}\left(P_{3}\right)=\sqrt{2 \lambda n+P_{3}^{2}+m^{2}}$.
Combining (2.7) and (2.8), we have

$$
\begin{aligned}
& f\left(\hat{H}_{0}(\lambda)\right)= \\
& \sum_{n=0}^{\infty}\left(\begin{array}{ccc}
f\left(d_{n}\right) \otimes \Pi_{n} & \\
& f\left(d_{n+1}\right) \otimes \Pi_{n} & \\
& & f\left(-d_{n}\right) \otimes \Pi_{n} \\
& & \\
& & f\left(-d_{n+1}\right) \otimes \Pi_{n}
\end{array}\right),
\end{aligned}
$$

for any Borel function f.
Now we define the conjugate operator. At first we define

$$
\begin{equation*}
\hat{A}=\frac{1}{2}\left\{\frac{P_{3}}{\left\langle P_{3}\right\rangle} \cdot x_{3}+x_{3} \cdot \frac{P_{3}}{\left\langle P_{3}\right\rangle}\right\} . \tag{2.9}
\end{equation*}
$$

We note that \hat{A} is essentially self-adjoint operator on $D\left(\left|x_{3}\right|\right)$. (It is obtained by use of Nelson's commutator theorem [9].) The conjugate operator for the Dirac Hamiltonian
associated with constant magnetic field is defined by sandwiching $\hat{A} \beta$ between $U_{F W}^{-1}$ and $U_{F W}$:

$$
\begin{equation*}
A=U_{F W}^{-1}(\hat{A} \beta) U_{F W} \tag{2.10}
\end{equation*}
$$

Letting F be a Fourier transformation with respect to x_{3}-variable. We define the selfadjoint operator A_{F} by $F \hat{A} F^{-1}$. Then we have

$$
\begin{equation*}
\left(e^{i t A_{F}} \phi\right)\left(x_{1}, x_{2}, p_{3}\right)=\left|\frac{\partial \Gamma_{t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi\left(x_{1}, x_{2}, \Gamma_{t}\left(p_{3}\right)\right), \tag{2.11}
\end{equation*}
$$

for $\phi \in L^{2}\left(\mathbb{R}_{x}^{2} \times \mathbb{R}_{p}\right)$. Here Γ_{t} is a solution of the following equation.

$$
\left\{\begin{array}{l}
\frac{d}{d t} \Gamma_{t}\left(p_{3}\right)=\left\langle\Gamma_{t}\left(p_{3}\right)\right\rangle^{-1} \Gamma_{t}\left(p_{3}\right) \tag{2.12}\\
\Gamma_{0}\left(p_{3}\right)=p_{3}
\end{array}\right.
$$

For the proof, see Appendix 1 in [8]. Therefore the unitary group $e^{i t \hat{A} \beta}$ is rewritten

$$
\left(F e^{i t \hat{A} \beta} F^{-1} \phi\right)\left(x_{1}, x_{2}, p_{3}\right)=\left(\begin{array}{c}
\left|\frac{\partial \Gamma_{t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{1}\left(x_{1}, x_{2}, \Gamma_{t}\left(p_{3}\right)\right) \tag{2.13}\\
\left|\frac{\partial \Gamma_{t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{2}\left(x_{1}, x_{2}, \Gamma_{t}\left(p_{3}\right)\right) \\
\left|\frac{\partial \Gamma_{-t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{3}\left(x_{1}, x_{2}, \Gamma_{-t}\left(p_{3}\right)\right) \\
\left|\frac{\partial \Gamma_{-t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{4}\left(x_{1}, x_{2}, \Gamma_{-t}\left(p_{3}\right)\right)
\end{array}\right) .
$$

Before we compute the commutator $i[H(\lambda), A]$, we have to care that the following matters hold.

Lemma 2.3. (i) A is a self-adjoint operator on \mathbb{H}.
(ii) $e^{-i t A}$ leaves $D\left(H_{0}(\lambda)\right)$ invariant, i.e.

$$
\begin{equation*}
\sup _{|t| \leq 1}\left\|H_{0}(\lambda) e^{i t A}\left(H_{0}(\lambda)+i\right)^{-1} \phi\right\|_{\mathbb{H}}<\infty \quad \text { for } \quad \phi \in \mathbb{H}, \tag{2.14}
\end{equation*}
$$

where $\|\cdot\|_{\mathbb{H}}$ denotes the operator norm on \mathbb{H}.
Proof. The self-adjointness of A is easily obtained from that of $\hat{A} \beta$. To see the invariance of $D\left(H_{0}(\lambda)\right)$, it is sufficient to show the following

$$
\begin{equation*}
\sup _{|t| \leq 1}\left\|\hat{H}_{0}(\lambda) e^{i t \hat{A} \beta}\left(\hat{H}_{0}(\lambda)+i\right)^{-1} \phi\right\|_{\mathbb{H}}<\infty \quad \text { for } \quad \phi \in \mathbb{H} . \tag{2.15}
\end{equation*}
$$

From the arguements (2.11) and (2.13), we have

$$
\begin{aligned}
& F \hat{H}_{0}(\lambda) e^{i t \hat{A} \beta}\left(\hat{H}_{0}(\lambda)+i\right)^{-1} F^{-1} \phi \\
& =\sum_{n=0}^{\infty}\left(\begin{array}{l}
D_{n, t}^{+}\left|\frac{\partial \Gamma_{t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{1}\left(x_{1}, x_{2}, \Gamma_{t}\left(p_{3}\right)\right) \\
D_{n+1, t}^{+}\left|\frac{\partial \Gamma_{t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{2}\left(x_{1}, x_{2}, \Gamma_{t}\left(p_{3}\right)\right) \\
D_{n,-t}^{-}\left|\frac{\partial \Gamma_{-t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{3}\left(x_{1}, x_{2}, \Gamma_{-t}\left(p_{3}\right)\right) \\
D_{n+1,-t}^{-}\left|\frac{\partial \Gamma_{-t}}{\partial p_{3}}\left(p_{3}\right)\right|^{1 / 2} \phi_{4}\left(x_{1}, x_{2}, \Gamma_{-t}\left(p_{3}\right)\right)
\end{array}\right)
\end{aligned}
$$

where $D_{n, \alpha}^{ \pm}=d_{n}\left(p_{3}\right)\left(d_{n}\left(\Gamma_{\alpha}\left(p_{3}\right)\right) \pm i\right)^{-1} \otimes \Pi_{n}$. By integrating (2.12), we have

$$
\begin{equation*}
\left|\Gamma_{\alpha}\left(p_{3}\right)-p_{3}\right| \leq 1 \quad(|\alpha| \leq 1) . \tag{2.16}
\end{equation*}
$$

So (2.14) is obtained from the fact that $D_{n, \alpha}^{ \pm}$is bounded uniformly for $n \in \mathbb{N}$ and $|\alpha| \leq 1$.

Before we show Mourre's inequality, we introduce the usual functional calculus, started by Helffer and Sjöstrand.

Suppose that $f \in C^{\infty}(\mathbb{R})$ satisfies the following condition for some $m_{0} \in \mathbb{R}$.

$$
\begin{equation*}
\left|f^{(k)}(t)\right| \leq C_{k}(1+|t|)^{m_{0}-k}, \quad{ }^{\forall} k \in \mathbb{N} \cup\{0\} . \tag{2.17}
\end{equation*}
$$

Then we can construct an almost analytic extension $\tilde{f}(z)$ of $f(t)$ having the following properties

$$
\begin{gather*}
\tilde{f}(t)=f(t), \quad t \in \mathbb{R}, \\
\operatorname{supp} \tilde{f} \subset\{z ;|\operatorname{Im} z| \leq 1+|\operatorname{Re} z|\}, \\
\left|\partial_{\bar{z}} \tilde{f}(z)\right| \leq C_{N}|\operatorname{Im} z|^{N}\langle z\rangle^{m_{0}-1-N}, \quad{ }^{\forall} N \in \mathbb{N} . \tag{2.18}
\end{gather*}
$$

Then for all f, satisfying (2.17) for $m_{0}<0$ and a self-adjoint operator H, we have

$$
\begin{equation*}
f(H)=\frac{1}{2 \pi i} \int_{\mathbb{C}} \frac{\partial \tilde{f}}{\partial \bar{z}}(z)(z-H)^{-1} d z \wedge d \bar{z} \tag{2.19}
\end{equation*}
$$

With this form, we can compute the commutator of an operator P and $g(A)$ in the following way.

For operators P and Q, we define $a d_{Q}^{0}(P)=P$ and inductively $a d_{Q}^{m}(P)=$ $\left[a d_{Q}^{m-1}(P), Q\right]$ for $m \in \mathbb{N}$.

Lemma 2.4. Let A and P be self-adjoint operators on \mathbb{H}. Suppose that $a d_{A}^{m}(P)(A+i)^{-m}$ extends to a bounded operator for $1 \leq m \leq n$. Then for any $g \in C^{\infty}(\mathbb{R})$ satisfying (2.17) with $m_{0}<0$, we have

$$
\begin{equation*}
P g(A)=\sum_{m=0}^{n-1} \frac{g^{(m)}(A)}{m!} a d_{A}^{m}(P)+\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{g}(z) R_{n, A, P}^{r}(z) d z \wedge d \bar{z} \tag{2.20}
\end{equation*}
$$

where $R_{n, A, P}^{r}(z)=(z-A)^{-n} a d_{A}^{n}(P)(z-A)^{-1}$, and

$$
\begin{equation*}
g(A) P=\sum_{m=0}^{n-1} a d_{A}^{m}(P) \frac{(-1)^{m}}{m!} g^{(m)}(A)+\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{g}(z) R_{n, A, P}^{l}(z) d z \wedge d \bar{z} \tag{2.21}
\end{equation*}
$$

where $R_{n, A, P}^{l}(z)=(z-A)^{-1} a d_{A}^{n}(P)(z-A)^{-n}$ and $\tilde{g}(z)$ denotes an almost analytic extension of $g(t)$.

For the proof of above results, see [4].

3. Limiting absorption principle for long-range potentials

Now we show the Mourre's inequality for the Dirac Hamiltonian by choosing A defined in the previous section as the conjugate operator.

Lemma 3.1. Let $\mathbb{R}_{\mathbb{N}}$ be the following discrete subset of \mathbb{R}

$$
\mathbb{R}_{\mathbb{N}}=\left\{ \pm \sqrt{2 \lambda n+m^{2}} \quad \mid n=0,1,2, \ldots\right\} \subset \mathbb{R} .
$$

We take a compact interval $I \subset \mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}$ arbitrarily. Then there exists $\alpha>0$ such that the following inequality holds for any real valued $f \in C_{0}^{\infty}(I)$

$$
\begin{equation*}
f\left(H_{0}(\lambda)\right) i\left[H_{0}(\lambda), A\right] f\left(H_{0}(\lambda)\right) \geq \alpha f\left(H_{0}(\lambda)\right)^{2} \tag{3.1}
\end{equation*}
$$

Proof. By the relations (2.7) and (2.10), it is sufficient to show the inequality

$$
\begin{equation*}
f\left(\hat{H}_{0}(\lambda)\right) i\left[\hat{H}_{0}(\lambda), \hat{A} \beta\right] f\left(\hat{H}_{0}(\lambda)\right) \geq \alpha f\left(\hat{H}_{0}(\lambda)\right)^{2} \tag{3.2}
\end{equation*}
$$

We rewrite the commutator as follow.

$$
i\left[\hat{H}_{0}(\lambda), \hat{A} \beta\right]=\left(\begin{array}{ll}
i\left[\sqrt{D_{0}^{2}+m^{2}}, \hat{A}\right] & \tag{3.3}\\
& i\left[\sqrt{D_{0}^{2}+m^{2}}, \hat{A}\right]
\end{array}\right)
$$

We proceed the calculus more precisely to see that

$$
\begin{equation*}
i\left[\sqrt{D_{0}^{2}+m^{2}}, \hat{A}\right]=\sum_{n=0}^{\infty}\binom{i\left[d_{n}, \hat{A}\right] \otimes \Pi_{n}}{i\left[d_{n+1}, \hat{A}\right] \otimes \Pi_{n}} \tag{3.4}
\end{equation*}
$$

by (2.8). From (3.3) and (3.4) the left hand side of (3.2) is rewritten as

$$
f\left(\hat{H}_{0}(\lambda)\right) i\left[\hat{H}_{0}(\lambda), \hat{A} \beta\right] f\left(\hat{H}_{0}(\lambda)\right)=\left(\begin{array}{lllll}
I_{1} & & & \tag{3.5}\\
& I_{2} & & \\
& & I_{3} & \\
& & & I_{4}
\end{array}\right)
$$

where

$$
\begin{aligned}
& I_{1}=\sum_{n=0}^{\infty} f\left(d_{n}\right) i\left[d_{n}, \hat{A}\right] f\left(d_{n}\right) \otimes \Pi_{n}, \\
& I_{2}=\sum_{n=0}^{\infty} f\left(d_{n+1}\right) i\left[d_{n+1}, \hat{A}\right] f\left(d_{n+1}\right) \otimes \Pi_{n}, \\
& I_{3}=\sum_{n=0}^{\infty} f\left(-d_{n}\right) i\left[d_{n}, \hat{A}\right] f\left(-d_{n}\right) \otimes \Pi_{n}, \\
& I_{4}=\sum_{n=0}^{\infty} f\left(-d_{n+1}\right) i\left[d_{n+1}, \hat{A}\right] f\left(-d_{n+1}\right) \otimes \Pi_{n} .
\end{aligned}
$$

We note that all the sum in I_{1}, \ldots, I_{4} are finite since f is a compactly supported function. By an elementary caluculus, we have

$$
\begin{equation*}
i\left[d_{l}, \hat{A}\right]=\frac{P_{3}^{2}}{\sqrt{2 \lambda l+P_{3}^{2}+m^{2}}\left\langle P_{3}\right\rangle} \quad(l \in \mathbb{N} \cup\{0\}) . \tag{3.6}
\end{equation*}
$$

Since $\operatorname{supp} f \subset I \subset \mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}, P_{3}$ is away from zero when $P_{3} \in \operatorname{supp} f\left(d_{l}\left(P_{3}\right)\right)$ or $P_{3} \in \operatorname{supp} f\left(-d_{l}\left(P_{3}\right)\right)$. So there exist $C_{l}>0$ such that

$$
\begin{array}{r}
f\left(d_{l}\right) i\left[d_{l}, \hat{A}\right] f\left(d_{l}\right) \otimes \Pi_{l} \geq C_{l} f\left(d_{l}\right)^{2} \otimes \Pi_{l}, \\
f\left(-d_{l}\right) i\left[d_{l}, \hat{A}\right] f\left(-d_{l}\right) \otimes \Pi_{l} \geq C_{l} f\left(-d_{l}\right)^{2} \otimes \Pi_{l} .
\end{array}
$$

Since only a finite number of $l=l_{j} \quad(j=1, \ldots, N)$ is concerned, we have (3.2) with $\alpha=\inf _{j=1 \ldots, N} C_{l_{j}}$.

Now we give the assumption for the potential, which is necessary to prove Mourre's inequality associated to $H(\lambda)$. After that we give an example of V satisfying this assumption. The potential V consists of a sum of long-range part and short-range
part. In our case short-range potential means $V(x)=O\left(\langle x\rangle^{-\epsilon}\left\langle x_{3}\right\rangle^{-1-\epsilon}\right)$ as $|x| \rightarrow \infty$. And long-range part is a multiplication of a real valued function $\varphi(x)$ such that $\varphi(x)=$ $O\left(\langle x\rangle^{-\epsilon}\right)$ as $|x| \rightarrow \infty$. More precisely we assume that V satisfies the following.

Assumption 3.2. $\quad V=V(x)$ is a multiplicative operator of a 4×4 Hermitian matrix satisfying the following properties.
(i) V is a $H_{0}(\lambda)$-compact operator.
(ii) The form $[V, A]$ can be extended to a $H_{0}(\lambda)$-compact operator.

For example a 4×4 matrix $V(x)$ satisfying the following inequality is $H_{0}(\lambda)$-compact.

$$
\begin{equation*}
|V(x)| \leq C\langle x\rangle^{-\epsilon} \quad\left(x \in \mathbb{R}^{3}\right) \tag{3.7}
\end{equation*}
$$

It is owing to the fact that $V(x)\left(-\Delta_{x}+1\right)^{-1}$ is compact. (It is due to Theorem 2.6 in [1].) Under this assumption we show Mourre's inequality for $H(\lambda)$.

Lemma 3.3. Suppose V satisfies Assumption 3.2.
(i) We take $\mu \in \mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}$ and $\delta>0$ so that the closed interval $I \equiv[\mu-\delta, \mu+\delta] \subset$ $\mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}$. There exist $\alpha>0$ and a compact operator K such that the following inequality holds for all $f \in C_{0}^{\infty}(I)$.

$$
\begin{equation*}
f(H(\lambda)) i[H(\lambda), A] f(H(\lambda)) \geq \alpha f(H(\lambda))^{2}+K \tag{3.8}
\end{equation*}
$$

(ii) There is no accumulation point of $\sigma_{p p}(H(\lambda))$ in $\mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}$. For $\mu \in \mathbb{R} \backslash\left(\mathbb{R}_{\mathbb{N}} \cup\right.$ $\left.\sigma_{p p}(H(\lambda))\right)$, there exist $\delta_{0}>0$ and $\alpha_{0}>0$ such that the following inequality holds for all $f \in C_{0}^{\infty}\left(\left[\mu-\delta_{0}, \mu+\delta_{0}\right]\right)$.

$$
\begin{equation*}
f(H(\lambda)) i[H(\lambda), A] f(H(\lambda)) \geq \alpha_{0} f(H(\lambda))^{2} \tag{3.9}
\end{equation*}
$$

Proof. From (2.19) we have

$$
f(H(\lambda))-f\left(H_{0}(\lambda)\right)=\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} f(z)(z-H(\lambda))^{-1} V\left(z-H_{0}(\lambda)\right)^{-1} d z \wedge d \bar{z}
$$

for $f \in C_{0}^{\infty}(\mathbb{R})$. We can easily see that $f(H(\lambda))-f\left(H_{0}(\lambda)\right)$ is a compact operator since $V\left(H_{0}(\lambda)+i\right)^{-1}$ is compact. Combing this fact and (3.1), we have (3.8) by replacing $f\left(H_{0}(\lambda)\right)$ in (3.1) by $f(H(\lambda))$. As for the non-existence of the accumulation point of $\sigma_{p p}(H(\lambda))$, see Theorem 2.2 in [7]. (3.9) follows from the arguement in [8]

With this inequality we have the limiting absorption principle for the Dirac Hamiltonian.

Theorem 3.4. Let $s>1 / 2$. Suppose V satisfies Assumption 3.2. Then for $\mu \in$ $\mathbb{R} \backslash\left(\mathbb{R}_{\mathbb{N}} \cup \sigma_{p p}(H(\lambda))\right)$, the following limits

$$
\begin{equation*}
R^{ \pm}(\mu)=\lim _{\epsilon \downarrow 0}\left\langle x_{3}\right\rangle^{-s}(H(\lambda)-\mu \mp i \epsilon)^{-1}\left\langle x_{3}\right\rangle^{-s} \tag{3.10}
\end{equation*}
$$ exist and $R^{ \pm}(\mu)$ are continuous with respect to $\mu \in \mathbb{R} \backslash\left(\mathbb{R}_{\mathbb{N}} \cup \sigma_{p p}(H(\lambda))\right)$.

Sketch of proof
From (3.9) and Theorem 2.2 in [7], we can see that the boundary value $\langle A\rangle^{-s}(H(\lambda)-$ $\mu \mp i 0)^{-1}\langle A\rangle^{-s}$ exist for $\mu \in \mathbb{R} \backslash\left(\mathbb{R}_{\mathbb{N}} \cup \sigma_{p p}(H(\lambda))\right)$. To see the existence of (3.10), it is sufficient to show the boundedness of $\langle A\rangle^{s}\left\langle x_{3}\right\rangle^{-s}$. Since $\langle\hat{A}\rangle^{s}\left\langle x_{3}\right\rangle^{-s}$ is bounded, it is sufficient to show $\left\langle x_{3}\right\rangle^{s} U_{F W}\left\langle x_{3}\right\rangle^{-s}$ is bounded. We prove it in the following Lemma. Before that we introduce smooth functions. Let $\chi(t) \in C^{\infty}(\mathbb{R})$ such that

$$
\chi(t)= \begin{cases}\frac{1}{\sqrt{2}} & \left(t>-\frac{m^{2}}{3}\right) \tag{3.11}\\ 0 & \left(t<-\frac{2 m^{2}}{3}\right)\end{cases}
$$

With this function we define $F_{ \pm}(t)$ and $F_{\chi, \pm}$ as follows.

$$
\begin{aligned}
F_{+}(t) & =\chi(t) \sqrt{1+\frac{m}{\sqrt{t+m^{2}}}} \\
F_{-}(t) & =\chi(t)\left(\sqrt{1+\frac{m}{\sqrt{t+m^{2}}}}\right)^{-1} \frac{1}{\sqrt{t+m^{2}}} \\
F_{\chi,+}(t) & =F_{+}(t)-\chi(t) \\
F_{\chi,-}(t) & =\sqrt{t+m^{2}} F_{-}(t)-\chi(t)
\end{aligned}
$$

Then we can easily verify that

$$
\begin{aligned}
& a_{+}=F_{+}\left(Q_{0}^{2}\right), \\
& a_{-} \operatorname{sgn} Q_{0}=F_{-}\left(Q_{0}^{2}\right) Q_{0}=Q_{0} F_{-}\left(Q_{0}^{2}\right)
\end{aligned}
$$

Obviously $\left[Q_{0}, F_{-}\left(Q_{0}^{2}\right)\right]=0$. By the construction of these functions, we can also see that $F_{\chi, \pm}(t)$ satisfy (2.17) with $m_{0}<0$. So we apply the functional calculus in Section 2 to $F_{\chi, \pm}(t)$ and see the following properties hold.

Lemma 3.5. Suppose $0 \leq s \leq 2$ and $z \in \mathbb{C} \backslash \mathbb{R}$. Then
(i) For $0<s \leq 1$, there exists $C_{s}>0$ such that

$$
\begin{equation*}
\left\|\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}\right\|_{\mathbb{H}} \leq C_{S}\left(|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle\right) . \tag{3.12}
\end{equation*}
$$

(ii) For $1<s \leq 2$, there exists $C_{s}^{\prime}>0$ such that

$$
\begin{equation*}
\left\|\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}\right\|_{\mathbb{H}} \leq C_{s}^{\prime}\left(|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^{2}\right) . \tag{3.13}
\end{equation*}
$$

(iii) $\langle x\rangle^{s} F_{+}\left(Q_{0}^{2}\right)\langle x\rangle^{-s}$ and $\langle x\rangle^{s} F_{-}\left(Q_{0}^{2}\right) Q_{0}\langle x\rangle^{-s}$ are bounded operators.

Proof. For the proof of (i) and (ii), we use the resolvent equation. Suppose $0<$ $s \leq 1$. Then

$$
\begin{align*}
\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}= & \left(z-Q_{0}^{2}\right)^{-1}+\left(z-Q_{0}^{2}\right)^{-1}\left(Q_{0}^{2}+1\right) \tag{3.14}\\
& \times\left(Q_{0}^{2}+1\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right]\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s} . \tag{3.15}
\end{align*}
$$

From the boundedness of $\left(Q_{0}^{2}+1\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right]$ and the following estimate

$$
\begin{equation*}
\left\|\left(z-Q_{0}^{2}\right)^{-1}\left(Q_{0}^{2}+1\right)\right\|_{\mathbb{H}} \leq C\left(|\operatorname{Im} z|^{-1}\langle z\rangle+1\right), \tag{3.16}
\end{equation*}
$$

we obtain (i). As for the case $1<s \leq 2$, we rewrite the last term ($z-$ $\left.Q_{0}^{2}\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right]\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}$ as

$$
\begin{align*}
\left(z-Q_{0}^{2}\right)^{-1}\left(Q_{0}^{2}+1\right) & \left(Q_{0}^{2}+1\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right]\langle x\rangle^{-s+1} \tag{3.17}\\
& \times\langle x\rangle^{s-1}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s+1}\langle x\rangle^{-1} . \tag{3.18}
\end{align*}
$$

By using the result for $0<s \leq 1$, we have the inequality for $1<s \leq 2$.
With these estimates, we prove (iii). Since $\chi\left(Q_{0}^{2}\right) \equiv 1$, we can easily see that

$$
\begin{equation*}
\langle x\rangle^{s} F_{+}\left(Q_{0}^{2}\right)\langle x\rangle^{-s}=\langle x\rangle^{s} F_{\chi,+}\left(Q_{0}^{2}\right)\langle x\rangle^{-s}+I . \tag{3.19}
\end{equation*}
$$

Since $F_{\chi,+}(t)$ satisfies (2.18) for $m_{0}=-1 / 2, F_{\chi,+}\left(Q_{0}^{2}\right)$ can be rewritten as follows.

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s} d z \wedge d \bar{z} \tag{3.20}
\end{equation*}
$$

From this formula and (i) (ii) we have

$$
\begin{aligned}
& \left\|\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}\right\|_{\mathbb{H}} \\
& \quad \leq C\left|\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\right|\left(|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^{2}\right) .
\end{aligned}
$$

From (2.18) we have

$$
\left\|\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s}\right\|_{\mathbb{H}} \leq C\langle z\rangle^{-5 / 2} .
$$

This implies the boundedness of $\langle x\rangle^{s} F_{+}\left(Q_{0}^{2}\right)\langle x\rangle^{-s}$.

In a similar way, we rewrite $\langle x\rangle^{s} F_{-}\left(Q_{0}^{2}\right) Q_{0}\langle x\rangle^{-s}$ as

$$
\begin{equation*}
\langle x\rangle^{s} F_{\chi,-}\left(Q_{0}^{2}\right)\langle x\rangle^{-s}\langle x\rangle^{s} \frac{Q_{0}}{\sqrt{Q_{0}^{2}+m^{2}}}\langle x\rangle^{-s}+\langle x\rangle^{s} \frac{Q_{0}}{\sqrt{Q_{0}^{2}+m^{2}}}\langle x\rangle^{-s} . \tag{3.21}
\end{equation*}
$$

It is sufficient to show the boundedness of $\langle x\rangle^{s} Q_{0} / \sqrt{Q_{0}^{2}+m^{2}}\langle x\rangle^{-s}$. To see this, we denote $\chi(t) / \sqrt{t+m^{2}} \in C^{\infty}\left(\mathbb{R}^{3}\right)$ as $S(t)$ and its almost analytic extension as $\tilde{S}(z)$. We can easily see that $S\left(Q_{0}^{2}\right)\langle x\rangle^{s} Q_{0}\langle x\rangle^{-s}$ is bounded. So we obtain the boundedness of $\langle x\rangle^{s} F_{-}\left(Q_{0}^{2}\right) Q_{0}\langle x\rangle^{-s}$ if we show that $\left[\langle x\rangle^{s}, S\left(Q_{0}^{2}\right)\right] Q_{0}\langle x\rangle^{-s}$ is bounded. We rewrite it as follows.

$$
\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{S}(z) \frac{Q_{0}^{2}+1}{z-Q_{0}^{2}}\left(Q_{0}^{2}+1\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right] Q_{0}\langle x\rangle^{-s}\langle x\rangle^{s}\left(z-Q_{0}^{2}\right)^{-1}\langle x\rangle^{-s} d z \wedge d \bar{z}
$$

By an elementary calculus, we have $\left(Q_{0}^{2}+1\right)^{-1}\left[\langle x\rangle^{s}, Q_{0}^{2}\right] Q_{0}\langle x\rangle^{-s}$ bounded. Combining (i) and (ii), we have

$$
\begin{aligned}
& \left\|\left[\langle x\rangle^{s}, S\left(Q_{0}^{2}\right)\right] Q_{0}\langle x\rangle^{-s}\right\|_{\mathbb{H}} \leq C \int_{\mathbb{C}}\left|\partial_{\bar{z}} \tilde{S}(z)\right|\left\{1+|\operatorname{Im} z|^{-1}\right\} \\
& \times\left\{|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^{2}\right\} d z \wedge d \bar{z}<\infty
\end{aligned}
$$

This implies the boundedness of $\langle x\rangle^{s} F_{-}\left(Q_{0}^{2}\right) Q_{0}\langle x\rangle^{-s}$.
Next we give an example of V. It requires smoothness, but allows long-range part in its diagonal components.

Lemma 3.6. Let V be a 4×4 Hermitian matrix of the form

$$
\begin{equation*}
V(x)=\left(v_{i j}(x)\right)+\varphi(x) I_{4} \equiv V_{s}(x)+V_{l}(x) \tag{3.22}
\end{equation*}
$$

where $V_{s}(x)=\left(v_{i j}(x)\right)$ is an Hermitian matrix and I_{4} is an identity matrix. Suppose the following conditions hold. Then $V(x)$ satisfies Assumption 3.2.

There exist $\delta>0$ such that the following inequalities hold for all multi-index α.

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} v_{i j}(x)\right| \leq C_{\alpha}\langle x\rangle^{-\delta-|\alpha|}\left\langle x_{3}\right\rangle^{-1} \quad(1 \leq i, j \leq 4) . \tag{3.23}
\end{equation*}
$$

$\varphi(x) \in C^{\infty}\left(\mathbb{R}^{3}\right)$ is real valued and satisfies

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \varphi(x)\right| \leq C_{\alpha}^{\prime}\langle x\rangle^{-\delta-|\alpha|} . \tag{3.24}
\end{equation*}
$$

The relatively compactness of $V(x)$ itself is clear since V satisfies (3.7). So we only have to show the relatively compactness of $[V, A]$. We prove the relatively compactness of $\left[V_{s}, A\right]=\left[V_{s}, U_{F W}^{-1} \hat{A} \beta U_{F W}\right]$ at first. From the boundedness of $\left\langle x_{3}\right\rangle^{-1} \hat{A} \beta$
and the relatively compactness of $V_{s}\left\langle x_{3}\right\rangle$, it is sufficient to show that $\left\langle x_{3}\right\rangle U_{F W}\left\langle x_{3}\right\rangle^{-1}$ and $\left\langle x_{3}\right\rangle U_{F W}^{-1}\left\langle x_{3}\right\rangle^{-1}$ are bounded operators in \mathbb{H}. We have already proved it in Lemma 3.5 .

Next we treat the long-range term. The conjugate operator A can be decomosed into the sum of J_{1}, \ldots, J_{4} where

$$
\begin{aligned}
J_{1} & =F_{+}\left(Q_{0}^{2}\right) \hat{A} \beta F_{+}\left(Q_{0}^{2}\right), \\
J_{2} & =F_{+}\left(Q_{0}^{2}\right) \hat{A} \beta^{2} F_{-}\left(Q_{0}^{2}\right) Q_{0}, \\
J_{3} & =\beta F_{-}\left(Q_{0}^{2}\right) Q_{0} \hat{A} \beta F_{+}\left(Q_{0}^{2}\right), \\
J_{4} & =\beta F_{-}\left(Q_{0}^{2}\right) Q_{0} \hat{A} \beta^{2} F_{-}\left(Q_{0}^{2}\right) Q_{0} .
\end{aligned}
$$

We prove that the $H_{0}(\lambda)$ - compactness holds for each of $\left[V_{l}, J_{1}\right], \ldots,\left[V_{l}, J_{4}\right]$. To see this we use the functional calculus again and rewrite J_{1} as follows.

$$
\begin{aligned}
F_{+}\left(Q_{0}^{2}\right) \hat{A} \beta F_{+}\left(Q_{0}^{2}\right) & =\hat{A} \beta F_{+}\left(Q_{0}^{2}\right)^{2}+\left[F_{\chi,+}\left(Q_{0}^{2}\right), \hat{A} \beta\right] F_{+}\left(Q_{0}^{2}\right) \\
& \equiv J_{1}^{\prime}+J_{1}^{\prime \prime}
\end{aligned}
$$

At first we prove the boundedness of $J_{1}^{\prime \prime}$ and conseqently the relatively compactness of $\left[V_{l}, J_{1}^{\prime \prime}\right]$. By using (2.19), we rewrite $\left[F_{\chi,+}\left(Q_{0}^{2}\right), \hat{A} \beta\right]$ as follows.

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\left(z-Q_{0}^{2}\right)^{-1}\left[Q_{0}^{2}, \hat{A} \beta\right]\left(z-Q_{0}^{2}\right)^{-1} d z \wedge d \bar{z} \tag{3.25}
\end{equation*}
$$

From (3.16) we have $\left[Q_{0}^{2}, \hat{A} \beta\right]\left(z-Q_{0}^{2}\right)^{-1}$ is dominated from above by $C\{1+|\operatorname{Im} z|\}$. So we have

$$
\begin{equation*}
\left\|\left[F_{\chi,+}\left(Q_{0}^{2}\right), \hat{A} \beta\right]\right\| \leq C \int_{\mathbb{C}}\left|\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)\right|\left\{|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle\right\} d z \wedge d \bar{z} \tag{3.26}
\end{equation*}
$$

Since the almost analytic extension $\tilde{F}_{\chi,+}(z)$ satisfies

$$
\begin{equation*}
\left|\partial_{\bar{z}} \tilde{F}_{+}(z)\right| \leq C_{N}|\operatorname{Im} z|^{N}\langle z\rangle^{-3 / 2-N} \quad\left({ }^{\forall} N \in \mathbb{N}\right), \tag{3.27}
\end{equation*}
$$

we have $\left[F_{\chi,+}\left(Q_{0}^{2}\right), \hat{A} \beta\right]$ is bounded and inductively $\left[V_{l}, J_{1}^{\prime \prime}\right]$ is $H_{0}(\lambda)$-compact. So we only have to show the relatively compactness of $\left[V_{l}, J_{1}^{\prime}\right]$.

$$
\begin{equation*}
\left[V_{l}, J_{1}^{\prime}\right]=\left[V_{l}, \hat{A} \beta\right] F_{+}\left(Q_{0}^{2}\right)^{2}+\hat{A} \beta\left[V_{l}, F_{+}\left(Q_{0}^{2}\right)^{2}\right] . \tag{3.28}
\end{equation*}
$$

Clearly $\left[V_{l}, \hat{A} \beta\right] F_{+}\left(Q_{0}^{2}\right)$ is $H_{0}(\lambda)$-compact. Again we rewrite the commutator in the second term, by use of (2.19). Then we have $\langle x\rangle^{1+\delta}\left[V_{l}, F_{+}\left(Q_{0}^{2}\right)^{2}\right]$ is bounded. Combing these facts, we have the relatively compactness of $\left[V_{l}, J_{1}\right]$.

As for the commutator $\left[V_{l}, J_{2}\right], \ldots,\left[V_{l}, J_{4}\right]$ we also replace $F_{ \pm}$by $F_{\chi, \pm}$ and use the functional calculus. The proof of relatively compactness of $\left[V_{l}, J_{2}\right]$ and $\left[V_{l}, J_{3}\right]$ are
almost the same. We only give the proof for J_{2}. We also estimate the 'principle' part before we compute the commutator with V_{l}.

$$
\begin{equation*}
J_{2}=\hat{A} F_{+}\left(Q_{0}^{2}\right) F_{-}\left(Q_{0}^{2}\right) Q_{0}+\left[F_{+}\left(Q_{0}^{2}\right), \hat{A}\right] F_{-}\left(Q_{0}^{2}\right) Q_{0} \tag{3.29}
\end{equation*}
$$

It is sufficient to show that $\left[V_{l}, \hat{A} F_{+}\left(Q_{0}^{2}\right) F_{-}\left(Q_{0}^{2}\right) Q_{0}\right]$ is a $H_{0}(\lambda)$-compact operator. We decompose it into the following sum.

$$
\begin{aligned}
& {\left[V_{l}, \hat{A}\right] F_{+}\left(Q_{0}^{2}\right) F_{-}\left(Q_{0}^{2}\right) Q_{0}} \\
& \quad+\hat{A}\left[V_{l}, F_{+}\left(Q_{0}^{2}\right) F_{-}\left(Q_{0}^{2}\right)\right] Q_{0} \\
& \quad+\hat{A} F_{+}\left(Q_{0}^{2}\right) F_{-}\left(Q_{0}^{2}\right)\left[V_{l}, Q_{0}\right] .
\end{aligned}
$$

We can easily see that the first and the third term is relatively compact since $\langle x\rangle^{1+\delta}\left[V_{l}, Q_{0}\right]$ is bounded. As for the second term, we can also see the relatively compactness in the same argument as we have done in the proof of Lemma 3.5 (iii).

As for J_{4}, the proof is similar. We rewrite it as

$$
\begin{equation*}
\hat{A} F_{-}\left(Q_{0}^{2}\right)^{2} Q_{0}^{2}+\left[F_{-}\left(Q_{0}^{2}\right) Q_{0}, \hat{A}\right] F_{-}\left(Q_{0}^{2}\right) Q_{0} \tag{3.30}
\end{equation*}
$$

We can also obtain the relatively compactness by estimating the term $\left[V, \hat{A} F_{-}\left(Q_{0}^{2}\right)^{2} Q_{0}^{2}\right]$.

Corollary 3.7. Let V be a 4×4 Hermitian matrix and $s>1 / 2$. Suppose V satisfies the condition in Lemma 3.6. Then the following limits

$$
\begin{equation*}
R^{ \pm}(\mu)=\lim _{\epsilon \downarrow 0}\left\langle x_{3}\right\rangle^{-s}(H(\lambda)-\mu \mp i \epsilon)^{-1}\left\langle x_{3}\right\rangle^{-s} \tag{3.31}
\end{equation*}
$$

exist for $\mu \in \mathbb{R} \backslash\left(\mathbb{R}_{\mathbb{N}} \cup \sigma_{p p}(H(\lambda))\right)$ and $R^{ \pm}(\mu)$ are continuous with respect to μ.

References

[1] J. Avron, I. Herbst and B. Simon: Schrödinger operators with magnetic fields. 1. General interactions, Duke Math. J., 45 (1978), 847-883.
[2] A. Boutet de Monvel-Berthier, D. Manda and R. Purice: Limiting absorption principle for the Dirac operator, Ann. Inst. Henri Poincaré, 58 (1993), 413-431.
[3] A. Boutet de Monvel-Berthier, R. Purice: The Dirac evolution equation in the presence of an electromagnetic wave, Helv. Phys. Acta, 67 (1994), 167-187.
[4] C. Gérard: Asymptotic completeness for 3-particle long-range systems, Invent. Math., 114 (1993), 333-397.
[5] G. Hachem: Effet Zeeman pour un électron de Dirac, Ann. Inst. Henri Poincaré, 58 (1993), 105-123.
[6] H. Iwashita: On the long-range scattering for one- and two- particle Schrödinger operators with constant magnetic fields, Tsukuba J. Math., 19 (1995), 369-376.
[7] A. Jensen, E. Mourre and P. Perry: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, 41 (1984), 207-225.
[8] E. Mourre: Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., 78 (1981), 391-408.
[9] M. Reed, B. Simon: Methods of Modern Mathematical Physics 2, Academic Press, New York - San Francisco - London.
[10] B. Thaller: The Dirac Equation, Texts Monographs Phys. Springer-Verlag, 1992.
[11] K. Yokoyama: Mourre theory for time-periodic systems, Nagoya Math. J., 149 (1998), 193210.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka 560-0043, Japan
e-mail: yokoyama@math.sci.osaka-u.ac.jp

