

Title	Limiting absorption principle for Dirac operator with constant magnetic field and long-range potential
Author(s)	Yokoyama, Koichiro
Citation	Osaka Journal of Mathematics. 2001, 38(3), p. 649–666
Version Type	VoR
URL	https://doi.org/10.18910/7573
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

LIMITING ABSORPTION PRINCIPLE FOR DIRAC OPERATOR WITH CONSTANT MAGNETIC FIELD AND LONG-RANGE POTENTIAL

KOICHIRO YOKOYAMA

(Received December 20, 1999)

1. Introduction

The Dirac Hamiltonian with magnetic vector potential $\mathbf{a} = (a_j(x))_{j=1,...,d}$ is expressed by the following form

(1.1)
$$H(\mathbf{a}) = \sum_{j=1}^{d} \gamma_j (P_j - a_j) + m \gamma_{d+1} + V,$$

where $P_j = 1/i\partial_{x_j}$, V is a multiplication of an Hermitian matrix V(x). m is the mass of electron. The matrices $\{\gamma_i\}$ satisfy the following relations

(1.2)
$$\gamma_j \gamma_k + \gamma_k \gamma_j = 2\delta_{jk} \mathbf{1} \quad (j, k = 1, \dots, d+1).$$

Here δ_{jk} is Kronecker's delta and **1** is an identity matrix. We assume that the speed of the light c = 1. When $V \equiv 0$, the square of $H(\mathbf{a})$ has the form

(1.3)
$$H(\mathbf{a})^2 = \sum_{j=1}^d (P_j - a_j)^2 + m^2 + \frac{1}{i} \sum_{1 \le j < k \le d} b_{jk}(x) \gamma_j \gamma_k,$$

where

(1.4)
$$b_{jk}(x) = \partial_{x_k} a_j(x) - \partial_{x_j} a_k(x).$$

It is called Pauli's Hamiltonian. The skew symmetric matrix $(b_{jk}(x))$ is the magnetic field associated with **a**. We say the magnetic field is asymptotically constant if it satisfies the following conditions as $|x| \to \infty$:

(1.5)
$$b_{jk}(x) \to {}^{\exists} \Lambda_{jk} \quad (1 \le j, k \le d),$$

where $(\Lambda_{jk})_{j,k}$ is a constant matrix.

The aim of this paper is to prove the limiting absorption principle for $H(\mathbf{a})$ with a constant magnetic field $(b_{ik}(x))$ and a long-range electric potential V(x) when d = 3.

К. Үокоуама

Let us recall some known facts about the Dirac Hamiltonian with a constant magnetic field for d = 2, 3. As can be infered from (1.3), the spectrum of $H(\mathbf{a})$ is closely related with that of magnetic Schrödinger operator appearing in the right hand side of (1.3), which depends largely on the space dimension. Suppose d = 2 at first. For simplicity we consider the case that the magnetic field $b(x) = \partial_{x_2}a_1(x) - \partial_{x_1}a_2(x) = \lambda > 0$. In this case, the Dirac Hamiltonian $h(\lambda)$ is represented by

(1.6)
$$h(\lambda) = \sigma_1 \left(P_1 + \frac{\lambda}{2} x_2 \right) + \sigma_2 \left(P_2 - \frac{\lambda}{2} x_1 \right) + m \sigma_3,$$

with $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

They are called Pauli's spin matrices. Obviously $\{\sigma_j\}$ satisfy the relation (1.2) and by an elementary calculus we have

(1.7)
$$h(\lambda)^{2} = \left(P_{1} + \frac{\lambda}{2}x_{2}\right)^{2} + \left(P_{2} - \frac{\lambda}{2}x_{1}\right)^{2} + m^{2} - \lambda\sigma_{3}.$$

The right hand side is a de-coupled 2 dimensional magnetic Schödinger operator. So it suggests that the spectrum of $h(\lambda)$ is discrete and

$$\sigma(h(\lambda)) \subset \left\{ \pm \sqrt{2\lambda n + m^2} \mid n = 0, 1, 2 \dots \right\}.$$

In fact we have

$$\sigma(h(\lambda)) = \left\{ \sqrt{2\lambda n + m^2}, \quad -\sqrt{2\lambda(n+1) + m^2} \mid n = 0, 1, 2 \dots \right\}$$

by using Foldy-Wouthuysen transform. (See 7.1.3 in [10].) Therefore the spectrum of $h(\lambda)$ is of pure point with infinite multiplicities.

Next we consider the case of d = 3. We assume

$$\mathbf{a}_0(x) = \left(-\frac{\lambda x_2}{2}, \frac{\lambda x_1}{2}, 0\right) \quad (\lambda > 0).$$

Then the associated magnetic field is constant along x_3 -axis :

$$B(x) = (b_{32}(x), b_{13}(x), b_{21}(x)) = (0, 0, \lambda).$$

We denote the associated Dirac Hamiltonian as $H_0(\lambda)$. It is the following operator acting on $\mathbb{H} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$:

(1.8)
$$H_0(\lambda) = \alpha_1 \left(P_1 + \frac{\lambda x_2}{2} \right) + \alpha_2 \left(P_2 - \frac{\lambda x_1}{2} \right) + \alpha_3 P_3 + m\beta,$$

where $\{\alpha_i\}$ and β are 4×4 Hermitian matrices such that

(1.9)
$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

We can easily see that these matrices also satisfy the relation (1.2). It is known that $H_0(\lambda)$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^3) \otimes \mathbb{C}^4$. (See Theorem 4.3 in [10].) Now we consider the spectrum of $H_0(\lambda)$. At first we rewrite $H_0(\lambda)$ as follows.

(1.10)
$$H_0(\lambda) = Q_0 + m\beta = \begin{pmatrix} 0 & D_0 \\ D_0 & 0 \end{pmatrix} + \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix},$$

with $D_0 = \sigma \cdot (P - \mathbf{a}_0)$ and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$.

By using Foldy-Wouthuysen transform, explained in detail in the following section, $H_0(\lambda)$ can be diagonalized by a unitary operator U_{FW} .

(1.11)
$$U_{FW}H_0(\lambda)U_{FW}^{-1} = \begin{pmatrix} \sqrt{D_0^2 + m^2} & 0\\ 0 & -\sqrt{D_0^2 + m^2} \end{pmatrix}.$$

From the commutation relation (1.2) we have

(1.12)
$$D_0^2 = \left(P_1 + \frac{\lambda x_2}{2}\right)^2 + \left(P_2 - \frac{\lambda x_1}{2}\right)^2 + P_3^2 - \lambda\beta.$$

We can easily see that $\sigma(D_0^2) = [0, \infty)$. So we have

$$\sigma(H_0(\lambda)) = (-\infty, -m] \cup [m, \infty).$$

Therefore in the 3 dimensional case, the spectrum of $H_0(\lambda)$ is absolutely continuous.

Let us consider the perturbation of $H_0(\lambda)$: We put

(1.13)
$$H(\lambda) = H_0(\lambda) + V.$$

Our aim is to show the so-called limiting absorption principle, namely the existence of the boundary value of the resolvent $(z - H(\lambda))^{-1}$ on the real axis. The precise assumption on V will be given in Section 3. It is closely related to the absence of singular continuous spectrum of the operator and the asymptotic completeness of the wave operator associated with $H_0(\lambda)$ and $H(\lambda)$. To prove the limiting absorption principle, we use Mourre's commutator method, which makes great progress for various Schrödinger operators. (For example, see [8].)

Suppose we are given a self-adjoint operator H on a separable Hilbert space. For a closed interval $I \subset \mathbb{R}$ we denote the spectral measure, corresponding to the interval

as $E_I(H)$. Once we find some self-adjoint operator A satisfying the following inequality, we obtain many informations about H:

(1.14)
$$E_I(H)i[H,A]E_I(H) \ge \alpha E_I(H) + K,$$

where α is a positive number and K is a compact operator. To be accurate, we can see the following properties hold.

(i) $\sigma_{pp}(H) \cap I$, the eigenvalues of H in I, are discrete.

(ii) The boundary value of the resolvent on $I \setminus \sigma_{pp}(H)$ exists in some weighted Hilbert space. (**limiting absorption principle**)

For example, we consider a usual Schrödinger operator

$$H = -\Delta + V(x).$$

Here V(x) is a real valued function, which is decaying as $|x| \to \infty$. In this case we choose $A = 1/(2i)\{x \cdot \nabla_x + \nabla_x \cdot x\}$ as the conjugate operator. Then the Mourre's inequality holds for any compact interval $I \subset \mathbb{R} \setminus \{0\}$. As a result one can show that $\sigma_{pp}(H)$ is discrete with no accumulation point except $\{0\}$. We denote $\langle \cdot \rangle = (|\cdot|^2 + 1)^{1/2}$. Then we can also see the boundary values

$$\langle x \rangle^{-s} (H - \mu \mp i0)^{-1} \langle x \rangle^{-s}$$

exist in the operator norm for s > 1/2 and $\mu \in \mathbb{R} \setminus (\{0\} \cup \sigma_{pp}(H))$.

As for the Schrödinger operator with constant magnetic field, Iwashita [6] shows the limiting absorption principle for long-range potential by using commutator method. In [6] the following self-adjoint operator is considered.

(1.15)
$$\tilde{H} = \left(P_1 + \frac{\lambda x_2}{2}\right)^2 + \left(P_2 - \frac{\lambda x_1}{2}\right)^2 + P_3^2 + V(x).$$

A self-adjoint operator $A = 1/2(P_3 \cdot x_3 + x_3 \cdot P_3)$ is used as the conjugate operator. As a result, the existence of the boundary values

$$\langle x_3 \rangle^{-s} (\tilde{H} - \mu \mp i0)^{-1} \langle x_3 \rangle^{-s}$$

is proved for s > 1/2 and $\mu \in \mathbb{R} \setminus (\{\lambda(2n+1) | n = 0, 1, 2, ...\} \cup \sigma_{pp}(\tilde{H})).$

Commutator method is also used for the free Dirac Hamiltonian and that with a scalar potential, which is decaying as $|x| \to \infty$. (See [2].) As for the electromagnetic Dirac Hamiltonian, asymptotic behavior of the solution of the Dirac equation is investigated in [3]. In their paper, the time dependent electromagnetic field $a_j(x, t)$ is required to satisfy the following properties.

(i) Each $a_j(x, t)$ satisfies the wave equation

$$\left(\frac{\partial^2}{\partial t^2} - \Delta\right) a_j(x,t) = 0.$$

(ii) The initial data $a_j(x, 0)$ and $\partial_t a_j(x, 0)$ are compactly supported in \mathbb{R}^3 . Hachem [5] showed the limiting absorption principle for the following electromagnetic Dirac Hamiltonian with a short-range potential V(x).

$$H = \alpha_1 P_1 + \alpha_2 (P_2 + \lambda x_1) + \alpha_3 P_3 + m\beta + V(x).$$

His idea is roughly as follows. First let us consider the case $V \equiv 0$. By passing to the Fourier transformation with respect to x_2, x_3 -variables we denote $F_0HF_0^*$ as D(p) $(p = (p_2, p_3))$. Then we have

(1.16)
$$D(p)^2 = A_+(p) \oplus A_-(p) \oplus A_+(p) \oplus A_-(p),$$

where $A_{\pm}(p)$ are harmonic oscillators defined as follows.

(1.17)
$$A_{\pm}(p) = -\frac{d^2}{dx_1^2} + (\lambda x_1 + p_2)^2 \pm \lambda + p_3^2 + m^2$$

He then switched on the short-range potential V(x) by perturbative argument. Roughly speaking, his assumption means that the absolute value of each component of V is dominated from above by $C\langle x'\rangle^{-1-\epsilon}\langle x\rangle^{-\epsilon}$ $(x' = (x_2, x_3))$ for sufficiently large x. We remark that $\epsilon > 0$ is used as a sufficiently small parameter throughout this paper. To be accurate, $\langle x'\rangle^{1+\epsilon}V(x)$ is required to be a $H_0(\lambda)$ -compact operator.

In this paper we treat directly the following operator

(1.18)
$$H(\lambda) = \alpha_1 \left(P_1 + \frac{\lambda}{2} x_2 \right) + \alpha_2 \left(P_2 - \frac{\lambda}{2} x_1 \right) + \alpha_3 P_3 + m\beta + V(x),$$

where V(x) is a matrix potential. Our strategy is to apply Mourre's commutator method directly to this operator, which enables us to include the long-range diagonal components for V(x). In this case it seems that an appropriate choice of the conjugate operator is

$$\frac{P_3}{\langle P_3 \rangle} \cdot x_3 + x_3 \cdot \frac{P_3}{\langle P_3 \rangle},$$

which is inspired by [11], when we proved the limiting absorption principle for timeperiodic Schrödinger operator. In fact the method of the proof shares many ideas in common with [11]. Namely we rewrite $H_0(\lambda)$ by a direct integral and the conjugate operator A acts on each space of fiber. Our main results are Theorem 3.4 and Corollary 3.7.

2. Conjugate operator

Let us recall

(2.1)
$$Q_0 = \begin{pmatrix} 0 & D_0 \\ D_0 & 0 \end{pmatrix}, \quad D_0 = \sigma(P - \mathbf{a}_0),$$

with

(2.2)
$$\mathbf{a}_0(x) = \left(-\frac{\lambda x_2}{2}, \frac{\lambda x_1}{2}, 0\right).$$

The Dirac Hamiltonian $Q_0+m\beta$ can be diagonalized by sandwiching it between a unitary operator U and $U^* = U^{-1}$. In the beginning of this section we introduce a unitary operator which diagonalizes the self-adjoint operator $H_0(\lambda)$. Secondly we give a conjugate operator associated with the diagonalized Dirac Hamiltonian. Finally we show Mourre's inequality for original Hamiltonians $H_0(\lambda)$ and $H(\lambda)$.

Let Q_0 be the self-adjoint operator as in (2.1) and $|Q_0| = \sqrt{Q_0^2}$, $|H_0(\lambda)| = \sqrt{H_0(\lambda)^2}$. We define a unitary operator U_{FW} , which diagonalizes $H_0(\lambda)$, in the following way.

DEFINITION 2.1. (i) At first we define a signature function associated with Q_0 by

(2.3)
$$\operatorname{sgn} Q_0 = \begin{cases} \frac{Q_0}{|Q_0|} , & \text{on } (\ker Q_0)^{\perp} \\ 0 , & \text{on } (\ker Q_0) \end{cases}$$

We note that sgn Q_0 is isometory on $(\ker Q_0)^{\perp}$.

(ii) We can easily see that $m/|H_0(\lambda)| \le 1$. So we denote the square root of $1/2(1 \pm m/|H_0(\lambda)|)$ as a_{\pm} . i.e.

(2.4)
$$a_{\pm} = \frac{1}{\sqrt{2}} \sqrt{1 \pm \frac{m}{|H_0(\lambda)|}}.$$

(iii) Combining these operators we define the operator U_{FW} as

(2.5)
$$U_{FW} = a_+ + \beta (\operatorname{sgn} Q_0) a_-.$$

Lemma 2.2. (i) U_{FW} is a unitary operator on $L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$. Further,

(2.6)
$$U_{FW}^* = U_{FW}^{-1} = a_+ - \beta (\operatorname{sgn} Q_0) a_-.$$

(ii) $H_0(\lambda)$ can be diagonalized by U_{FW} as follows.

(2.7)
$$U_{FW}H_0(\lambda)U_{FW}^{-1} = |H_0(\lambda)|\beta = \begin{pmatrix} \sqrt{D_0^2 + m^2} & 0\\ 0 & -\sqrt{D_0^2 + m^2} \end{pmatrix}.$$

Proof. See 5.6.1 in [10].

We denote the diagonalized Dirac Hamiltonian as $\hat{H}_0(\lambda)$. i.e.

$$\hat{H}_0(\lambda) = U_{FW} H_0(\lambda) U_{FW}^{-1}$$

We rewrite (1.12) as follows.

$$D_0^2 = \left(\begin{array}{cc} D_- & 0\\ 0 & D_+ \end{array}\right).$$

Here D_{\pm} are the operators acting on $L^2(\mathbb{R}^3)$ such that

$$D_{\pm} = \left(P_1 + \frac{\lambda}{2}x_2\right)^2 + \left(P_2 - \frac{\lambda}{2}x_1\right)^2 + P_3^2 \pm \lambda.$$

It is well-known that $(P_1 + \lambda/2x_2)^2 + (P_2 - \lambda/2x_1)^2$ has eigenvalues

$$\{\lambda(2n+1) \mid n=0,1,2,\ldots\}.$$

We denote the eigenprojection on each eigenspace as Π_n . With these projections, $\sqrt{D_0^2 + m^2}$ can be rewritten as follows.

(2.8)
$$\sqrt{D_0^2 + m^2} = \sum_{n=0}^{\infty} \begin{pmatrix} d_n \otimes \Pi_n & 0\\ 0 & d_{n+1} \otimes \Pi_n \end{pmatrix},$$

with $d_n = d_n(P_3) = \sqrt{2\lambda n + P_3^2 + m^2}$.

Combining (2.7) and (2.8), we have

$$\begin{split} f(\hat{H}_0(\lambda)) &= \\ &\sum_{n=0}^{\infty} \left(\begin{array}{cc} f(d_n) \otimes \Pi_n & & \\ & f(d_{n+1}) \otimes \Pi_n & \\ & & f(-d_n) \otimes \Pi_n \\ & & & f(-d_{n+1}) \otimes \Pi_n \end{array} \right), \end{split}$$

for any Borel function f.

Now we define the conjugate operator. At first we define

(2.9)
$$\hat{A} = \frac{1}{2} \left\{ \frac{P_3}{\langle P_3 \rangle} \cdot x_3 + x_3 \cdot \frac{P_3}{\langle P_3 \rangle} \right\}.$$

We note that \hat{A} is essentially self-adjoint operator on $D(|x_3|)$. (It is obtained by use of Nelson's commutator theorem [9].) The conjugate operator for the Dirac Hamiltonian

associated with constant magnetic field is defined by sandwiching $\hat{A}\beta$ between U_{FW}^{-1} and U_{FW} :

(2.10)
$$A = U_{FW}^{-1}(\hat{A}\beta)U_{FW}.$$

Letting F be a Fourier transformation with respect to x_3 -variable. We define the selfadjoint operator A_F by $F\hat{A}F^{-1}$. Then we have

(2.11)
$$(e^{itA_F}\phi)(x_1, x_2, p_3) = \left|\frac{\partial\Gamma_t}{\partial p_3}(p_3)\right|^{1/2} \phi(x_1, x_2, \Gamma_t(p_3)),$$

for $\phi \in L^2(\mathbb{R}^2_x \times \mathbb{R}_p)$. Here Γ_t is a solution of the following equation.

(2.12)
$$\begin{cases} \frac{d}{dt}\Gamma_t(p_3) = \langle \Gamma_t(p_3) \rangle^{-1}\Gamma_t(p_3) \\ \Gamma_0(p_3) = p_3 \end{cases}$$

For the proof, see Appendix 1 in [8]. Therefore the unitary group $e^{it\hat{A}\beta}$ is rewritten

$$(2.13) \qquad (Fe^{it\hat{\lambda}\beta}F^{-1}\phi)(x_1, x_2, p_3) = \begin{pmatrix} \left|\frac{\partial\Gamma_t}{\partial p_3}(p_3)\right|^{1/2}\phi_1(x_1, x_2, \Gamma_t(p_3)) \\ \left|\frac{\partial\Gamma_t}{\partial p_3}(p_3)\right|^{1/2}\phi_2(x_1, x_2, \Gamma_t(p_3)) \\ \left|\frac{\partial\Gamma_{-t}}{\partial p_3}(p_3)\right|^{1/2}\phi_3(x_1, x_2, \Gamma_{-t}(p_3)) \\ \left|\frac{\partial\Gamma_{-t}}{\partial p_3}(p_3)\right|^{1/2}\phi_4(x_1, x_2, \Gamma_{-t}(p_3)) \end{pmatrix}.$$

Before we compute the commutator $i[H(\lambda), A]$, we have to care that the following matters hold.

Lemma 2.3. (i) A is a self-adjoint operator on \mathbb{H} . (ii) e^{-itA} leaves $D(H_0(\lambda))$ invariant, i.e.

(2.14)
$$\sup_{|t|\leq 1} \|H_0(\lambda)e^{itA}(H_0(\lambda)+i)^{-1}\phi\|_{\mathbb{H}} < \infty \quad for \quad \phi \in \mathbb{H},$$

where $\|\cdot\|_{\mathbb{H}}$ denotes the operator norm on \mathbb{H} .

Proof. The self-adjointness of A is easily obtained from that of $\hat{A}\beta$. To see the invariance of $D(H_0(\lambda))$, it is sufficient to show the following

(2.15)
$$\sup_{|t|\leq 1} \|\hat{H}_0(\lambda)e^{it\hat{A}\beta}(\hat{H}_0(\lambda)+i)^{-1}\phi\|_{\mathbb{H}} < \infty \quad \text{for} \quad \phi \in \mathbb{H}.$$

From the arguements (2.11) and (2.13), we have

$$F\hat{H}_{0}(\lambda)e^{it\hat{A}\beta}(\hat{H}_{0}(\lambda)+i)^{-1}F^{-1}\phi$$

$$=\sum_{n=0}^{\infty}\begin{pmatrix} D_{n,t}^{+} \left| \frac{\partial\Gamma_{t}}{\partial p_{3}}(p_{3}) \right|^{1/2}\phi_{1}(x_{1},x_{2},\Gamma_{t}(p_{3})) \\ D_{n+1,t}^{+} \left| \frac{\partial\Gamma_{t}}{\partial p_{3}}(p_{3}) \right|^{1/2}\phi_{2}(x_{1},x_{2},\Gamma_{t}(p_{3})) \\ D_{n,-t}^{-} \left| \frac{\partial\Gamma_{-t}}{\partial p_{3}}(p_{3}) \right|^{1/2}\phi_{3}(x_{1},x_{2},\Gamma_{-t}(p_{3})) \\ D_{n+1,-t}^{-} \left| \frac{\partial\Gamma_{-t}}{\partial p_{3}}(p_{3}) \right|^{1/2}\phi_{4}(x_{1},x_{2},\Gamma_{-t}(p_{3})) \end{pmatrix}$$

where $D_{n,\alpha}^{\pm} = d_n(p_3)(d_n(\Gamma_{\alpha}(p_3)) \pm i)^{-1} \otimes \Pi_n$. By integrating (2.12), we have

(2.16) $|\Gamma_{\alpha}(p_3) - p_3| \le 1 \quad (|\alpha| \le 1).$

So (2.14) is obtained from the fact that $D_{n,\alpha}^{\pm}$ is bounded uniformly for $n \in \mathbb{N}$ and $|\alpha| \leq 1$.

Before we show Mourre's inequality, we introduce the usual functional calculus, started by Helffer and Sjöstrand.

Suppose that $f \in C^{\infty}(\mathbb{R})$ satisfies the following condition for some $m_0 \in \mathbb{R}$.

(2.17)
$$|f^{(k)}(t)| \le C_k (1+|t|)^{m_0-k}, \quad \forall k \in \mathbb{N} \cup \{0\}.$$

Then we can construct an almost analytic extension $\tilde{f}(z)$ of f(t) having the following properties

$$\tilde{f}(t) = f(t), \quad t \in \mathbb{R},$$

 $\operatorname{supp} \tilde{f} \subset \{z; |\operatorname{Im} z| \le 1 + |\operatorname{Re} z|\},$

(2.18)
$$|\partial_{\bar{z}}\tilde{f}(z)| \leq C_N |\operatorname{Im} z|^N \langle z \rangle^{m_0 - 1 - N}, \quad \forall N \in \mathbb{N}.$$

Then for all f, satisfying (2.17) for $m_0 < 0$ and a self-adjoint operator H, we have

(2.19)
$$f(H) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \tilde{f}}{\partial \bar{z}}(z)(z-H)^{-1} dz \wedge d\bar{z}.$$

With this form, we can compute the commutator of an operator P and g(A) in the following way.

For operators P and Q, we define $ad_Q^0(P) = P$ and inductively $ad_Q^m(P) = [ad_Q^{m-1}(P), Q]$ for $m \in \mathbb{N}$.

K. Yokoyama

Lemma 2.4. Let A and P be self-adjoint operators on \mathbb{H} . Suppose that $ad_A^m(P)(A+i)^{-m}$ extends to a bounded operator for $1 \leq m \leq n$. Then for any $g \in C^{\infty}(\mathbb{R})$ satisfying (2.17) with $m_0 < 0$, we have

(2.20)
$$Pg(A) = \sum_{m=0}^{n-1} \frac{g^{(m)}(A)}{m!} a d_A^m(P) + \frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{g}(z) R_{n,A,P}^r(z) dz \wedge d\bar{z}$$

where $R_{n,A,P}^{r}(z) = (z - A)^{-n} a d_{A}^{n}(P)(z - A)^{-1}$, and

(2.21)
$$g(A)P = \sum_{m=0}^{n-1} ad_A^m(P) \frac{(-1)^m}{m!} g^{(m)}(A) + \frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{g}(z) R_{n,A,P}^l(z) dz \wedge d\bar{z}$$

where $R_{n,A,P}^{l}(z) = (z - A)^{-1} a d_{A}^{n}(P)(z - A)^{-n}$ and $\tilde{g}(z)$ denotes an almost analytic extension of g(t).

For the proof of above results, see [4].

3. Limiting absorption principle for long-range potentials

Now we show the Mourre's inequality for the Dirac Hamiltonian by choosing *A* defined in the previous section as the conjugate operator.

Lemma 3.1. Let $\mathbb{R}_{\mathbb{N}}$ be the following discrete subset of \mathbb{R}

$$\mathbb{R}_{\mathbb{N}} = \{\pm \sqrt{2\lambda n + m^2} \mid n = 0, 1, 2, \ldots\} \subset \mathbb{R}.$$

We take a compact interval $I \subset \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$ arbitrarily. Then there exists $\alpha > 0$ such that the following inequality holds for any real valued $f \in C_0^{\infty}(I)$

(3.1)
$$f(H_0(\lambda))i[H_0(\lambda), A]f(H_0(\lambda)) \ge \alpha f(H_0(\lambda))^2.$$

Proof. By the relations (2.7) and (2.10), it is sufficient to show the inequality

(3.2)
$$f(\hat{H}_0(\lambda))i[\hat{H}_0(\lambda), \hat{A}\beta]f(\hat{H}_0(\lambda)) \ge \alpha f(\hat{H}_0(\lambda))^2.$$

We rewrite the commutator as follow.

(3.3)
$$i\left[\hat{H}_{0}(\lambda),\hat{A}\beta\right] = \begin{pmatrix} i\left[\sqrt{D_{0}^{2}+m^{2}},\hat{A}\right]\\ i\left[\sqrt{D_{0}^{2}+m^{2}},\hat{A}\right] \end{pmatrix}.$$

We proceed the calculus more precisely to see that

(3.4)
$$i\left[\sqrt{D_0^2+m^2},\hat{A}\right] = \sum_{n=0}^{\infty} \left(i\left[d_n,\hat{A}\right] \otimes \Pi_n i\left[d_{n+1},\hat{A}\right] \otimes \Pi_n\right)$$

by (2.8). From (3.3) and (3.4) the left hand side of (3.2) is rewritten as

(3.5)
$$f(\hat{H}_0(\lambda))i[\hat{H}_0(\lambda),\hat{A}\beta]f(\hat{H}_0(\lambda)) = \begin{pmatrix} I_1 & & \\ & I_2 & \\ & & I_3 \\ & & & I_4 \end{pmatrix}$$

where

$$I_{1} = \sum_{n=0}^{\infty} f(d_{n})i[d_{n}, \hat{A}]f(d_{n}) \otimes \Pi_{n},$$

$$I_{2} = \sum_{n=0}^{\infty} f(d_{n+1})i[d_{n+1}, \hat{A}]f(d_{n+1}) \otimes \Pi_{n},$$

$$I_{3} = \sum_{n=0}^{\infty} f(-d_{n})i[d_{n}, \hat{A}]f(-d_{n}) \otimes \Pi_{n},$$

$$I_{4} = \sum_{n=0}^{\infty} f(-d_{n+1})i[d_{n+1}, \hat{A}]f(-d_{n+1}) \otimes \Pi_{n}.$$

We note that all the sum in I_1, \ldots, I_4 are finite since f is a compactly supported function. By an elementary caluculus, we have

(3.6)
$$i[d_l, \hat{A}] = \frac{P_3^2}{\sqrt{2\lambda l + P_3^2 + m^2} \langle P_3 \rangle} \quad (l \in \mathbb{N} \cup \{0\}).$$

Since supp $f \subset I \subset \mathbb{R} \setminus \mathbb{R}_N$, P_3 is away from zero when $P_3 \in \text{supp } f(d_l(P_3))$ or $P_3 \in \text{supp } f(-d_l(P_3))$. So there exist $C_l > 0$ such that

$$f(d_l)i[d_l, \hat{A}]f(d_l) \otimes \Pi_l \ge C_l f(d_l)^2 \otimes \Pi_l,$$

$$f(-d_l)i[d_l, \hat{A}]f(-d_l) \otimes \Pi_l \ge C_l f(-d_l)^2 \otimes \Pi_l.$$

Since only a finite number of $l = l_j$ (j = 1, ..., N) is concerned, we have (3.2) with $\alpha = \inf_{j=1,...,N} C_{l_j}$.

Now we give the assumption for the potential, which is necessary to prove Mourre's inequality associated to $H(\lambda)$. After that we give an example of V satisfying this assumption. The potential V consists of a sum of long-range part and short-range part. In our case short-range potential means $V(x) = O(\langle x \rangle^{-\epsilon} \langle x_3 \rangle^{-1-\epsilon})$ as $|x| \to \infty$. And long-range part is a multiplication of a real valued function $\varphi(x)$ such that $\varphi(x) = O(\langle x \rangle^{-\epsilon})$ as $|x| \to \infty$. More precisely we assume that V satisfies the following.

ASSUMPTION 3.2. V = V(x) is a multiplicative operator of a 4×4 Hermitian matrix satisfying the following properties.

- (i) V is a $H_0(\lambda)$ -compact operator.
- (ii) The form [V, A] can be extended to a $H_0(\lambda)$ -compact operator.

For example a 4×4 matrix V(x) satisfying the following inequality is $H_0(\lambda)$ -compact.

$$|V(x)| \le C \langle x \rangle^{-\epsilon} \quad (x \in \mathbb{R}^3).$$

It is owing to the fact that $V(x)(-\Delta_x + 1)^{-1}$ is compact. (It is due to Theorem 2.6 in [1].) Under this assumption we show Mourre's inequality for $H(\lambda)$.

Lemma 3.3. Suppose V satisfies Assumption 3.2. (i) We take $\mu \in \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$ and $\delta > 0$ so that the closed interval $I \equiv [\mu - \delta, \mu + \delta] \subset \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$. There exist $\alpha > 0$ and a compact operator K such that the following inequality holds for all $f \in C_0^{\infty}(I)$.

(3.8)
$$f(H(\lambda))i[H(\lambda), A]f(H(\lambda)) \ge \alpha f(H(\lambda))^2 + K.$$

(ii) There is no accumulation point of $\sigma_{pp}(H(\lambda))$ in $\mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$. For $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$, there exist $\delta_0 > 0$ and $\alpha_0 > 0$ such that the following inequality holds for all $f \in C_0^{\infty}([\mu - \delta_0, \mu + \delta_0])$.

(3.9)
$$f(H(\lambda))i[H(\lambda), A]f(H(\lambda)) \ge \alpha_0 f(H(\lambda))^2.$$

Proof. From (2.19) we have

$$f(H(\lambda)) - f(H_0(\lambda)) = \frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} f(z) (z - H(\lambda))^{-1} V(z - H_0(\lambda))^{-1} dz \wedge d\bar{z}$$

for $f \in C_0^{\infty}(\mathbb{R})$. We can easily see that $f(H(\lambda)) - f(H_0(\lambda))$ is a compact operator since $V(H_0(\lambda) + i)^{-1}$ is compact. Combing this fact and (3.1), we have (3.8) by replacing $f(H_0(\lambda))$ in (3.1) by $f(H(\lambda))$. As for the non-existence of the accumulation point of $\sigma_{pp}(H(\lambda))$, see Theorem 2.2 in [7]. (3.9) follows from the argument in [8]

With this inequality we have the limiting absorption principle for the Dirac Hamiltonian. **Theorem 3.4.** Let s > 1/2. Suppose V satisfies Assumption 3.2. Then for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$, the following limits

(3.10)
$$R^{\pm}(\mu) = \lim_{\epsilon \downarrow 0} \langle x_3 \rangle^{-s} (H(\lambda) - \mu \mp i\epsilon)^{-1} \langle x_3 \rangle^{-s}$$

exist and $R^{\pm}(\mu)$ are continuous with respect to $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$.

Sketch of proof

From (3.9) and Theorem 2.2 in [7], we can see that the boundary value $\langle A \rangle^{-s}(H(\lambda) - \mu \mp i0)^{-1} \langle A \rangle^{-s}$ exist for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$. To see the existence of (3.10), it is sufficient to show the boundedness of $\langle A \rangle^s \langle x_3 \rangle^{-s}$. Since $\langle \hat{A} \rangle^s \langle x_3 \rangle^{-s}$ is bounded, it is sufficient to show $\langle x_3 \rangle^s U_{FW} \langle x_3 \rangle^{-s}$ is bounded. We prove it in the following Lemma. Before that we introduce smooth functions. Let $\chi(t) \in C^{\infty}(\mathbb{R})$ such that

(3.11)
$$\chi(t) = \begin{cases} \frac{1}{\sqrt{2}} & \left(t > -\frac{m^2}{3}\right) \\ 0 & \left(t < -\frac{2m^2}{3}\right). \end{cases}$$

With this function we define $F_{\pm}(t)$ and $F_{\chi,\pm}$ as follows.

$$F_{+}(t) = \chi(t)\sqrt{1 + \frac{m}{\sqrt{t + m^{2}}}}$$

$$F_{-}(t) = \chi(t)\left(\sqrt{1 + \frac{m}{\sqrt{t + m^{2}}}}\right)^{-1} \frac{1}{\sqrt{t + m^{2}}}$$

$$F_{\chi,+}(t) = F_{+}(t) - \chi(t)$$

$$F_{\chi,-}(t) = \sqrt{t + m^{2}}F_{-}(t) - \chi(t)$$

Then we can easily verify that

$$a_{+} = F_{+}(Q_{0}^{2}),$$

 $a_{-} \operatorname{sgn} Q_{0} = F_{-}(Q_{0}^{2})Q_{0} = Q_{0}F_{-}(Q_{0}^{2}).$

Obviously $[Q_0, F_-(Q_0^2)] = 0$. By the construction of these functions, we can also see that $F_{\chi,\pm}(t)$ satisfy (2.17) with $m_0 < 0$. So we apply the functional calculus in Section 2 to $F_{\chi,\pm}(t)$ and see the following properties hold.

Lemma 3.5. Suppose $0 \le s \le 2$ and $z \in \mathbb{C} \setminus \mathbb{R}$. Then (i) For $0 < s \le 1$, there exists $C_s > 0$ such that

(3.12)
$$\|\langle x \rangle^{s} (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s} \|_{\mathbb{H}} \leq C_{s} (|\operatorname{Im} z|^{-1} + |\operatorname{Im} z|^{-2} \langle z \rangle).$$

(ii) For $1 < s \le 2$, there exists $C'_s > 0$ such that

$$(3.13) ||\langle x\rangle^{s}(z-Q_{0}^{2})^{-1}\langle x\rangle^{-s}||_{\mathbb{H}} \le C_{s}'(|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^{2}).$$

(iii) $\langle x \rangle^{s} F_{+}(Q_{0}^{2}) \langle x \rangle^{-s}$ and $\langle x \rangle^{s} F_{-}(Q_{0}^{2}) Q_{0} \langle x \rangle^{-s}$ are bounded operators.

Proof. For the proof of (i) and (ii), we use the resolvent equation. Suppose $0 < s \le 1$. Then

(3.14)
$$\langle x \rangle^{s} (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s} = (z - Q_{0}^{2})^{-1} + (z - Q_{0}^{2})^{-1} (Q_{0}^{2} + 1)$$

$$(3.15) (Q_0^2+1)^{-1} [\langle x \rangle^3, Q_0^2] (z-Q_0^2)^{-1} \langle x \rangle^{-3}.$$

From the boundedness of $(Q_0^2 + 1)^{-1}[\langle x \rangle^s, Q_0^2]$ and the following estimate

(3.16)
$$\|(z-Q_0^2)^{-1}(Q_0^2+1)\|_{\mathbb{H}} \le C(|\operatorname{Im} z|^{-1}\langle z\rangle+1),$$

we obtain (i). As for the case $1 < s \leq 2$, we rewrite the last term $(z - Q_0^2)^{-1}[\langle x \rangle^s, Q_0^2](z - Q_0^2)^{-1}\langle x \rangle^{-s}$ as

(3.17)
$$(z - Q_0^2)^{-1} (Q_0^2 + 1) (Q_0^2 + 1)^{-1} [\langle x \rangle^s, Q_0^2] \langle x \rangle^{-s+1}$$

(3.18)
$$\times \langle x \rangle^{s-1} (z - Q_0^2)^{-1} \langle x \rangle^{-s+1} \langle x \rangle^{-1}.$$

By using the result for $0 < s \le 1$, we have the inequality for $1 < s \le 2$.

With these estimates, we prove (iii). Since $\chi(Q_0^2) \equiv 1$, we can easily see that

(3.19)
$$\langle x \rangle^s F_+(Q_0^2) \langle x \rangle^{-s} = \langle x \rangle^s F_{\chi,+}(Q_0^2) \langle x \rangle^{-s} + I.$$

Since $F_{\chi,+}(t)$ satisfies (2.18) for $m_0 = -1/2$, $F_{\chi,+}(Q_0^2)$ can be rewritten as follows.

(3.20)
$$\frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z) \langle x \rangle^{s} (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s} dz \wedge d\bar{z}.$$

From this formula and (i) (ii) we have

$$\begin{aligned} \|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)\langle x\rangle^{s}(z-Q_{0}^{2})^{-1}\langle x\rangle^{-s}\|_{\mathbb{H}} \\ &\leq C|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)|(|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^{2}). \end{aligned}$$

From (2.18) we have

$$\|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)\langle x\rangle^{s}(z-Q_{0}^{2})^{-1}\langle x\rangle^{-s}\|_{\mathbb{H}}\leq C\langle z\rangle^{-5/2}.$$

This implies the boundedness of $\langle x \rangle^{s} F_{+}(Q_{0}^{2}) \langle x \rangle^{-s}$.

In a similar way, we rewrite $\langle x \rangle^s F_-(Q_0^2) Q_0 \langle x \rangle^{-s}$ as

(3.21)
$$\langle x \rangle^{s} F_{\chi,-}(Q_{0}^{2}) \langle x \rangle^{-s} \langle x \rangle^{s} \frac{Q_{0}}{\sqrt{Q_{0}^{2}+m^{2}}} \langle x \rangle^{-s} + \langle x \rangle^{s} \frac{Q_{0}}{\sqrt{Q_{0}^{2}+m^{2}}} \langle x \rangle^{-s}.$$

It is sufficient to show the boundedness of $\langle x \rangle^s Q_0 / \sqrt{Q_0^2 + m^2} \langle x \rangle^{-s}$. To see this, we denote $\chi(t)/\sqrt{t+m^2} \in C^{\infty}(\mathbb{R}^3)$ as S(t) and its almost analytic extension as $\tilde{S}(z)$. We can easily see that $S(Q_0^2)\langle x \rangle^s Q_0 \langle x \rangle^{-s}$ is bounded. So we obtain the boundedness of $\langle x \rangle^s F_-(Q_0^2)Q_0 \langle x \rangle^{-s}$ if we show that $[\langle x \rangle^s, S(Q_0^2)]Q_0 \langle x \rangle^{-s}$ is bounded. We rewrite it as follows.

$$\frac{1}{2\pi i}\int_{\mathbb{C}}\partial_{\bar{z}}\tilde{S}(z)\frac{Q_0^2+1}{z-Q_0^2}(Q_0^2+1)^{-1}[\langle x\rangle^s,Q_0^2]Q_0\langle x\rangle^{-s}\langle x\rangle^s(z-Q_0^2)^{-1}\langle x\rangle^{-s}dz\wedge d\bar{z}.$$

By an elementary calculus, we have $(Q_0^2+1)^{-1}[\langle x \rangle^s, Q_0^2]Q_0 \langle x \rangle^{-s}$ bounded. Combining (i) and (ii), we have

$$\begin{split} \|[\langle x\rangle^s,S(Q_0^2)]Q_0\langle x\rangle^{-s}\|_{\mathbb{H}} &\leq C\int_{\mathbb{C}}|\partial_{\bar{z}}\tilde{S}(z)|\{1+|\operatorname{Im} z|^{-1}\}\\ &\times\{|\operatorname{Im} z|^{-1}+|\operatorname{Im} z|^{-2}\langle z\rangle+|\operatorname{Im} z|^{-3}\langle z\rangle^2\}dz\wedge d\bar{z}<\infty. \end{split}$$

This implies the boundedness of $\langle x \rangle^s F_{-}(Q_0^2) Q_0 \langle x \rangle^{-s}$.

Next we give an example of V. It requires smoothness, but allows long-range part in its diagonal components.

Lemma 3.6. Let V be a 4×4 Hermitian matrix of the form

(3.22)
$$V(x) = (v_{ij}(x)) + \varphi(x)I_4 \equiv V_s(x) + V_l(x)$$

where $V_s(x) = (v_{ij}(x))$ is an Hermitian matrix and I_4 is an identity matrix. Suppose the following conditions hold. Then V(x) satisfies Assumption 3.2.

There exist $\delta > 0$ such that the following inequalities hold for all multi-index α .

$$(3.23) |\partial_x^{\alpha} v_{ij}(x)| \le C_{\alpha} \langle x \rangle^{-\delta - |\alpha|} \langle x_3 \rangle^{-1} (1 \le i, j \le 4).$$

 $\varphi(x) \in C^{\infty}(\mathbb{R}^3)$ is real valued and satisfies

(3.24)
$$|\partial_x^{\alpha}\varphi(x)| \leq C_{\alpha}' \langle x \rangle^{-\delta - |\alpha|}.$$

The relatively compactness of V(x) itself is clear since V satisfies (3.7). So we only have to show the relatively compactness of [V, A]. We prove the relatively compactness of $[V_s, A] = [V_s, U_{FW}^{-1} \hat{A} \beta U_{FW}]$ at first. From the boundedness of $\langle x_3 \rangle^{-1} \hat{A} \beta$

К. Үокоуама

and the relatively compactness of $V_s\langle x_3\rangle$, it is sufficient to show that $\langle x_3\rangle U_{FW}\langle x_3\rangle^{-1}$ and $\langle x_3\rangle U_{FW}^{-1}\langle x_3\rangle^{-1}$ are bounded operators in \mathbb{H} . We have already proved it in Lemma 3.5.

Next we treat the long-range term. The conjugate operator A can be decomosed into the sum of J_1, \ldots, J_4 where

$$J_{1} = F_{+}(Q_{0}^{2})\hat{A}\beta F_{+}(Q_{0}^{2}),$$

$$J_{2} = F_{+}(Q_{0}^{2})\hat{A}\beta^{2}F_{-}(Q_{0}^{2})Q_{0},$$

$$J_{3} = \beta F_{-}(Q_{0}^{2})Q_{0}\hat{A}\beta F_{+}(Q_{0}^{2}),$$

$$J_{4} = \beta F_{-}(Q_{0}^{2})Q_{0}\hat{A}\beta^{2}F_{-}(Q_{0}^{2})Q_{0}$$

We prove that the $H_0(\lambda)$ - compactness holds for each of $[V_l, J_1], \ldots, [V_l, J_4]$. To see this we use the functional calculus again and rewrite J_1 as follows.

$$F_{+}(Q_{0}^{2})\hat{A}\beta F_{+}(Q_{0}^{2}) = \hat{A}\beta F_{+}(Q_{0}^{2})^{2} + [F_{\chi,+}(Q_{0}^{2}), \hat{A}\beta]F_{+}(Q_{0}^{2})$$
$$\equiv J_{1}' + J_{1}''$$

At first we prove the boundedness of J_1'' and consequently the relatively compactness of $[V_l, J_1'']$. By using (2.19), we rewrite $[F_{\chi,+}(Q_0^2), \hat{A}\beta]$ as follows.

(3.25)
$$\frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z) (z - Q_0^2)^{-1} [Q_0^2, \hat{A}\beta] (z - Q_0^2)^{-1} dz \wedge d\bar{z}.$$

From (3.16) we have $[Q_0^2, \hat{A}\beta](z - Q_0^2)^{-1}$ is dominated from above by $C\{1 + |\operatorname{Im} z|\}$. So we have

(3.26)
$$\|[F_{\chi,+}(Q_0^2), \hat{A}\beta]\| \le C \int_{\mathbb{C}} |\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)| \{ |\operatorname{Im} z|^{-1} + |\operatorname{Im} z|^{-2} \langle z \rangle \} dz \wedge d\bar{z}.$$

Since the almost analytic extension $\tilde{F}_{\chi,+}(z)$ satisfies

$$(3.27) |\partial_{\bar{z}}\tilde{F}_{+}(z)| \le C_N |\operatorname{Im} z|^N \langle z \rangle^{-3/2-N} \quad (^{\forall} N \in \mathbb{N}),$$

we have $[F_{\chi,+}(Q_0^2), \hat{A}\beta]$ is bounded and inductively $[V_l, J_1'']$ is $H_0(\lambda)$ -compact. So we only have to show the relatively compactness of $[V_l, J_1']$.

(3.28)
$$[V_l, J_1'] = [V_l, \hat{A}\beta]F_+(Q_0^2)^2 + \hat{A}\beta[V_l, F_+(Q_0^2)^2].$$

Clearly $[V_l, \hat{A}\beta]F_+(Q_0^2)$ is $H_0(\lambda)$ -compact. Again we rewrite the commutator in the second term, by use of (2.19). Then we have $\langle x \rangle^{1+\delta}[V_l, F_+(Q_0^2)^2]$ is bounded. Combing these facts, we have the relatively compactness of $[V_l, J_1]$.

As for the commutator $[V_l, J_2], \ldots, [V_l, J_4]$ we also replace F_{\pm} by $F_{\chi,\pm}$ and use the functional calculus. The proof of relatively compactness of $[V_l, J_2]$ and $[V_l, J_3]$ are

almost the same. We only give the proof for J_2 . We also estimate the 'principle' part before we compute the commutator with V_l .

(3.29)
$$J_2 = \hat{A}F_+(Q_0^2)F_-(Q_0^2)Q_0 + [F_+(Q_0^2), \hat{A}]F_-(Q_0^2)Q_0$$

It is sufficient to show that $[V_l, \hat{A}F_+(Q_0^2)F_-(Q_0^2)Q_0]$ is a $H_0(\lambda)$ -compact operator. We decompose it into the following sum.

$$\begin{split} & [V_l, \hat{A}] F_+(Q_0^2) F_-(Q_0^2) Q_0 \\ & + \hat{A} [V_l, F_+(Q_0^2) F_-(Q_0^2)] Q_0 \\ & + \hat{A} F_+(Q_0^2) F_-(Q_0^2) [V_l, Q_0]. \end{split}$$

We can easily see that the first and the third term is relatively compact since $\langle x \rangle^{1+\delta}[V_l, Q_0]$ is bounded. As for the second term, we can also see the relatively compactness in the same argument as we have done in the proof of Lemma 3.5 (iii).

As for J_4 , the proof is similar. We rewrite it as

(3.30)
$$\hat{A}F_{-}(Q_{0}^{2})^{2}Q_{0}^{2} + [F_{-}(Q_{0}^{2})Q_{0}, \hat{A}]F_{-}(Q_{0}^{2})Q_{0}$$

We can also obtain the relatively compactness by estimating the term $[V, AF_{-}(Q_0^2)^2 Q_0^2]$.

Corollary 3.7. Let V be a 4×4 Hermitian matrix and s > 1/2. Suppose V satisfies the condition in Lemma 3.6. Then the following limits

(3.31)
$$R^{\pm}(\mu) = \lim_{\epsilon \downarrow 0} \langle x_3 \rangle^{-s} (H(\lambda) - \mu \mp i\epsilon)^{-1} \langle x_3 \rangle^{-s}$$

exist for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$ and $\mathbb{R}^{\pm}(\mu)$ are continuous with respect to μ .

References

- J. Avron, I. Herbst and B. Simon: Schrödinger operators with magnetic fields. 1. General interactions, Duke Math. J., 45 (1978), 847–883.
- [2] A. Boutet de Monvel-Berthier, D. Manda and R. Purice: *Limiting absorption principle for the Dirac operator*, Ann. Inst. Henri Poincaré, 58 (1993), 413–431.
- [3] A. Boutet de Monvel-Berthier, R. Purice: *The Dirac evolution equation in the presence of an electromagnetic wave*, Helv. Phys. Acta, **67** (1994), 167–187.
- [4] C. Gérard: Asymptotic completeness for 3-particle long-range systems, Invent. Math., 114 (1993), 333–397.
- [5] G. Hachem: Effet Zeeman pour un électron de Dirac, Ann. Inst. Henri Poincaré, 58 (1993), 105–123.
- [6] H. Iwashita: On the long-range scattering for one- and two- particle Schrödinger operators with constant magnetic fields, Tsukuba J. Math., 19 (1995), 369–376.

K. Yokoyama

- [7] A. Jensen, E. Mourre and P. Perry: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, 41 (1984), 207–225.
- [8] E. Mourre: Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., 78 (1981), 391–408.
- [9] M. Reed, B. Simon: Methods of Modern Mathematical Physics 2, Academic Press, New York San Francisco London.
- [10] B. Thaller: The Dirac Equation, Texts Monographs Phys. Springer-Verlag, 1992.
- [11] K. Yokoyama: Mourre theory for time-periodic systems, Nagoya Math. J., 149 (1998), 193–210.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: yokoyama@math.sci.osaka-u.ac.jp