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1. Introduction

The Dirac Hamiltonian with magnetic vector potental= (a;(x));=1
pressed by the following form

.....

d

(1.1) H@ =Y 7i(Pj—a))+mysm+V,
j=1

where P; = Yi0,,, V is a multiplication of an Hermitian matri¥’ x( )» is the mass
of electron. The matrice$y;} satisfy the following relations

(1.2) Vit wy; =241 (j,k=1,...,d+1)

Here ¢;, is Kronecker’s delta and is an identity matrix. We assume that the speed
of the lightc = 1. WhenV = 0, the square o &) has the form

d
1
(1.3) H@?=> (Pj—a?+m®+= > bu(x)y%,
= 1<j<k<d
where
(1.4) bjx () =0y a;(x) — Oy, ar(x).

It is called Pauli's Hamiltonian. The skew symmetric matrix,(x ( )) is the magnetic
field associated witta. We say the magnetic field is asymptotically constant if it sat-
isfies the following conditions akc| — oo :

(1.5) bi)—Aj (1< jk<d),

where (A )« is a constant matrix.
The aim of this paper is to prove the limiting absorption principle fbra) With
a constant magnetic field f, x ( )) and a long-range electric potelitial ( ) when =3.
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Let us recall some known facts about the Dirac Hamiltonian with a constant magnetic
field for d = 2, 3. As can be infered from (1.3), the spectrummbf) i§ closely related

with that of magnetic Sclkdinger operator appearing in the right hand side of (1.3),
which depends largely on the space dimension. Supgose = 2 at first. For simplicity
we consider the case that the magnetic field (J@1(x) — Ox,a2(x) = A > 0. In this

case, the Dirac Hamiltoniah \) is represented by

(1.6) hQ\) =01 <P1 + %)Q) + 0, <P2 — %xl) +moj,

: _ (01 _(0—i _(10
with o1 = 10/ %25\, 0 ) o \og_1)

They are called Pauli’s spin matrices. Obviougly; } satisfy the relation (1.2) and by
an elementary calculus we have

2 2
(17) h()\)2 = <P]_ + %XZ) + <P2 — %XJ_) +m? — A03.

The right hand side is a de-coupled 2 dimensional magneti®dicher operator. So
it suggests that the spectrum bf))(is discrete and

o(h(\) C {j:\/Z/\n+m2 1n=01 2}

In fact we have

o(h(\) = {\/ZAn +m2, —2\n+1)+m? | n=0,1 2. }
by using Foldy-Wouthuysen transform. (See 7.1.3 in [10].) Therefore the spectrum of

h()\) is of pure point with infinite multiplicities.
Next we consider the case df = 3. We assume

)\XZ )\xl

ao(x) = <_T’ R 0) (A > 0).
Then the associated magnetic field is constant aleagxis :

B(x) = (b32(x), b1s(x), b21(x)) = (0, O, A).

We denote the associated Dirac HamiltonianH$)). It is the following operator act-
ing onH = L3(R%) ® C* :

A A
(1.8) Ho(\) = a1 <P1 + %) +ap (Pz — %) +azP3+mp,
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where {«;} and 8 are 4x 4 Hermitian matrices such that

o (02 (3%

We can easily see that these matrices also satisfy the relation (1.2). It is known that
Ho()) is essentially self-adjoint o@§°(R%) @ C*. (See Theorem 4.3 in [10].) Now we
consider the spectrum aflg(A). At first we rewrite Ho(\) as follows.

(1.10) H) = 0o rmo= (5 )+ (% 2.

with Dg =0 - (P — ay) ando = (01, 02, 03).
By using Foldy-Wouthuysen transform, explained in detail in the following sec-
tion, Ho(A\) can be diagonalized by a unitary operatdFy

\/ D2 +m? 0
(1.11) Upw H(\ UL = 0
0 —y/ D3 +m?

From the commutation relation (1.2) we have

(1.12) D§=(P+ ) +(P= 50 ) + P3G

We can easily see that(DZ) = [0, c0). So we have
o(Ho(X\)) = (—o0, —m] U [m, 00).

Therefore in the 3 dimensional case, the spectruntig{f\) is absolutely continuous.
Let us consider the perturbation éfy(\) : We put

(1.13) H Q) = Ho(\) + V.

Our aim is to show the so-called limiting absorption principle, namely the existence of
the boundary value of the resolvent(H()\))~! on the real axis. The precise assump-
tion on V will be given in Section 3. It is closely related to the absence of singular
continuous spectrum of the operator and the asymptotic completeness of the wave op-
erator associated witltio(A\) and H (). To prove the limiting absorption principle, we
use Mourre’s commutator method, which makes great progress for variousd8uer
operators. (For example, see [8].)

Suppose we are given a self-adjoint operatbr ~ on a separable Hilbert space. For
a closed interval ¢ R we denote the spectral measure, corresponding to the interval
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asE; H). Once we find some self-adjoint operator  satisfying the following inequal-
ity, we obtain many informations abou{

(1.14) E;HYH AlE;(H) > aE/(H) + K,

where « is a positive number an& is a compact operator. To be accurate, we can
see the following properties hold.
(i) o,p(H)NI, the eigenvalues off id , are discrete.
(i) The boundary value of the resolvent dho,,(H) exists in some weighted Hilbert
space. I{miting absorption principle )

For example, we consider a usual Sifinger operator

H=—-A+V({).

Here V (r ) is a real valued function, which is decaying|as— oc. In this case we
chooseA = 1(2i){x-V,+V,-x} as the conjugate operator. Then the Mourre’s inequal-
ity holds for any compact interval C R\ {0}. As a result one can show thay,,(H)

is discrete with no accumulation point exceft}. We denote(-) = (| - |2+ 1)%2. Then

we can also see the boundary values

(x)"(H — pFi0)H(x)™*
exist in the operator norm far > 1/2 andp € R\ ({0} U opp(H)).
As for the Schadinger operator with constant magnetic field, lwashita [6] shows
the limiting absorption principle for long-range potential by using commutator method.
In [6] the following self-adjoint operator is considered.

~ )\)CZ 2 )\xl 2 2
(115) H = P]_+7 + PQ—T +P3+V(X).

A self-adjoint operatorA = A2(Ps - x3+ x3 - P3) is used as the conjugate operator. As
a result, the existence of the boundary values

(x3) T (H — pF i0) Hxg) ™"

is proved fors > 1/2 andp € R\ ({M21 +1)n =0,1 2 ...} Ua,,(H)).

Commutator method is also used for the free Dirac Hamiltonian and that with a
scalar potential, which is decaying &5 — co. (See [2].) As for the electromagnetic
Dirac Hamiltonian, asymptotic behavior of the solution of the Dirac equation is in-
vestigated in [3]. In their paper, the time dependent electromaginetic diehdr () is
required to satisfy the following properties.

(i) Eacha; (,t) satisfies the wave equation

82
<W — A) aj(x,t)=0.
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(i) The initial dataa; ¢, 0) andd,a;(x,0) are compactly supported iR,
Hachem [5] showed the limiting absorption principle for the following electromagnetic
Dirac Hamiltonian with a short-range potentiglx ( ).

H = a1P1+ (P2 + Ax1) + agP3+mfB+ V(x).

His idea is roughly as follows. First let us consider the c&se= 0. By passing to
the Fourier transformation with respect g, x3-variables we denotéoH F; as D (p)
(p = (p2, p3)). Then we have

(1.16) DY =Ap)®A_(p) & A(p) @ A_(p).

where A4 (p) are harmonic oscillators defined as follows.

2
(1.17) AL(p) =~ 5+ O+ pof? A+ ph
1

He then switched on the short-range potentiak ( ) by perturbative argument. Roughly
speaking, his assumption means that the absolute value of each componént of s
dominated from above by (x/)~1¢(x)~¢ (x’ = (x2, x3)) for sufficiently largex . We
remark thate > 0 is used as a sufficiently small parameter throughout this paper. To
be accurate{x’)*V(x) is required to be afy(\)-compact operator.

In this paper we treat directly the following operator

(1.18) HQ)=a; <P1 + %)Cz> +ap <P2 — %)Cl) +azP3+mfB3+V(x),

where V () is a matrix potential. Our strategy is to apply Mourre’s commutator
method directly to this operator, which enables us to include the long-range diagonal
components foV A ). In this case it seems that an appropriate choice of the conjugate
operator is

P3 Ps

— . x2+Xx2-

(Py) ™
which is inspired by [11], when we proved the limiting absorption principle for time-
periodic Schadinger operator. In fact the method of the proof shares many ideas in
common with [11]. Namely we rewritédy()\) by a direct integral and the conjugate

operatorA acts on each space of fiber. Our main results are Theorem 3.4 and Corol-
lary 3.7.

2. Conjugate operator

Let us recall

1) 0= (9 %) po=otr -
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with

(2.2) ao(x) = (—Azxz % o) .

The Dirac HamiltonianQy+mf can be diagonalized by sandwiching it between a uni-
tary operatorU and/* = U~1. In the beginning of this section we introduce a unitary
operator which diagonalizes the self-adjoint operatfy()\). Secondly we give a con-
jugate operator associated with the diagonalized Dirac Hamiltonian. Finally we show
Mourre’s inequality for original Hamiltoniangfp()\) and H (\).

Let Qo be the self-adjoint operator as in (2.1) ah@o| = \/55, |Ho(\)| =
v/ Ho(\)2. We define a unitary operatdiry , which diagonalizég()\), in the fol-
lowing way.

Dernimion 2.1, (i) At first we define a signature function associated withby
Qo 1
(2.3) sgnQo = ¢ Qo
0, on (kerQp)
We note that sg@g is isometory on (keQg)*.

(i) We can easily see that/|Hp(\)| < 1. So we denote the square root of2(1 +
m/|Ho(\)|) asax. i.e.

1 m
2.4 ar = —,/14+ ——.
4 T2 | Ho(M)]
(iii) Combining these operators we define the operdipyy, as
(2.5) Urw =a++ B(sgnQo)a-.

Lemma 2.2. () Upw is a unitary operator onL?(R%) @ C*.
Further,

(2.6) Ufw = Upy = ax — 5(sgnQo)a-.

(i) Ho()\) can be diagonalized by as follows.

N2 4 2
(2.7) Urw Ho(\ Uy = |Ho(N)|3 = ( Porm 0 ) .
0 —\/ D3 +m?
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Proof. See 5.6.1 in [10]. ]
We denote the diagonalized Dirac Hamiltonianfa)a/\). i.e.
Ho(M) = Urw Ho\)U .-
We rewrite (1.12) as follows.
D_ 0
2 _
D= ( A D+) .
Here D are the operators acting ai?(R®) such that
A\ A\
Dy = <P1 + Ex2> + (P2 — Exl) + P32 + A
It is well-known that @1 + \/2x,)? + (P, — \/2x1)? has eigenvalues

(M2n+1)|n=0,12...}

We denote the eigenprojection on each eigenspacdlas . With these projections,
V' D3 +m? can be rewritten as follows.

oo
d, ® I, 0
(2.8) \/D(2,+m2:Z( 0 dyoll >,

n=0

with d, = d,(P3) = \/2\n + PZ + m?.

Combining (2.7) and (2.8), we have

F(Ho(N) =
f(dn) ® I,
= f(dn+1) ® I1,
; f(*dn) & Hn ’

f(*dn,+l) ® Hn

for any Borel functionf .
Now we define the conjugate operator. At first we define

~ 1( P Ps
(29) A—E{@'X?,‘F.Xg'@}.

We note thatA is essentially self-adjoint operator dn |x4]). (It is obtained by use of
Nelson’s commutator theorem [9].) The conjugate operator for the Dirac Hamiltonian
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associated with constant magnetic field is defined by sandwicﬁkﬁlg:)etweenU;vﬁ
andUry :

(2.10) A =Upy(AB)Urw.

Letting F be a Fourier transformation with respectaipvariable. We define the self-
adjoint operatorA; byFAF~!. Then we have

_ , 1/2
(2.11) € s xz pd =[5 (09 02 T (),
p3

for ¢ € LAR2 x R,). HereT, is a solution of the following equation.

d
(2.12) Err(l’s) = (T(pa)) 'T(p3)
To(ps) = p3

For the proof, see Appendix 1 in [8]. Therefore the unitary gr@{jéﬁ is rewritten

1/2
—3(P3) ¢1(x1, x2, T'i(p3))

or 1/2
6—1 (p3)|  @2(x1, x2, Ty(p3))
pP3

or_ 1/2
5 “(ps)|  ba(x1, x2, T_i(pa))
P3

(2.13) (Fe"*P F14)(x1, X2 pa) =

or_,
op3

1/2
(p3)|  Palx1, x2, T—i(p3))

Before we compute the commutatorH [A\)( A], we have to care that the following
matters hold.

Lemma 2.3. (i) A is a self-adjoint operator or.
(i) ¢4 leaves D(Hp()\)) invariant, i.e.

(2.14) sup|| Ho(\)e'" (Ho(\) + i) 2¢||m < oo for ¢ € H,
[r]<1

where|| - |z denotes the operator norm df.

Proof. The self-adjointness oA is easily obtained from thatAgf To see the
invariance ofD fo())), it is sufficient to show the following

(2.15) sup|| Ho(\)e P (Ho(\) +i) 2|l < 0o for ¢ € H.
r|<1
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From the arguements (2.11) and (2.13), we have

F Ho(\)e' 7 (Ho(\) + i)*lF%

or
D 1

n,t

S| outas xa T ()

8F,
D;+lt

S| oatas 5z T(pa)

= _ aI‘_,
n,—t

| atas xa T )

8F_,

n+l,—t

S| ontas e T )

where Dif, = d,(p3)(dy(Ta(p3)) = i)t ® I,. By integrating (2.12), we have
(2.16) ITa(ps) —p3[ <1 (o <1).

So (2.14) is obtained from the fact th@;, is bounded uniformly form € N and
la| < 1. U

Before we show Mourre's inequality, we introduce the usual functional calculus,
started by Helffer and 8ftrand.
Suppose thatf € C>°(R) satisfies the following condition for someg € R.

(2.17) 1O < Ce@+]e))"*, Yk e NU{0}.

Then we can construct an almost analytic extensi¢r) of f(r) having the following
properties

f@)=f@), teR,

suppf C {z;|Imz| < 1+|Rez|},

(2.18) | < CylImz[N(z)™ N, YN eN.

Then for all f, satisfying (2.17) fomy < 0 and a self-adjoint operatdd , we have

(2.19) f(H)=% /«: g—?(z)(z—H)*ldz/\dz_.

With this form, we can compute the commutator of an operdor @md ( ) in the
following way.
For operatorsP andQ , we definﬁlz(P) = P and inductivelyady € ) =
[ad}~*(P). Q] for m € N.
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Lemma 2.4. Let A and P be self-adjoint operators offl. Suppose that
ad(P)(A + i)™ extends to a bounded operator fdr < m < n. Then for any
g € C*°(R) satisfying(2.17) with mg < 0, we have

1 g 1 _
@20 re)=Y S Badi(r) 5 [ 03R4z
m=0 ’

where R, , ,(z) = (z — A)""ad};(P)(z — A)~*, and

n—1 (_l)m 1
(2.21) g@P =) adj(P)——g"(A)+ o /c 9:Z() R 4. p(2)dz NdZ

m!
m=0

where R;, , »(z) = (z — A)~tad}(P)(z — A)™" and g(z) denotes an almost analytic
extension ofg ().

For the proof of above results, see [4].

3. Limiting absorption principle for long-range potentials

Now we show the Mourre’s inequality for the Dirac Hamiltonian by choosihg
defined in the previous section as the conjugate operator.

Lemma 3.1. Let Ry be the following discrete subset Bf
Ry={xVv2an+m?2 |n=0,1,2...} CR.

We take a compact intervdl C R \ Ry arbitrarily. Then there existe > 0 such that
the following inequality holds for any real valuetle C5°(1)

(3.1) f Ho(V)i[Ho(A), Alf(Ho(N) > af (Ho(A))*.
Proof. By the relations (2.7) and (2.10), it is sufficient to show the inequality
(32) [ (Ho(N)ilHo(N), AB]f(Ho(N) > o f (Ho(N)Y.

We rewrite the commutator as follow.

) . i |\/D2+m2, A
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We proceed the calculus more precisely to see that

(3.4) i {\/DS +m2, 2\} =) <i[d"’ Alet i[dye1, A] ® I'In)

n=0

by (2.8). From (3.3) and (3.4) the left hand side of (3.2) is rewritten as

I
~ A - N I
(3.5) £ EHo(N)i[Ho(N). AB] f (Ho(N) = L
I4
where
L= f(d)ildy, Al f(dy) ® T,
n=0
12 = Z f(dn+l)i[dn+l’ A]f(drﬁl) ® Hn,
n=0
13 = Z f(_dn)i[dna A]f(_dn) @ Hna
n=0
I4=Y " f(—dps)ildnsr, Al f(=dys1) @ T,
n=0
We note that all the sum iy, ..., I are finite sincef is a compactly supported
function. By an elementary caluculus, we have
A P2
(3.6) ild, Al = el (l e NU{0}).

\/ 2\ + P2 + m?(Ps)

Since supgyf € I C R\ Ry, P3 is away from zero whenP; € suppf ¢ (Ps)) or
P; € suppf €d;(Ps)). So there existC; > 0 such that

f(d)ildi, Alf(d) © T, > Ci f(d))? @ T,
F(=d)ildy, Al f(—d)) @ T, > C1 f(—d))? @ ;.

Since only a finite number of & j( =1.., N) is concerned, we have (3.2) with
o= inszl__.,N C/j. O

Now we give the assumption for the potential, which is necessary to prove
Mourre’s inequality associated tH \), After that we give an example df  satisfying
this assumption. The potenti#  consists of a sum of long-range part and short-range
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part. In our case short-range potential meahs ( Q¢ %x)(“(x3)~17¢) as |x| — oc.
And long-range part is a multiplication of a real valued functiofx) such thatp(x) =
O((x)~¢) as |x| — co. More precisely we assume th&it satisfies the following.

AssumpTion 3.2. 'V =V (x) is a multiplicative operator of a4 Hermitian ma-
trix satisfying the following properties.
(i) V is a Ho(\)-compact operator.
(i) The form [V, A] can be extended to &y(\)-compact operator.

For example a 4 4 matrix V (x) satisfying the following inequality i$75()\)-compact.
3.7) V)| < Clx)™° (x €RY).

It is owing to the fact thatV A WA, +1)~! is compact. (It is due to Theorem 2.6 in
[1].) Under this assumption we show Mourre’s inequality fér)\).(

Lemma 3.3. SupposeV satisfieAssumption 3.2
(i) We takey € R\ Ry and 6 > 0 so that the closed interval = [y — §, u+ 8] C
R\Ry. There exisiv > 0 and a compact operatoK  such that the following inequality
holds for all f € Cg°(I).

(3.8) fHQ)HN), AlF(HN) > af (HN)) + K.

(i) There is no accumulation point af,,(H(A)) in R\ Ry. For p € R\ (Ry U
opp(H(N))), there existép > 0 and g > 0 such that the following inequality holds
for all f e C3°([x — do, p + do)).

(3.9) FHQIHN), ALF(H(N) > aof (HN).

Proof. From (2.19) we have
FCHO) — F (o) = 5 /C O/ () — HO) MV (z — HoW)~*dz A dZ

for f € C°(R). We can easily see that H(\)Y) — f(Ho(\)) is a compact operator

since V Ho()\) + i)~ is compact. Combing this fact and (3.1), we have (3.8) by re-

placing f (Ho()\)) in (3.1) by f (H (\)). As for the non-existence of the accumulation

point of ¢,,(H(\)), see Theorem 2.2 in [7]. (3.9) follows from the arguement in [8]
[

With this inequality we have the limiting absorption principle for the Dirac Hamilto-
nian.
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Theorem 3.4. Lets > 1/2. SupposeV satisfieAssumption 3.2 Then forpu €
R\ Ry U opp(H(N))), the following limits

(3.10) R*() = lim (xs) “*(H() = o F 1€) " (x3)
exist andR* (i) are continuous with respect to € R\ (Ry U opp(H(N))).

Sketch of proof
From (3.9) and Theorem 2.2 in [7], we can see that the boundary valpye' (H(\) —
pFi0)~1(A)~* exist for up € R\ (RyUo,,(H()))). To see the existence of (3.10), it is

sufficient to show the boundedness ©f)* (x3)~*. Since (A)*(x3)~* is bounded, it is
sufficient to show(xz)*Upw (x3)~* is bounded. We prove it in the following Lemma.
Before that we introduce smooth functions. Lgt) € C*°(R) such that

5 (%)

V2 3
2m2

0 <z < _T) .

With this function we defing<..(¢f) and F, 1 as follows.

Fo(t) = (1), /1 + \/%7
—1
F_(t):w)( 1+ ) L

t +m? t+m?2
By +(t) = Fi(t) — x(t)

Fr—() = Vi +m2F_(t) = x(r)

(3.11) x(t) =

Then we can easily verify that

ay = F+(Q(2))7
a_sgnQo = F_(05) Qo = QoF_(09).

Obviously [Qo, F_(Q3)] = 0. By the construction of these functions, we can also see
that F, 4 (r) satisfy (2.17) withmo < 0. So we apply the functional calculus in Section
2 to F,, +(r) and see the following properties hold.

Lemma 3.5. Supposed <s <2 andz € C\R. Then
(i) For 0<s <1, there existsCy > 0 such that

(3.12) 1()* (@ = 08) M) ™"l < Co(lIm 2|~ +|Imz| 72(2)).
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(i) For 1< s < 2, there existsC! > 0 such that
(313)  [[(x)*(z— @) Hx)llm < Cl(lImz| 7T+ [Imz| 72 (2) + [ Im 2| ~¥(2)?).
(i) (x)* Fr(Q3)(x)~* and (x)* F_(Q3)Qo(x)~* are bounded operators.

Proof. For the proof of (i) and (ii), we use the resolvent equation. Suppase 0
s < 1. Then

(3.14) (x)*(z— Q) Hx) " =z — Q§) '+ (z— Q) Q5+ 1)
(3.15) x (Q3+ 1) (x)*, Q8l(z — Q3 M (x)~".

From the boundedness 0§ + 1)~[(x)*, 03] and the following estimate
(3.16) Iz = 03)~HQF + Dl < C(IImz|~H(z) + 1),

we obtain (i). As for the case 1< s < 2, we rewrite the last termz(—
08) M(x)", Q8l(z — Q) Hx) ™" as

(3.17) (x — Q) Q5+ 1)(Q5 + 1) M (x)*, Qfl(x) "
(3.18) x (x)" "Mz — QF) M) Hx) L

By using the result for < s < 1, we have the inequality for & s < 2.
With these estimates, we prove (jii). Sing€¢Q3) = 1, we can easily see that

(3.19) (0)" Fe(Q8)(x) ™" = (x)" F+(Q@8){x) " + 1.
Since F, .(t) satisfies (2.18) formg = —1/2, F, +(Q3) can be rewritten as follows.
1 ~ _
(3.20) - / O (D) (x)*( — 09 x) dz N dE.
2ri Jc
From this formula and (i) (ii) we have

10:F +(2)(x)* (z — @8~ Hx) |l
< CloFy+ (I Iz 7+ [Im 2| 72(z) + ] Imz] ~3(2)?).

From (2.18) we have
10F +(2) %)’ (z = Q8)Hx) " lm < C(2) ™%/,

This implies the boundedness 0f)* F.(Q3)(x)~*.
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In a similar way, we rewritex)* F_(Q3)Qo(x)~* as

20 () ) e ()

\/ Q% +m? /Q§+m2

It is sufficient to show the boundedness @f* Qo/4/ Q3+ m?(x)~*. To see this, we

denotex(t)/Vt +m?2 € C(R3 as S ¢) and its almost analytic extension $). We
can easily see thaf Q)(x)*Qo(x)~* is bounded. So we obtain the boundedness of
(x)*F_(03)Qo(x)~* if we show that [x)*, S(Q3)]Qo(x)~* is bounded. We rewrite it
as follows.

(3.21) () Py, (@) (x) ™ (x)?

1 ~ Z2+1 _
57 [0S0 2 5208+ 17, QBIQ0(x) () — 09w e n

By an elementary calculus, we hav@3+1)~1[(x)*, 03] Qo(x)~* bounded. Combining
() and (ii), we have
L6 S(@RIQole) s < € [ 10:5)I (L +|1ml )

x{|Imz| 2+ Imz|72(z) + | Imz|3(z)?}dz A d7 < .

This implies the boundedness 0f)* F_(Q3)Qo(x) . O

Next we give an example o . It requires smoothness, but allows long-range part
in its diagonal components.

Lemma 3.6. Let V be a4 x 4 Hermitian matrix of the form

(3.22) V) = i @) +elx)la = Vilx) + Vilx)

where Vi (x) = (v;;(x)) is an Hermitian matrix andl, is an identity matrix. Suppose
the following conditions hold. Thel (x) satisfiesAssumption 3.2
There existy > 0 such that the following inequalities hold for all multi-index

(3.23) 020 (x)] < Calx) 0710l ag) ™t (1<, j < 4).
©(x) € C®(R®) is real valued and satisfies
(3.24) |0 ()| < €)o7l

The relatively compactness df x () itself is clear sinde  satisfies (3.7). So we
only have to show the relatively compactness Bf A ]. We prove the relatively com-
pactness of {;, A 1 = Vs, Uyt ABUry] at first. From the boundedness 6f3) 1Af
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and the relatively compactness 8f(xs), it is sufficient to show thatxs)Ury (x3) !
and (x3)U 5 (x3)~* are bounded operators ifi. We have already proved it in Lemma
3.5.

Next we treat the long-range term. The conjugate operdtor can be decomosed
into the sum of/q, ..., J4 where

J1 = FL(Q3)ABF.(Q3).

J2 = Fr(Q3)AB*F_(Q3) Qo

J3 = BF_(Q3) Q0ABF.(0)),

Ja = BF_(03)QoAB*F_(03)Qo.

We prove that theHy()\) - compactness holds for each df;[J1],...,[V), J4]. TO see
this we use the functional calculus again and rewsiteas follows.

Fi(Q3)ABF.(Q3) = ABF.(Q3)? +[Fy +(Q3), ABIF.(Q3)

_ g1 "

At first we prove the boundedness @f and consegently the relatively compactness
of [V;, J{']. By using (2.19), we rewrite I, +(Q%), A3] as follows.

@29 5 [ 0RO - 00k Afl: — 0] s A

From (3.16) we have@®?, AS](z — 03)~! is dominated from above bg{1+|Imz|}.
So we have

(3.26)  |[[Fy+(03).AB]| < C /(C |0=Fy +@){] Imz| 7+ [ Im 2| ~2(z) }dz A dz.

Since the almost analytic extensi(i?)(,+(z) satisfies
(3.:27) |0:F.(2)] < CylImz|Y(z)=2N ("N e N),

we have F, +(03), Af] is bounded and inductively}, J{'] is Ho(\)-compact. So we
only have to show the relatively compactness 9f, [/;].

(3.28) Vi, J{1 = [ Vi, ABIFA(Q3)? + AB[V,, F(Q3)2.

Clearly [V;,AB]R(Q%) is Hp(\)-compact. Again we rewrite the commutator in the
second term, by use of (2.19). Then we have'*’[V;, F.(Q3)?] is bounded. Combing
these facts, we have the relatively compactnessvgfJp].

As for the commutator ¥, Jo], ..., [Vi, Ja] we also replaceF’,. by F, + and use
the functional calculus. The proof of relatively compactnessVof J»] and [V;, J3] are
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almost the same. We only give the proof fér. We also estimate the ‘principle’ part
before we compute the commutator with

(3.29) J2 = AFL(Q3)F_(Q3) Qo + [F+(Q2), A]F_(03) Qo

It is sufficient to show thatV;, AF.(Q3)F_(Q3) Qo) is a Ho(\)-compact operator. We
decompose it into the following sum.

[Vi, A]F.(Q3)F-(03) Qo
+A[Vi, F+(Q2)F_(03)] Qo
+ AF.(Q3)F_(Q3)[Vi, Qo).

We can easily see that the first and the third term is relatively compact since
(x)*[V;, Qo] is bounded. As for the second term, we can also see the relatively com-
pactness in the same argument as we have done in the proof of Lemma 3.5 (iii).

As for Jy, the proof is similar. We rewrite it as

(3.30) AF_(0Q3)?03 + [F-(03)Qo, A1F_(03) Qo

We can also obtain the relatively compactness by estimating the term
[V. AF_(03)*Qg]-

Corollary 3.7. Let V be a4 x 4 Hermitian matrix ands > 1/2. SupposeV
satisfies the condition ihemma 3.6 Then the following limits

(3.31) R*(u) = LTQ(Xs)ﬂ(H(/\) —pFie) Hag) ™

exist foru € R\ (Ry U o,,(H()\))) and R*(u) are continuous with respect to.
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