

Title	Joining of Al ₂ O ₃ to SUS 304 with Ti Foil
Author(s)	Naka, Masaaki; Okamoto, Ikuo
Citation	Transactions of JWRI. 1986, 15(1), p. 157-158
Version Type	VoR
URL	https://doi.org/10.18910/7588
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Joining of Al_2O_3 to SUS 304 with Ti Foil [†]

Masaaki NAKA* and Ikuo OKAMOTO*

KEY WORDS: (Joining) (Ceramics) (Alumina) (Stainless Steel) (SUS 304) (Titanium)

Ceramics have received considerable interests in practical application because of their superior heat- and corrosion-resistance. The inferior workability arisen from its high hardness and brittleness requires the joining of ceramics to metals. Several investigations on ceramic-metal joining have been reported¹⁻⁶. The joining of alumina to steel was made in slightly oxidizing atmosphere using copper filler, and the joining of metals to Si_3N_4 with amorphous Cu-Ti and Ni-Ti filler metals. The present paper deals with the joining method of alumina to SUS 304 stainless steel using titanium foil.

Alumina (99.6 wt% Al_2O_3) of 6 mm diameter and 5 mm thick and SUS 304 stainless steel of 6 mm diameter and 5 mm thick were used to make a butt joint. The high purity titanium foil 6 mm diameter and 0.5 mm thick (99.6 wt% Ti) was inserted between alumina and SUS 304.

Figure 1 shows the construction for joining. The joining was done under the joining condition of 1400°C for 30 min under 50 kg/cm² in vacuum condition of 1×10^{-6} torr using a high frequency heating. The heating rate is about 50°C/min up to the joining temperature. The microstructural analyses were performed using energy dispersive X-ray microanalysis (EDX) and scanning

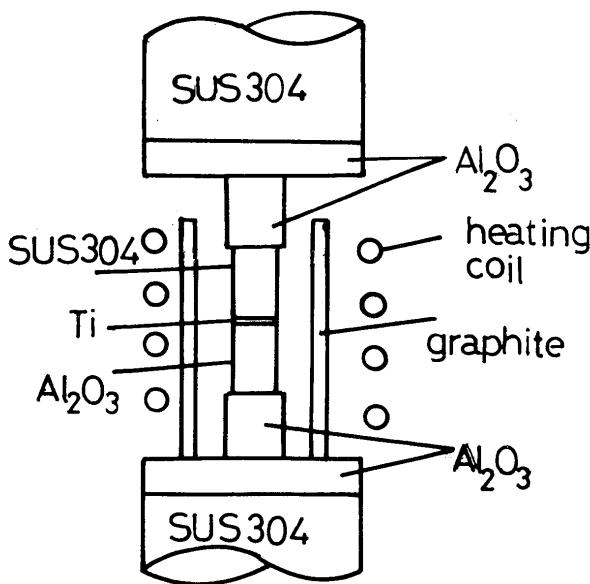


Fig. 1 Schematic Construction for joining.

electron microscopy (SEM).

The joining of alumina to SUS 304 was made without cracks in alumina in Figs. 2 and 3. Figure 2 shows the analyses of Fe and Ti of Al_2O_3 /SUS 304 joint. Titanium changes from the plate structure to the solidified structure. Titanium rich structure is formed at the intermediate layer between SUS 304 and alumina. Since titanium rich alloy with 68 at% Ti content in Ti-Fe system⁷ shows the Ti-FeTi eutectic reaction at 1085°C, the titanium rich structure in the Al_2O_3 /SUS 304 joint may be formed by the reaction of Ti-FeTi phases. Figure 3 shows the SEM

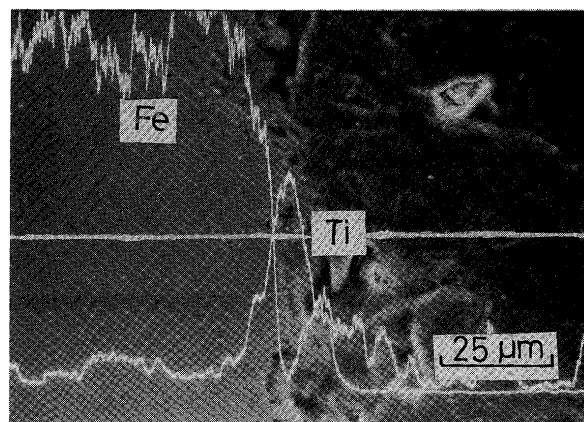


Fig. 2 SEM microstructure and line analyses of Ti and Fe of Al_2O_3 /SUS 304 joint joined at 1400°C for 30 min under 50 kg/cm².

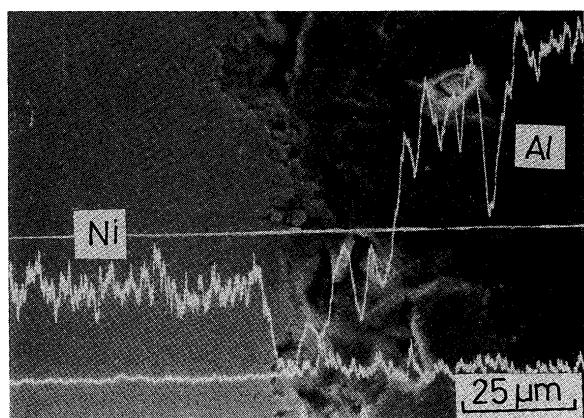


Fig. 3 SEM microstructure and line analyses of Ni and Al of Al_2O_3 /SUS 304 joint joined at 1400°C for 30 min under 50 kg/cm².

† Received on April 25, 1986

* Associate Professor

** Professor

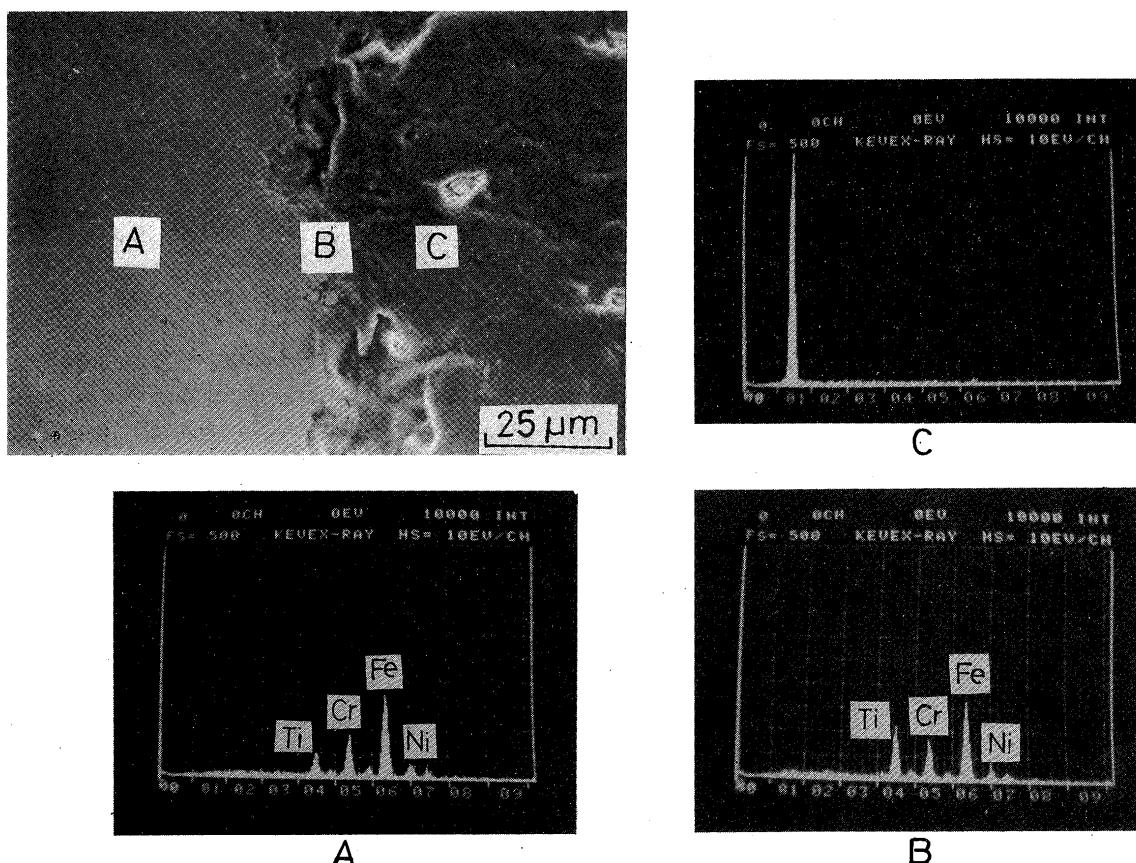


Fig. 4 EDX spot analyses of A, B and C in Al_2O_3 /SUS 304 joint joined at 1400°C for 30 min under 50 kg/cm^2 .

microstructure and line analyses Ni and Al of Al_2O_3 /SUS 304 joint. The eutectic structure contains chromium and nickel as shown in EDX spot analyses in B of Fig. 4. Titanium diffuses into the matrix of SUS 304, as shown in EDX spot analyses in A of Fig. 4.

In conclusion alumina and SUS 304 stainless steel are soundly joined by forming the titanium rich eutectic liquid during joining.

References

1. I. Okamoto and M. Naka, Proc. 4th Inter. Symp. of the Japan Welding Society, 1982, p. 613.
2. M. Naka, K. Asami, I. Okamoto and Y. Arata, Trans. JWRI, 12 (1983), No. 2, 145.
3. M. Naka, K. Sampath, I. Okamoto and Y. Arata, Proc. Inter. Conf. Joining of Metals, ed. by O. AL-ERHAYEN, Denmark, 1984, p. 148.
4. M. Naka and I. Okamoto, J. High Temp. Soc., 11 (1985), 148.
5. M. Naka, T. Tanaka and I. Okamoto, J. High Temp. Soc., 11 (1985), 218.
6. M. Naka and I. Okamoto, Quaternary J. Japan Weld. Soc., 3 (1985), 28.
7. M. Hansen, Constitution of Binary Alloys, McGRAW-HILL Co., 1958, p. 723.