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ABSTRACT

Iet (M, R ,a ) be a separable continuous w*-—‘dynamical system such
that M 1s R - finite. |

Then any element in the crossed product RM of M by a cén be
expressed as a vector valued tempered distribution anl which is a weak*
limit of“ Tg, £ ¢ K(R)B) in the dual space S, (]R.;'éa* of a generalized
Schwartz space SU(R5’5‘> , where K(Ry® is the Tamita algebra corresponding

to R M.



1. TIntroduction. The study of von Neumann algebra of type III°

has been greatly developed since M. Tomita [10] obtained the so-called
commutation theorem based on his deep ideas, Especiaily, A Connes [1]
classified factors of type III into three parts — that is, of type IIIO,
of type IIIA (0 < A <1) and of type IIIl — , and he proved that a factor
of type ITI  or III, (0 < A <1) is the crossed product of a von Neumann
algebra of type IT by a single automorphism. Succeedingly, M. Takesaki
[9] established using a duélity for crossed products that any factor of
typé IIT with separable predual can be written as the crossed product o?

a von Neumann algebra of type IT_ by a continuous action of* the real
nunbers. After a while, A.iConnés [2] verified that there exist factors of
type III which are isomorphic to no discrete crossed product of a semifinite
von Neumarn algebra by an abelian group.

These facts cited above tell us that discrete crossed products can
hardly cover all the structures of factors of type III. Therefbre, it
- 1s guite significant to study continuous crossed products systematically.

However, there appear a lot of troubles in the continuous case as
compared with in the discrete case. For instance, it is unclear whether
the primitive ideal space of crossed!products equals to the induced primitive
ideal space in separable continuous C*-dynamical systems. (cf : [81)

The main reason seems to come from lacking of a suitable wéy to express
any element in continuous crossed products as an operator valued function
with certain rules. |

From this point of view, it is desirable to find a proper Fourier
expansion in continuous crossed products as in the discrete case.

In this paper, we shall try to offer one version for Fourier expansions

as stated above. More precisely, any element in the crossed producﬁ

-1



R®, M of aR-finite von Neumann algebra M with the separable predual
M, by a continuous action o of the real numbers R, can be expressed as
a vector valued tempered disﬁribution Dan which is a weak* limit of
Tg, $€ K(R3;@) in the dual space su(n;vg)fe of a generalized Schwartz
space Sy(R ;7%.), where K(R;8) is the Tomita algebra corresponding to
Ei@h M.

Finally, the author would like to express his hearty thanks to
Professor 0. Takenouchi for his constant encouragement and warm hospitality
in order to present this manuscript.

He also is greatly indebted to Professor A. Connes for his careful

reading of this paper and many valuable suggestions.
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§2. Continuous W*—crossed products and preliminary lemmas.

In this section, we shall define the crossed product associated
with a separable continuous w*—dynamical system and prepare a couple of
lemmas which will be used later. Let ™M be a von Neumann algebra and
G be a locally compact group. Consider a mapping o of G into the group
Aut (™M) of all automorphisms of M. The triple (M, G, o) is said to

be a continuous W*—dynamical system if o is a homomorphism such that the

function g b doa g(x) 1s continuous on G for every xeM and ¢eMy, where
My 1s the predual of M. It is also called separable if My and G are

~ separable. Let us suppose from now on that a triple (M, G, ¢) is a
separable continuous W¥-dynamical system and G is unimodular. Comparing
with the discrete case, one more assumption wbuld be added as follows:
there exists a G-invariant faithful normal state ¢ on M. Namely, suppose
that M is G-finite. Associated with ¢‘, let 013),6, A, J be the full left
Hilbert algebra with the identity Eqg> the maximal Tomita algebra in OL¢ 5
the modular operator of (I% > the unitary involution of (Xa) respectively.
Since ¢ is G-invariant, there exists a strongly continuous unitary
representation 0 of G on a Hilbert space % such that 0 g N (x)‘ = n £ ag(x)
for all x€&M, where n is the canonical imbedding of M into % . Since

"~ A commutes with Ug’ @B is invariant under Ug. According to M. Takesaki [9],
a locally convex topology on @ is defined by the f‘ollowing system (PK)K

of seminorms:

Ble) = sup, o (07| + |1 %)) (2.1)

where K is compact in the complex numbers € , and z(resp.n 2) is the left
(resp. right) representation of @ . Now consider the set K(G ;8 ) of
‘all continudus functions of G into (&, PK) with compact support. Then,

it 1s a Tomita algebra with the algebraic operations defined by
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(en)(@) = $0,-1 g(@™) n(hdn
-1 ” b -1\b
He) = 015 ), £7(e) = U1 gE) (2.2)

(%) (g) = 0% £(8)  , @@ = IO glg™)

for £, neK(G;®B), geG and z e ;. In addition, the left von Neumann
alg;ebra\}az(K(G;(BD associated with K(G ; 8 ) is nothing but the crossed
product G ®a M associated with a triple (M, G, o). Remember this von
Neurnarh algebra is generated by two kinds of operators Hd(x)’- 2 (g)

(xeM, geG) as follows:

(n,(x) £)(0) = a7 () ()

| (2.3)
(@ ) = £(gth) -

for ¢ ¢ 12(G ; %), where 12(G;% ) is a Hilbert space of all % -valued
square integrable functions on G.

In order to discuss the predual of G @aM in the next section, we
need two preliminary lemmas due to J. Phillips [6] . Before going to
state them, some notational words are given in the following. Lét 0Lbe a
left Hilbert algebra and oz," be the right Hilbert algebra associated with
0U. Denote by 53b the closure of the set {nﬁb: nex/}. Following dfter
J. Phillips, let pti)nt be the set of all integrable elements e g)b in

the sense that

Sup {<vn|e> i eeMgl < t = : . (2.4)
where 01  ={ee&0l: e =e= e*} . Moreover, let LX) be the campletion
of the linear space V(P?_nt) generated by P ?nt with respect to the norm

[ 'lhdefined by

IlnH]_=5up{]< glﬂ >I tEell, llnﬂ,(g)”f_l} | (2.5)
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for ne V(glbint).
Then one has the following:

Lemma 2.1. (1) ) ~ PR(OZ/)* as a Banach space
(1) M@ = (gt on,xeR)

where n-x° = |[-][; = Mmn g2 forn = lim n, $=Uny, (o, 3 e qf )
(ef: [6])

' Let us now take T a non-depenerate #-representation of a left Hilbert
algébra (Lon a Hilbert space ® . This representation T is called square
integrable if there exists a cyclic vector n Oe)?, for T such that the linear
functional gp»< T(g) n ol o > is continuous oﬂ 00 with respect to Hilbert
space norm. .Then one gets a criterion for square integrability as follows:

lemma 2.2. Let T be a square integrable representation of a left
Hilbert algebra (L on a Hilbert spaceR . Then there exists a véctor ne pb
such that T is unitarily equivalent to a subrepresentation I_ of the left

representation 1, of 0L, where P is the projection on the closure of 1 Z(OL)n.

L
Conversely, if T is as Hp, then T is square integrable. (cf: [6])
Throughout the paper, we shall adopt the same notations denoted in this

section without referring.



" §3. The predual of continuous crossed products. In this section,

we shall realize the predual (G ®aM)* of the continuous crossed product
G ®¢M constructed from a separable continuous W*—dynamical system (M, G, o)
as a certain Banach space consisting of functions of G into My. Using this
realization, we shall show an extended form of two well-known thg—:-’c?rems_ in
harmonic analysis, one of which is done by Gelfand—Rz;ikov R thé other one is
due to Godement. |

Given two elements n,¥ in the Tomita algebra K(G;B ) ard g ¢ G,

let us define an element n’?’(g) in M, by
ﬁ‘?(g) [x] = < nxb(g’l)lx* £ > - (3.1)
for all x € M. Theh one computes rﬁb(g)[nz(g)] as follows:
@ & > = <0, @™ 0P| € > an
=, <0 n@ 0| 1.0, §m] & > an
G h Y h
= §o < 1® Gynle™ )| 0,8(n) > an

= Sa < op1 (17| §) > an (3.2)

applying (2.3) to (3.2), it follows that

RN, (8)] = < 1_(n,(e)1 ale) nly > (3.3)

for all te@® . Since T is ultraweakly continuous on M, it implies by
(3.3) that

TE)x] = < 1 (x) A& nly > (3.4)

for every xeM, geG. By definition, it is easily seen that the function
ﬁ\fb is in the space K(G) M,) of all norm continuous functions of G into My

with compact. support. Define a norm ||‘||_on K(G;M,) by
Hell, = suw ¢ [et@)]] : geG} - (3.5)
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for every ¢ € K(G;My). Then the completion CO(G3M*) of K(Gj;M,) with
respect to ||-| |m—norm is nothing but the set of all norm continuous M-
valued functions on G vanishing at infinity. Sincs %V e K(G3M,) for

n, §e¢KG;B), | jr?sjb] |, exists and is estimated as follows:

[A%el 1, < (sl , (3.6)

for all n, ¥ €K(G;® ). In fact, since G @aM is generated by the set

{ na(x), A(g) : xeM, geG }, it follows from (3.4) that

]

|7(e) [x]]

| <1 () A(@) nlx > |

i

| oy (1,60 2] |

A

< e T (3.7)

for all xeMand ge G, where | Imn ’SI | is the uniform norm of the vector
3

state . on G®M. On the other harnd, one has by the definition of
o

3

[1-[],-norm that

P11y = s (] < elnd® >] : € € X&), [Ino)]] <1

sw {| <n (&) En>|:eek@;®), ||n &)1}

o, Il (3.8)

Combining (3.7) and (3.8) together, the inequality (3.6) follows. As a
generalization of the scalar case, one can define another norm -] |* on

the linear space FO(G; M,) generated by W,n €K(G;B) as follows:

lle]]s = sup (| SG ¢(glo 1, [ Ug £(g)] dg| : ééK(G;CB), an(é:)ll < 1}

(3.9)



for every ¢ e FO(G; Mg). Let gx(G 5 My) be the completion of FO(Gj Mg)

with respect to I(-l|*—norm.' It is called the Fourier §pace'associated‘

with a triple (M, G, 4 ). In what follows, we shall examine some properties

of F (G; Mg) exclusively. First of all, since one knows by (3.1) that
¢

s =7 o H1 0 +15%) 415901 | (3.10)

for every m, e K(G;®), it implies that i§¥ e F (G5 M) for +4,% e K(G;@).

Then, one has that

1781, = 11011, | (3.11)

for every n,% e K(G;8). In fact, applying (3.3) to (3.9),

114201 | = sup (| So < 1M, 10,51 Me)n| ¥ > dg | e K(G®), | In,(e)ls1y

On the other hand, it follows from (3.8) that

Hnsbll;L =sup {| <&nlg>] : gex(e;8), [|n ()| 1} .

Using Fubini's theorem and (2.3),

<tnlg> = §fo0 < U @ nm) |5 > dndg

$exe < Uyl E@In(0)] $(gn) > degn

Fexe < @1, IEE@ 0 Y1) (@) 5)(h) > dndg

il

fG' <1 em[E(@]n | A(g)*’s > dg

= Jo < memI0E@] A nlE>dg, 0 (3.12)



.

which implies that the equation (3.11) holds. Therefore, it is
deduced from (3.6), (3.10) that the Fourier space Fd(G; Mg) is a
subspace of CO(G; Mi). Now given two elements n,%in L2(G}f}) , there
exist sequences (”h)n’ (Sn)n of K(G3®B) which converge ton,¥% in

L2 (G;%) respectively. Hence the Sequencé {nn‘gg} n converges ton -‘sbe

Ll(K(G3(B )) with respect to || 11 p-horm.  Since the tilde mappingn is
linear, it follows from (3.11) that the sequence {,{;ég}n has a Llimit

point in F (G) M*) which is denoted by n*% . Then one easily gets ‘bhat
a

7P @ =<n ()@ aly> - (3.13)

for all xeM, ge€G. Now remembering Lemma 2.1. (i), the predual

(G@aM)* of the crossed product G@aM associated with a triple M, G, o)

is identified with the Banach space Ll(K(G 38)) of K(G;B). Moreover,
since LY(K(G;B)) = (n°2°: n,¥ € L2(G;%)} by Lemma 2.1. (ii), it is
isometrically isomorphic to the Fourier space Fa (G; M) under the tildew .
Summing up the argument discussed above, we have the following proposition

which has a key role:

Pr-opositié)n 3.1. Let M, G, o) be a separable continuous

w*_dynamical system. Suppose M is G-finite. Then the predual (G @aM)*
of the crossed product G @aM associated with the triple M, G, o) is
isomorphic to the Fourier space Fa (G; M) as a Banach space, which is
a. subspace of CO(G; M,). Therefore, G @aM is identified with the dual |
space F, (G; M*)*Vof’Fd,(G; M)

Let us now consider such elements in Fa (G; Myg) as ﬁb, ne L2(G4;7§).
Then 1t can be verified that ﬁb has an extended positive definiteness
as follows: For a My-valued function ¢ on G, it is said to be g-positive

definite if -

I3 gu1 g, 0 (8] 8) [y %] > O e

-9 -
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- n . n
for any finite set (Xi)i=l, m‘M.and (gi)i=l in G, where agoxp(x) =

xpOoL;"(X) for y e My, xeMand geG. (cf: [12]) In fact, using (3.13),

It

~’b -1 * -1, ¥ -1
zg,}cl - dvs; o(n n )(gj gi)[xjxi] Zi,j < I[ao'agj(xjxi))\(gj gi)nln >

11391 (6 (84 )n] 125 o.

‘Thus, it means that any element in Fa (G M*) is a linear combination of
a-positive definite functions. By the similar way as in the scalar

case, if ¢ 1s q-positive definite, then one has that

Holl, = ls@I » ago o™ = o (3.15)

where e is the unit of G, ard ¢*(x) = y(x¥) for y € My, X €M
Note that in the scalar case, F (G3 @) is nothing but the Fourier
algebra A(G) of G due to P. Eymard. ( 6f: [3])

We also define an Important class of normal I‘epr_esentatidns on von
Neumann algebras as follows: Let (M, G, a) be alcontinuous wfdynamical
system. lLet P be a normal representation of M on a Hilbert épace'p, .
It is called covariant with respect to o if there exists a strongly

continuous unitary representation ¥ of G on "® such that
* .
Vig) p(x) V(g) = pe,d,g(x.) (3.16)

for x € M, g € G. Then, we specify the relation (3.16) as (p,V) e Cov rep
M,G). Using two notions cited above, we shall show the following »,
- proposition which can be considered as a generalization of Gelfand-

Raikov's theorem.

Proposition 3.2. Let (M, G, a) be a separable continuous

*
W —dynamical system. Suppose M is G-finite. Then for any oa-positive

- 10 -
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definite function ¢ with norm continuity, there exists a (p,V) € Cov rep

(M,G) on a Hilbert space R such that

0(@) [x] =< o) V(e) nlng >,

(3.17)

for every x € Mard g € G, where noe“)ais a cyclic vector for (p,V).
the converse is also true.

Proof. Denote by G , the group G with the discrete topology. Let

K(Gd‘,(B) be the set of allb(B—valued functions on G whose support '_is

a finite set. Define a #-algebra structure on K(Gd;cB) by

(ne) (&) = Jp, n(h) 0,50 g) |
(3.18)
o @) = 0

Since ¢ is a-positive definite, one associates a pseudo imner product

<+ ">, on K(Gd;(B) by the following relation:

<nly >, = Iy e@en () (@) (3.19)

Actually, applying (3.18) to (3.19),

<nlg >, - zg’hQ<g>on£[u5<s<h"1>#n<h“1g>>1
= I poprlo @ 1, (507 1, (n(n ™ e))]
= I p o2 R () T (@] (3.20)
Let N = {ﬁ»e K(Gy38): |Inll, = 0} where |[n]], = <n|n>’g , and R the

quotient space of K(G d;B) by N. Moreover, let R be the completion of ')Q,O
with respect to |]-]] p-Torm.  Then there exists a strongly continuous

unitary representation V of G on@ such that

- 11 -



Vig) n = 0, for n e R, (3.21) |

where 7 is the equivalence class of p, and (0g ng)(h) = _Ug n (g—lh).

In fact, one computes by (3.20) that

- 2 | ¥
IIV(E;)nH(IP k°¢>(k ), (0 n_(k)) Hl(Ugng(h))]‘

= Zh,ka L g g

= a1, B R, (n(g ™) T, (n(g7Hh)))
= 117112
= lnllg

for 7 €R,. One also estimates that

<) AP =T, o000 N, (S0 T, (T n))]  (3.22)

- - ’ ' %
for n, % 678,0. Since ¢ is norm continuous and gl» d’g is ultrastrong -
continuous, it follows from (3.22) that g|+ V(g) is strongly continuous.
The rest is easily done by direct computation. Furthermore, there vexistls

a normal representation p of m on  such that

.p[nl(s)] n = 1,(n N B (3.23)

for ¥ €® and n—e')Q,o where (HZ(‘s)n)(g) = HQ_(E)n (g). In fact, using
(3.20),

oL, () Tl 2 = I, e (07 g) i, (1 ()T, (1, ($)ne))]

*
b, [T, (9) 1, (5)]

where xpn(x) = °<I>(h—lg)[nz(n(h))*xng‘(n(h))] for x€ M. Since ¢ is

zg;,h “h
a-positive definite, wn is a positive element in My. Thus, one gets that

ol 1 7112 < [n, 121 7112, (3.24)

- 12 -
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for all Ye® and n e’)@o. Given a x € M, there exists a sequence

(Sr;)n of B with ”Hz(sn)ll < ||x]] such that 1, (%) converges to x

¥_strongly. By (3.24), there exists a bounded operator p (x) on"R with
1o G| < ||x]| such that pl[m (¥ )] converges to p(x) *-strongly.
Then, it is clear that p is a *-representation of MonR. Define

€ € K(GdBCB) and n_eR, by

£, (g=e) R =g
¢ () = { o "o~ &
0 (gte)

Then it is verified that

#(g)n, ()] = < o[1, (§)IVigdn |n_ >,  G2s)

for all ¥ €®B and ge G. In fact,

< Vighng o, (1) Ing >4 = L s 7 mm, (e 10) ™, (0,8 (67001

Iy @ ([0, ()1, (0, (&7 1))

¢(g)[nl(’5)] .

Therefore, since p[l z(sn)] converges to p(x) ¥-strongly, it follows
from (3.25) that (3.17) holds. Thus, it implies the normality of p .
In order to prove that (p,V) 1s covariant, it suffices to show that for

every R €@ and g € G,

V(g) o1, ()] V(&) = pou ln,(9)] . (3.26)
Computing V(g)p[HZ(S‘)] and poag[ny‘(’s)] V(g) parallelly,

V(g (n, ()1 7 = 0 (Y1), = 01, ($)n,

poiag[ﬂl(\S)] V(g)n = dgfﬂl(‘;)] Ugng = Ugﬁz(g)ng

-13 -
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for alln e R o+ Thus, one gets (3.26). Finally, it is easily seen
that n_ is eyelic for (o,V) since plI LW = E;é"g‘ where &
is the Dirac function at g. Q.E.D.

Given a norm continuous a-positive definite function ¢, we now look
for a certain condition under whiéh ¢ belongs to Fa (G5 Mg). Define
(6o, )(g) = ¢ (g)on, for g & G where (yom, )(€) = y[n, (€)] (&M, £E<@B).

Assume from now on that

som, € 1°G;%). | (3.27)

This condition means that @(g)onz is continuous on @ for almost every

g € G and the function g |->(¢on2)(g) is square summable. There are in
* -

fact sufficiently many functions ¢ with (3.27). Put ¢ (g) = ¢(g l)*

. * .
for g € G. Then, ¢ on e L2(G;%) if and only if ¢oT, & L°(G;%)

L
.
since (¢ onz)(g) = Ug-l(“’”‘g)(g)- Applying Proposition 3.2, one has that

for § € K(G;B),

<¥| eem, > = i <¥(g) | U, (eo1,)(e)> ag

= S 2 (@), (0.%(e))] ae
= §g < #°1,[0,%(&)] V(&) n |n, >, d&

= o < Vi(glholl, [¥(g)] n_[n_ >, dg (3.28)

where (p,V) € Cov rep (M,G) on a Hilbert space R associated with ¢.

Define a #-representation T of K(G;B) onR by

T(§) = §; V(e) pon, [%(e)] dg o (3.29)

for ¥ € K(G;8). In fact, for n, ¥ € KG;®B),

- 14 -



T(ns) = $So.0 V(g)p°nz[uh--lyn(gh—l)’s(h)] dndg

$Seq V(ER) V™ oom [n(g)] V(h)pon [¥(h)] dndg

$Saxa V(@doom, [n(2)] Vin)pon, [5(h)] dhdg

T(n) T(%).
Similarly, for n ¢ K(G;B),

ta’) = §5 Viekon, 10, 1 @™ ag
= . pom, In(&™)1" V() dg
= §g oon,n@1" V@ ag

().

By (3.28), this #-representation T of K(G;B) on R satisfies the following

relation:

<%| 8ol > = < T(5) n_|n, > (3.30)

¢

for every ¥ € K(G;B). As < T(}’)nofn > = 0 for all %eK(G;B) implies
%=0, it follows from (3.30) that T is square integrable. Hence, one
deduces by Lemma 2.2. that T is equivalent to a subrepresentation Hp
of HSL' Since P is a cyclic projection, then one can choose a cyclic

vector ‘Soe LZ(G)"Q) for P such that

< T(E)nolno >¢ = <H£(§) \Qol Eo > (3-31)

for all ¥ € K(G38). Combining (3.30) and (3.31), 1t follows from (3.12).
that

«15 -



SG ¢*(g)[n2(.n(g))] dg = §; < Mom, o ()] Ae) X 1%, > dg (3.32)

for all n € K(G;B). For any geG, take f€K(G) with f(g) # 0. Consider
a sequence (fn)n of K(G) such that fn converges to ‘Sg vaguely. Let
ny(h) =$,GJS6I% €K (G 3B) for any ¢ &B. Substituting?_ in (3.32), for -
n=1,2,--", |

So o I €)1 £(0) £.(0) ah = §o < 1om [0, £ (Y |F, > £(h)E, (h)an.

Since 4>*(h) [m, (£)] £(h) and < na°nz[0h£h(h)§ol‘$o > f(h) are in K(@G),

one concludes that

*
2 (g) [m, ()] < Mot (0,81 2 (8) 5, 1%, >

_ /\./b
—%"So () [HR(UgE)] >
which implies that ¢ (g) = g o 3‘ ‘5 (g). Therefore, one has by

(3.15) that ¢ (g) = 30-3’2(%‘1) = (’SO‘S’O) (g). So, ¢ = ’5;\%2

Surming up the argument discussed above, we have the following

proposition which would be a generalization of Godement's theorem:

%
Proposition 3.3. Iet (M, G, o) be a separable continuous W -

dynamical system so that M is G-finite. ILet ¢ be a norm continuous

a-positive definite function. If ¢onle L2(G;"§), then there exists
2, . ' _ o :

an element §_€L (G;%) such that ¢ = %o %, » which turns out that

o € FG(G;M*).

Remark. In Proposition 3.2 and 3.3, norm continuity of ¢ may be

replaced by weak continuity.

« 16 ~



§4, Generalized’ Schuax"t'z' 'spaces ‘and Fourier spaces.

In this section, we shall especially study a continuous action of
the real numbers R , and try to construct a vector va_lued test space which
is exactly the Schwartz space in tﬁe scalar case. Noreover s we shall
compare this space with the Fourier space as a Fréchet space.,

Iet (M, B, , o) be a separable continudus W¥-dynamical system such
that M is R—finite . So the results optajned in the previous section are
guaranteed. Now define a Fréchet space S(H?,‘,*»‘;’y) by the set of all infinite

differentiable H-valued functions 1 on Rsuch that for every (p, q)= 0,
- Py |ipd ‘
Hnlly q = supgep (HE[T) [[DE(E)]] < 4= BCKS

where (p, q) > 0 means a pair of non-negative integers p and q, DY is the
differential operator of order q. As in the scalar case, S(R)’%) is a
dense subspace of LZ(IR;é) .

let (h n)n>0 be the sequence of Hermite functions. Namely,

2
h (t) = @2 H (e /2 forn=0,1,2, -+ (1.2)
nt? & 2
where Hn(t) = (1) e — e . Iet (gn)nio be a camplete orthonormal

dt
system for %-. Then the system (h @ )(n m)> 18 camlete orthonormal for

L2(R3’§—) . Given a n € S(R}"}), then there exists a square sunmable sequence |

(C of camplex numbers such that

n,m) (n,m)>0

Z(H 150 O m(tiy © &) in L 2R3%) . ' (4.3)

Using the same ideas as in the scalar case, it can be verified that
N (¢ )1°=7 lc,  [P+1)P < 4o (b
p-" n,m (n,m)>0""n,m" :

forp=0,1,2, ... . (ef:[7], [5]1) Conversely if (C, m)(n m)>0
2 ] ——
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satisfies (4.4), then the vector n defined as in (4.3) belongs to S(R;%).
In addition, such cor'réspondéncé determines an isomorphism between S(R ;%)
with norms ||.| lp,q and the set of all double sequences (Cn,m) (n,m)>0
satisfying (4.4) with norms Np( 9. Let ¢ be a linear combination of norm
continuous a-positive definite functions ¢, such that ool ¢ S(R; %) .
Since S(R}%) is contained in I2(R}%), 1t follows from Proposition 3.3
that ¢ ¢F (RjM). Therefore, lle] [y and ”‘I’°H2| lp,q exist for such o

as above. In order to compare them, we need the following lemma:

Temma U4.1. Iet (hn) be the séquence of Hermite functions. Then

n>0
there exists a positive constant C such that

IIn |l < Cn+l)  forn=0,1,2, ..o , (4.5)

where |[h ||y is the nomm of h in the Fourier algebra A(R) of R.

Proof. Since one knows that
hn(t) = (/21 in)"1 fm eitshn(s)ds forn=0,1, =+,

it implies by definition that ||h | [*v = (/37 )7 [ ll; m=0,1, ...).

Put g(t) = 1 + it. Then one estimates that

1 1
ln Il < jR I (6) gy lat + 5R|thn(t).§(-€5-[ dt
1 1
< gl Hgll2 + |t |1, I.lgllz .
R 1
Since th”‘? =1 and l_lgl |, = /v , one gets that

14 5_/17(1+[[thn[[2) forn=0,1,2, .- ,

As one also knows that

ntl

‘ = Q v = o e 0
thy(t) = /== h ,(t) +/5h .(£) forn=1,2,

2 n-1

-~ 18 -



it follows that ||th Il‘2 —2%'—1— (n=1, 2, ...). Therefore, one obtains

that _
Ing e = (/2507 [Inglly

<)yt /2Ly forn=1,2, -0 .
Since Hho! |x = 1, there exists a positive constant C such that
thll*j__C(n-l-l) forn =0, 1,2, «-- . Q. E, D,

Using this lemma, we have the following estimation which is a generalization

in the scalar case:

Proposition 4.2. Iet (M,[R, ¢) be a separable continuous W¥-dynamical |

system such that Mis R-finite. ILet ¢ be a linear cambination of norm
continuous d-—positive definite functions &; such that ¢ om, & S(R}%).
Then there exist a positive constant C and a finite set {(pi s qi) }?=l

which are independent of ¢ such that

[le|]g < C max (4.6)

s 19l o

Proof. Since ¢oll & Lz(RB’%), it follows from (4.3) that

12
%oll, = J Coun Pn © En in I°(Ry%) .
n,m

Then one estimates that for any £ e K(R;®) with || (8)[] <1,

| Seeron o eerlae] = | <0 et Gy (918 > 4l
<1 Ifh (£) <0.e(6)] 2 o > O]
- g
= znl %hn(t)fn(t)du S

where f‘i(t) = <0 e(v)] chn’mgm> € K(R), Since an(g)ll ;i,
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DI < (T fe, 1AY?  forn=0,1,2, ... (1.8)
m 3
where N(F) = § fL(0A(E)aL and (MB)D)(s) = Fls=t)  for £ L2(R).

Actually, for any geK(R) and t € R,

(D) () = § h(s)e(t-s)ds

S <Ut__si(t—S) M Cn np &(s)ds

st 6,

il

<[n, (£)(g ® £)1(t)| DE(} G )
Thus, it follows from Hnl(g)[l < 1 that
IeSel13 < o) e e g 12| 13 Co il 1
< (Xmlcn’mlg)l,lgl 5 .
which implies (4.8). Using (4.7) and (4.8), one has that
[]e] l* = sup {| Sp,@(t)onz[vte;(t)]dtl : £eK(R;B), |[m(e)|] <1}
sow (]| Sepatebwiat] £ K(R;B), lnall <1

< sw Soba(BE()At] : eekK(R;B), |Iny(e)[] <1}
n>(

<1y sw (] § R el : £ex®), (D] <1}

n>0
=7 ¢ ||n (.
Zmo n Bl (4.9)
where C = B | |2] /2 on the other hand, it follows from Lemma
m>0
4.1 that there exists a positive constant C' such athat ]]h I] < C'(n+l)

forn =0, l 2, +++ . Hence, one obtains by (4.4) and (4.9) that
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) Cn(n+l)
n=0

c'[} ¢ ( +1)”]1/2[2 -—-QL—— 11/2
n=0 n=0 (n+l)

) |Gyl 2 1) 1172

n,m=0

1A

[le]]
%

IA

|

e, [(C, )]

where C" = C'[) _1_2_ ]1/2. Since ¢oll, eS( R;%)), the observation stated
| n=1l.n

before gives us that there exist a positive constant C and finite family

Alpy, q) }Ijj:__l such that

C" Ny [(c, )] =C max |<I>on2|] ,

1cien | JPCH
, which implies the desired inequality. Q. E. D.

Now define ||e]]. _.by H@ovrzl Ip g T what follows, we shall construct a test
b

p,q
space of Mg-valued functions on B with norms || .| lp a which is exactly
. 3

the Schwartz space in the scalar case.
Let us denote by ®_ the set of allelements £ € B such that go(t) =
0 tF’ is an infinite differentiable (@B, P )-valued function on R . Then,

58 is sufflclently 1arge in B since for any Ee®B, R
g, =n° -3 S % [Edt € B, forn=1,2, ... (4.10)

can be chosen as close to £ as possible with respect to Hilbert space
norm. Moreover, it is a J and A% —invariant subalgebra of B . In fact,

concering to J-operation, one sees that for any & GCBm s
PK[(JE)U(‘C)] = Ppldgy(£)] = P_g [g;(£)]

where K = {-z : z € K}. Thus, Dn(JE) (t) = 3% )] forn=0,1, 2,

eee Concermng to A —operatlon one knows that for any £ 6(8

«2] -~ -



B L(a%0); (1)] = B [a%e ()] = B, [£y(1)]

where K+ z={uw+ 2z : v € K}. Thus, Dn(AZg)U(t) = AZ[Dné;D(t)] forn =
0, 1, 2, ++- . Finally concerning to multiplication, one sees without

difficulty that for any &, ne®_,
PeL(Eny (£)1 = Pelep(ting(t) ]
< Pplep(£) 1Pl ()1
fram which one deduces that
Dn(_an)u(t) = Z;O Sk DkEU(t)Dn—knD(t)

where C . =n!/k! (n-k) !. Notice that B _ is Ut-invariant. Now
let C_(R)@,) be the set of all infinit differentiable (B, Py)-valued
functions on R with compact support. In order to construct a proper
algebra sitting in C:(}R;csm) which is invatiant undér J and Az-operations,

we shall introduce an operation L on CZ(I?,;(B‘») by the following manner:
(L n)(s) = Dn(s)y(0) (4.11)

for all 1 € CZ(R3<B°°) and s € R . Since U, [Dn(s)5(0)] = Dn(s)y(t) for all

t€R, D[Dn(s);(0)1p(0) = D°n(s)p(0). Thus, (L%n)(s) = DPn(s)y(0) formally.

repetition, (Ln)(s) = Dn(s)y(0) for k = 0, 1, 2, «-+ , wheve Lon = n.

In general, it seems to be negative that for every n & CZ(}P,)(BOO) s Lkn €
c:(u;cam) (k =0, 1, 2, ---). However, there exist sufficiently many

elements n ¢ C:(R3Bw) such that

(1) 0" n e C®R;B)

and S _ . (4.12)
(1) PP ¥ n =KD g

- 22 -
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A ]

for every (k, &) > 0. In fact, letn=®E for f € C:(R.) and £€@B
where C:(IR,) is the set of all infinite differentiable camplex valued
functions on R with compact support. Then, one easily checks that

LD*n = Dr ® D¢ (0), which 1s in C(R;8,) and LD = D'Ln. et us
denote by Cy(R;B,) the set of all elements in CZ(R;Q ) satisfying the
condition (4.12). We shall show that Cy(R)B.) is a J and A”-invariant
algebra which is dense in LQ(H’,;‘é—) . First of all, concerning to J-operation,

one computes by repetition that

D = (-1T] 6T - (h13)
k=0 ‘ ,

for every n € Cy(Ry@,) andn =0, 1, 2, +.. . Thus, Jn ¢ CL(R;®,) for

all n ¢ C‘;(E;(Bm) . Since J commutes with Ut’ one deduces that LkJn =

Ji¥n for all ne CpR;B) andk =0, 1, 2, --- . Given an € Ca(R}B),

then, one can check by (4.12) that Dszn S C:(IB;cBm) for any (k, &) > 0.

o

Therefore, it implies by (11.13) that
n
"o = (D] PNy (4,14)
‘ k=0 I v

for all (n, m) > 0. Therefore, L'D'Jn € C:(R;Gm) for (n, m) > 0.
Moreover, since L'Jn = JL™ and L™ € C;(H?.;(Bm) , it follows from (4,13),
(4.14) that

DM = D™,

P (@M

n
(-1}

k=
= LmDan

for all (n, m) > 0, which means that Jn € C;(R;(Bw). Next, concerning

-to Az—operation s one computes that

DA%y = A"D™ (4.15)
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for every n e C:(R;@o) and n = o, 1',4 2, «+. . Thus, A% e CZ(HZ.;@) for
all neCy(R;@,). Since A” commites with U, , one has without difficulty
that T¥a%n = 4%1f% for all n e CJ(R;@,) and k = 0, 1, 2, +-- . Givena
n € Cy(R;@,), then D' ¢ Cj(R;@,) for n = 0,1, 2, «.. . Hence, it follows

from (4.15) that
D™ A% = £ 1M Dy (4.16)

for all (n, m) > 0. Since L'D™ ¢ Cy(R;@.), it implies by (4.16) that
"% € C:(R;(Bw) and L% = D'™a%y for all (n, m) > 0, which means
that 4%n € Cy(R;@ ). Finally, concerning to miltiplication, one knows

by definition that
(nx)(t) = 5K 0_g n(t-s) ¥(s) ds (4.17)

for every n, ¥ € CE(R;Q) and t €R , where K = supp %. ILet &(t, s) =
U__Sn(t—s)‘s(s) . Then, one obtains by repetition that
n

D(t, s)y(r) =] G O

DN(t-5)y () ¥g(s)y (v)  (4.18)
k=0

-

forr, s, t, R andn=20,1,2, .- . Since Dnn(s)o(r) = Ur(Lnn)(s)

for n e Cy(R;B,), it follows from (4.18) that
n :
DeCe, ) =1 G0, L 0_ (L) (6-8) ()] . (1.19)

Since n, g € C:(R;Bw), one concludes by (4.17), (4.19) that

D (ng) (£)y (r) = fK D" &(t, s)y(r)ds
| ‘
= k n-|
=1 n8 0[S e EMEa)@ ) (s)as ]
n
N (L) (L) (8) ]
forn=20, 1, 2, ... , which implies that (n%g)(t) € th‘,° for every t €R
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and

n o
U =L o Wy (4.20)

for every n, % € Cy®;@,). It is deduced by definition that for any

N, % € C‘;(}BEB«:)’
D*(ng) = (D™)% forn=0,1,2, ** , (4.21)

which tells us that ny € C:(R;(Bm). It also follows fram (4.20) and
(4.21) that

" D" (nx)

il

1 [ ™)y ]

n

&
2k=0 G oty ¥y, (4,22)

"

which implies that L'D"(n%) & CO(R;8,) since LD™ and "% are in
CT,’(R;Q ) for all (k, m, n) > 0, Moreover, it follows from (4.20),
(4.21), and (4.22) that

n
ot ) =] G O @)

n
CH L) (£77%)

' D" (ny) ,

which means that nyx € C‘;(R}Bw) for every n, geCE(P:;@). Suming up the

above discussion, we have the following: |

Proposition 4.3. Iet (M, R, o) be a separable continuous W¥-dynamical

system such that M is R-finite. Then, there exists a dense subalgebra
C;(R;(Bw) of the Tomita algebra K(R;®8) which is contained in C:(RJQ ),

the set of all infinite differentiable (®_, PK)-Valued functions on R



with compact support.

Remark. If o is the trivial action, it is clear that Cp(R;B) =
C(R;B,) -
By Proposition 4.3, Cy(R;8,) is # and b-invariant., Iet us define
Da(R; M,) the linear space generated by o , € C;(R;(Bm). Then, this

space has the following properties:

Proposition 4.4. let (M, R, a) be as in Proposition 4.3. Then one

has that

(1) eem, ¢ SR
and | | (4.23)
(11) D) = (- Dn°

(D"0)om, = D(sol)) (n=0,1,2, «...)
for a1l ¢ € D,(R;My) and n e C(R;B,).

Procf. (i): Using (3.3), (3.1), and (2.2) in order,

(Anbol,) (£)(€) = < I oll, (E)A(t)n[n >
= < nnb(~t)[€#‘>
= < gl (-6)® >

£]0,nn°(t) >

A

for all n € C;(R;Bm), teB, and teR . Hence, (Wonl)(t) = Utnnb(t)
for all t€ R, Since nnbe C;(IB;(BOO) for n € C‘;(R;@w) » one gets by
repetition that

n
Di(Aben)(®) = § G Oy O O B (-1
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forall t €R andn =0, 1, 2, --+ , which implies that fvoll, e cR;E).
Therefore, fq\n/l’onl e S(R;%) for every n € C;(}R;Qo) ,. which yields the
statement (i). o '

(i1) : Givenan € C;(R;Bm). Since ||v]|| < ”“’°H£H for such
b € My as yoll & 74 exists, it follows by (i) that Dn("rﬁb ) exists forn ="

0, 1,2, +-- . Moreover, one estimates by (3.3) that

D(ﬁr{”)(t)[nz(g)] = Lim < Tom (&) ¢ ;\(t+r);_-.-x(t)' } nin >
I“)O VAl

= 1n < ¢ M =1y o | aoamen, (shn > (4.25)

for all £e® and t<R . Since n & Cy(R;®), Dn € Cy(R;@,) and

—(D’l)( ) =P, - lim n(S*I‘) - T](S)
S K 0 r
= By ~ lim { Mr) -1 }a(s) | (4,26)

r0 ro

for se R . Applying (4.26) to (4.25), one has that

D(RRP) (£) [, (€)1

n

< =(Dn) | A(—t):naorrz('r:#)n >

< Mol (£)A(£)(-1)(Dn) | n >

. ~ NSy . '
which implies by (3.3) that D(qn”) = (-1)(Dn)n~. By repetition, one gets
SN _
that DP(AP) = (D™ (Dn)n° forn =0, 1, 2, -+ . Similarly, using the

fact Do € D ®;M;) for every ¢ € D (R;My) andn = 0, 1, 2, -.. , it

follows by (i) that (DnQ)onz exists and (Dné)OHl D“(¢on£) for every

? €D ®R;jMy) andn=0,1,2, ... . Q. E. D.

Remark. As we saw in (i)of the above proposition, if n € C‘;(]R,;Q),

(@n)(t) =Don(t) € Co(R;@,) and LU n =0L n, DOn =0Dn + DL n.
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By Proposition 4.4 (i), norms ||-]] can be well defined on Da(R)M*)'.

P,d
Iet SQ(R)M*)' be the completion of DQ(R3M*) with respect to ||-| lp q

norms. Since CO;(R3@0) is dense in L2(R;v§), it is verifies by Proposition
4.2 that § (R;My) is a ||-[|y-dense Fréchet space in the Fourier space
Fa(R;M*). We call it a generalized Schwartz space associated with a triple

(M, R, a). By Proposition 4.4, the nth

differential operator Drl on

D (R}M*) is continuous with respect to ||-] lp q
. 3

-norms. Therefore, so
is it on § (R;My).
Consequently, combining Proposition 4.2-4.4, we obtain the following result

which is a generalization in the scalar case :

Proposition 4.5 ILet (M, R, o) be a separable continuous W¥-dynamical

system such that M is R~finite, Theni the crossed product R@M is a
subspace of the dual space S (R3My)" of a
generalized Schwartz space 5 (R,M*) corresponding to (M, R, a)

Proof. Since R@OJV] is the dual Banach space of the Fourier space

Fa(Rj M), it implies by Proposition 4.2 that the restriction T >

' *
T | SRiMy) 1S 8 linear isomorphism of R@ M into SBM) . Q. E. D.

Remark. Let ¢ € § (R;Mg). Then, ¢onl, exists and is in $(R;%).

2
In fact, taking a sequence (<I>n)rl of 'Da(R;M*) whose limit point is ¢

with respect to ||:||. _-norms, then there exists a n € S(R;%) which

o]
is a limit point of ¢ ofl, in S(R;%). Therefore, <&|n(t)> = lim <£|
n
(@nonl)(t)> = lim @n(t)[nl(g)] = ¢(t)[n2(g)] for all t¢®B and t¢R.
n

Thus, cb(t)onz exists and equals to n(t), which means that @on’;’é S(R;%).
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§ 5. Fourier expansions in crossed products. In this section, we

shall present a vector valued function in a certain fashion corresponding '
to any element in the space Sa(lR.; M*)* of generalized tempered distributions
constructed by a triple (M, R, o). In particular, a Fourier expansion
in crossed producfs can be ob’caiﬂed in .the case of R-finite W¥-dynamical
systems.

Let D (R) My)s S, (R;Mg), ||~||p’q, etc be as in the previous section.
Given a f € K(R) U K(Ry), then there exists a Tpg, € SG(R; M*)* such vthé’c

To(® = § £(6) (o)1) et 6D

for every ¢ e Sa (R; M), where R; is the real numbers with discrete topology.

Actually, le@l (¢)] < Hle |le]|_. As in the scalar case, to each

% e Da(ﬂ?,j M,), there corresponds a generalized convolution Tfél * ¢ €
D, (R; My) of Tpgy @nd ¢ as follows :
(Tpgy #9) (6) = § £(s) ¢ (s + 1) as | (5.2)

for all t €elR. Indeed, suppose ¢ = f“n’b for n ¢ C;(R;ﬁm). Then,

one has that

(Togy * D®)xI = L £(s) @ (s + £)[x] ds

SRf(s)< 7 (A(s + t)n|n >ds

< m (XA (E) A(f)n|n >

&b (t)x] (5.3)

for every x ¢ Mand t € R, where £ = A(f)n. Since n & C;'(R;(gn),
£ & Cy(R;B,). In fact, I g = A(0)L” D' for a1l (n, m) 2 O. Thus
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it follows by (5.3) that Tpe, % ¢ € D, (R;My). Moreover, since one

knows that

DI (Tpgy %20 7,1 = A(f)Dq(Qonz) for @ =0, 1, 2, «uus

fel

then one estimates that for any (p, q) > O,

HT

| A

rar * ¢l g < HTIL, SK s, (1+]t-5]P) | [DYeom (£)]| as

A

Pllell, Searls® el , as
= Collell, - (5.4)

for all ¢ € Da(u?,; Mg), where K = supp f, and Cp = 2p| |£] |m SK(1+[s|p)ds.
Therefore, it follows that for any ¢ € Sa(lp,; M,), there exists an element"

Trgq * ¢ In S, (R; M) satisfying (5.2) and (5.4), which enable us to define

el
*
a convolution product T # Tpgy Of T and Tpe) for T € Sa(n?, 5 Myg) . Namely,
*
given a T ¢ § (R; M,) and £ & K(R)UK(Ry), there exists an element
*
T % Toor € S (R M) such that (T # T

(@) = T[T % ¢] for every

ol fel fer
b e Sa(p,; My). By the similar way as in the scalar case, it implies by

(5.4) that there exist a positive constant C and a (p,q) > O such that

[T & Teg) (] < C [lel] ] o (5.5)

for all ¢ € Sa(R; Mg). (cf : [11]) The (p, q) > O depends only on T.
Now let us assume that f € CZ (R). Then, one easily computes that

for any T€ SG(R; M*)* and ¢ € Sa(R; My)

(T T

T Tf@l % ¢ ]

T §p f(s)(A(-5)e) ds ]

ICY

i Loehess a1, (5.6
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L]

where (A(-s)0)(t) = o(t+s), (A(s)F)(t) = f(s~t) and [(A(s)F) ® a(s)1(t)

= (A(s)P)(t)e(s). Since £ & C (R), it follows that
1) [ () @ a(s) Jory e S(R;%)
and _ , (5.%7)

(1) 1) @ a(eomy || o < 2 @Hs[P) [la(s)on, | el
? - >4

for all (p, @) > 0 and s € R, where ||f]] = sup, _(1+]|t|P) D).

- Psq teR
However, it would be doubtful in general that (A(s)¥) ® o(s)e Sa(k. 5 My)
for ¢ & $a(n2,; Mg). Thus, in order to analyze (5.6), let us consider
a new space § - (R; Mg), the set of all infinite differentiable my-

2 . .
valued functlons ¢ of R such that dom, € S(;p,;a%). Then it is a Fréchet
space with ||| |p g -rorms containing $,(R; My). So, it implies by

d

Hahn-Banach's extension theorem that there exists an element T'e€

$,(R; M) such that
2
o GOehHess s l= (TraEhHess Ja (5.8

for every ¢ € Sa(ﬂ?,} My).
Consider now a bounded conjugate linear functional u s on “for se R

as follows :
uy€) = 'L G @y, ] . (5.9

for every ge¥% , where wge M, is as <% |g > = wg[nz(g)] for Ted .
In fact, using the same way as to get (5.7), one gets by (5.9) that

there exist a C' > 0 s_uch ﬁhat

lug @) < @+ [sIPy 11l] | JlIEl

-31 -



which guarantees that there exists a unique element nf(s) e“é- such that

@ Ang) Tz e+ s™ gl
and | : (5.10)

(i) uS(E) = < nf(s) | € > for all & €%-.

Since f € C_(R), the function s }> np(s) is weakly infinite differentiable
Y3~ valued function onR. Thus, it is strongly infinite differentiable.
(cf : [4]) Combining (5.6)-(5.10) altogether, one concludes that there

exist a (p, @) 20, aC >0, andanpe C”(R}%-) such that

@ g e+ e gl g
and : (5.11)

(1) (T # Tpg))(®) = [ < ngls) | #(s)o m, > as

for every ¢ € SQ(R; Mg) and teR

Note that the above pair (p, q) > 0 is independent of the choice
of f, and the constant C is dependent upon‘ suppf . Let us now take W
a bounded open set in R containing zero 0 €R. By the parametrix
formula in the scalar case, to the above q, there correspond a positive

integer r, an element g € C (W), and an elemént h € C3(W) such that
£00) = § n(e)Tr(L) at + J&g(t)f(t) at (5.12)
R ,

for every fe& S(R), where c”(W) [resp. CA(W)] is the set of all infinite
[resp. qétixnes] differentiable cbmplex valued functions whose support
1s contained in W, and $(R) is the Schwartz space of R. (cf : [11])

Thus it follows from (5.2) and (5.12) that
T(‘;O‘&l £ = Tth x Do + Tg@l' * ¢ . (5.13) |
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for every ¢ € 30‘(1;2,3 M¢). Since T # T6 &l = T, one his by (Slié)
. O
that
-
T DT*Th@li-T*Tng (5.14)

where (D'T)(¢) = T(D'8) for ¢ € $,(R; My). Since g ¢ CT(W), there
exist by (5.11) a C > 0 ard a g € C”(R;% ) such that

. p

@) fing®[] <c@+ [¢]) Hell, o
ard . ' (5.15)

(1) (T # Tyg)(0) = So<ny(s) | o(s) o my >ds

for every ¢ € SG(R; M,) and t € R. Now choose a bounded open set Wy

in R which contains the closure of W, and a sequence (k n)n of C°°(Wl)

such that Hkn— hHi’j »0asn>ofori=0, ..., p, J =0, «0., Q.
By (5.4), |
T Dlg ~ T Do C D'
” kn®l ¥ ] hel * ”p,q h kn_h H q}”p,q

= P[fo[] 4 §w (+|s[P)as)| [k - vl |,
1

; y T ; M
which implies that D'T % T converges to D'T # T o in Sa,(R > Mg) .

k ®L
n .
On the other hand, since kne c”(wl) forn=20, 1, 2, ..., there exist
aC'>0and an, € C (Ry%) such that
S U
i t et + |t®) |k T
@ ing O] o0+ [P il o (5.16)

(11)  OT# T o)) = ) <n (s) | De(s) o w, > ds
_ kn@l , SR kl'l I %
for every ¢ € $a(uz,; My) ard t €lR . One knows by construction that

' | 1 P
ann(t) - nkm(t)ll 2@+ [, -kl
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for every t¢R , which tells us by (5.16) that there exists a’

N, € C(R}%) such that

h
@ Al cor@+ Je® Il
and | (5.17)

(1) (D‘r’T * T ) (@) = S; n(s) | D'e(s) o w, > ds

for every ¢ € Sa(Rs My). . Combining (5.14), (5.15) and (5.17), one gets

that

T(s) = Sz{< ny(s)|D"e(s) © wy > + < n (s)]e(s) o w, >} ds  (5.18)

for every ¢ € Sa(R; Mg). Let us define Ege C*(R;% ) by

t .t t |
_ r-1 1 r
3 0) = S g ..... g (-1 ng(s) ds aby ... db 5. (5.19)
070 [0}
since [|n ()| < c@ + Is|®)] Igllp > 1t follows from (5.19) that there

exists a C" > 0.such that H;g(t)ll < C"(1 + lt|p+r) for all teR .

Moreover, Dr’sg = (_1)r Ny Thus, one concludes that

i

Qe 3@ IDTets) o v, sds = T DR @)]6(s) o, >as

i}

SR<ng(s)l<I>(s) °om, >ds ,
which implies by (5.18) that
T(e) = sz ny(s) + ?;g(s) | D'o(s) o m, >ds (5.20)

for every ¢ € § (R Mg). The condition that |[n (£)|| < C'[|n| lp q(l+lt|p)
2
and |5, ()] < c"(1+|t|P*T) gives us that there exists a £ ¢ BC(R ;%)

such that

T(s) = i(l + [P < g(s) | Dos) 0wy >ds  (5.21)

-3 -



for every ¢ e $a(IP,3 M,), where BC(R ;%) 1s the set of all bounded
continuous ‘é-valued functions on R. Conversely, suppose that there

exist a (p, q) > 0O and a £ € Bc(nz,;vg»)_ such that
T(2) = SR@ + 1sIP)< £(s) | De(s) o n£>dé for 0§ (R; My).
Then, one estimates that
OIS EIITHONRIUOREAILE
e llelly,q GarlsPass s

for some C > 0 and ¥'=1, 2, ---+ . Since SR(1+|s[p)(1+|s'! )~Las

is finite for a sufficiently large number ¥', then T € S-a(IR,3 M*)*.
Suming up the argument discussed above, we have the following theorem
which is a generalization of the Schwartz's theorem for tempered

distributions. (ef : [7], [11])

Theorem 5.1. Let (M, R, o) be a separable continuous W¥-dynamical

%
system so that M is R-finite. Let $a(R; Mg) be the dual space of

a generalized Schwartz space (R} M,) with respect to (M,R, a). Then, _
Té¢ SQ(RS My) if and only if there exist a (p, q) > 0 and a £ € BC(R; %)

such that
(o) = § (1+]sPh< g(s) | Dlals) © my >as (5.22)

for every ¢&§ (R My).

As we hav¢ done in Proposition 4.5, the crossed product R ®aM
associated with (M, R, o) is contained in $a(ﬁ?,; M*)*. Let T e $Q(R; M*)*
as in (5.22). In what follows, we shall look for a certain condition
of the triple (¢, p, q) under which Te R@a M.. Let us denote by

S(R;4-) the set of all elements ¢ o s € §_(R3 My). By Proposition
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4.4y, (ii), SD(R,;%) is a D-invariant closed subspace of § (R}%.). Let

n be a %-valued function onR. Then, it is called slowly increasing

if there exist a non-negative integer p and a £ € BC( R;%) such that

n(t) = (1+]t|P)e(t). For a such function n, there exists a T, in the
¥

dual space $(R3%) of $(R;% ) such that

T, (%) = SR< n(s) | $(s) > ds for 211 3 € $;(R)%).

Then, the equation (5.22) méans that
(o) = Dan(<1> o m,) | (5.23)

for every ¢ € § (R; My), where (Dan)(’s) = Tn(qu)‘ for ¥ e §(R;%).
Now assume that Te R ®a M. Then, there exists a positive constant C
such that [T(e)| < C||e||y for every ¢e $,(R; My). Remembering the

equation (3.9) together with Remark of Proposition 4.3, Qne gets that
[{e]]x = suw {|Tpele o ngjl : TER(R;B), [[n, (D] <11 (5.28)
Since |T(¢)| <C||¢]||4> it follows from (5.23) and (5.24) that
D% ()] < 5w (|Tp()| ¢ BeK(R3B), [|n, @[] <0} (5.25)

for every o € SU(RG’}). Since E = {Tpz : S € K(R;B), llﬂz(E)H < C}
%
is circled convex in $;(R;%) , one deduces by (5.25) that Dan is in
¥
the weak closure F of E. Moreover, using Proposition 4.2, E is equicontinuous
in SO( R>%) . Hence, F is weak compact, which implies that D N is a
¥
limit point of Tog, » H“Q(Q)H < C with respect to weak topology.
The converse i.s also valid. Consequently, we have the following main

theorem -

' | #
Theorem 5.2. ILet (M, R, o) be as in Theorem 5.1, and T € Sa(m,; Mg) -
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Let (n, p) be the pair of a slowly increasing function n and a non-
riegative integer p corresponding to T. Then, T€ R ®a M if and only if
there exists a positive constant C such that Dan is a weakie limit point
of Tge for § € K(R;B) with |lnz(§)H < Cin SO(R;‘é.)*, where SO(R;%)
is the set of all elements ¢o Moy &€ Sa(HE,;M*). |

Remark. One may find a prototype of the above theérem in G. Loupias
and S. Miracle-Sole's paper [5], which tells us that any operator of the
Schrodinger representation can be considered as a tempered distribution on

the phase space of a system with n degrees of freedom.

Remark. Let us remember the definition of na(X), At) (xe M,
t €R) which are generators of R ®a M. Then, one easily computes that
m, o) [e] = Téoé'](q)o“k)’ A(E)[e] = Tét&:o (¢ o w,) for every ne @
and ¢ ¢ SG(R; M*)'

' %
Corollary 5.3. Let T ¢ SG(R; My) be as in Theorem 5.2.
Then, it is ||-||4-continuous if and only if there exists a unique

element T 5 € R@aM such that
‘ ~,
< Tony | my > = DT (g8 o )

for every n, & C‘S(R;(Bw), i=1, 2.
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