

Title	2-STRATIFOLD SPINES OF CLOSED 3-MANIFOLDS
Author(s)	Gómez-Larrañaga, J. C. ; González-Acuña, F. ; Heil, Wolfgang
Citation	Osaka Journal of Mathematics. 2020, 57(2), p. 267-277
Version Type	VoR
URL	https://doi.org/10.18910/75914
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

2-STRATIFOLD SPINES OF CLOSED 3-MANIFOLDS

J.C. GÓMEZ-LARRAÑAGA, F. GONZÁLEZ-ACUÑA and WOLFGANG HEIL

(Received August 6, 2018, revised November 21, 2018)

Abstract

2-stratifolds are a generalization of 2-manifolds in that there are disjoint simple closed branch curves. We obtain a list of all closed 3-manifolds that have a 2-stratifold as a spine.

1. Introduction

2-stratifolds form a special class of 2-dimensional stratified spaces. A (closed with empty 0-stratum) 2-stratifold is a compact connected 2-dimensional cell complex X that contains a 1-dimensional subcomplex $X^{(1)}$, consisting of branch curves, such that $X - X^{(1)}$ is a (not necessarily connected) 2-manifold. The exact definition is given in section 2. X can be constructed from a disjoint union $X^{(1)}$ of circles and compact 2-manifolds W^2 by attaching each component of ∂W^2 to $X^{(1)}$ via a covering map $\psi : \partial W^2 \rightarrow X^{(1)}$, with $\psi^{-1}(x) > 2$ for $x \in X^{(1)}$. A slightly more general class of 2-dimensional stratified spaces, called *multibranched surfaces* and which have been defined and studied in [13], is obtained by allowing boundary curves, i.e. considering a covering map $\psi : \partial W' \rightarrow X^{(1)}$, where $\partial W'$ is a sub collection of the components of ∂W^2 .

2-stratifolds arise as the nerve of certain decompositions of 3-manifolds into pieces where they determine whether the \mathcal{G} -category of the 3-manifold is 2 or 3 ([6]). They are related to *foams*, which include special spines of 3-dimensional manifolds and which have been studied by Khovanov [10] and Carter [4]. Simple 2-dimensional stratified spaces arise in Topological Data Analysis [2], [11].

Matsuzaki and Ozawa [13] show that 2-stratifolds can be embedded in \mathbb{R}^4 . Furthermore they show that they can be embedded into some orientable closed 3-manifold if and only if their branch curves satisfy a certain regularity condition. However, the embeddings are not π_1 -injective, i.e. the induced homomorphism of fundamental groups is not injective. In fact, there are many 2-stratifolds whose fundamental group is not isomorphic to a 3-manifold group; for example there are infinitely many 2-stratifolds with (Baumslag-Solitar) non-Hopfian fundamental groups. These can not be embedded as π_1 -injective subcomplexes into 3-manifolds since 3-manifold groups are residually finite.

Further comparing properties of 2-stratifold groups with 3-manifold groups we note that a 2-stratifold group G is the fundamental group of a graph of groups where each edge group is cyclic and each vertex group is an F -group or a free product of cyclic groups. (This is described in detail in section 2). If G is torsion free then the vertex groups are surface groups. Since the latter (except for Z_2) are left-orderable it follows from Corollary 3.6 of [5] that G

is left-orderable. On the other hand, some torsion free 3-manifold groups are left orderable and some are not. For example it is shown in [3] that groups of compact P^2 -irreducible 3-manifolds M with first Betti number > 0 are left-orderable, but not all Haken manifolds have left orderable groups. Thus the following question arises:

QUESTION 1. Which 3-manifolds M have fundamental groups isomorphic to the fundamental group of a 2-stratifold?

The fundamental group of a closed 2-manifold S is isomorphic to the fundamental group of a closed 3-manifold M if and only if S is the 2-sphere or projective plane and M is S^3 or P^3 , respectively. Since S^2 is not a spine of S^3 , the only closed 3-manifold with a (closed) 2-manifold spine is P^3 . This motivates the next question:

QUESTION 2. Which closed 3-manifolds M have spines that are 2-stratifolds?

The main results of this paper are Theorem 1 which answers question 1 for closed 3-manifolds and Theorem 2, which answers question 2 by showing that a closed 3-manifold M has a 2-stratifold spine if and only if M is a connected sum of lens spaces, S^2 -bundles over S^1 , and $P^2 \times S^1$'s.

2. 2-stratifolds and their graphs.

In this section we review the definitions of a 2-stratifold X and its associated graph G_X given in [7].

A (closed) 2-stratifold is a compact 2-dimensional cell complex X that contains a 1-dimensional subcomplex $X^{(1)}$, such that $X - X^{(1)}$ is a 2-manifold ($X^{(1)}$ and $X - X^{(1)}$ need not be connected). A component $C \approx S^1$ of X^1 has a regular neighborhood $N(C) = N_\pi(C)$ that is homeomorphic to $(Y \times [0, 1])/(y, 1) \sim (h(y), 0)$, where Y is the closed cone on the discrete space $\{1, 2, \dots, d\}$ (for $d \geq 3$) and $h : Y \rightarrow Y$ is a homeomorphism whose restriction to $\{1, 2, \dots, d\}$ is the permutation $\pi : \{1, 2, \dots, d\} \rightarrow \{1, 2, \dots, d\}$. The space $N_\pi(C)$ depends only on the conjugacy class of $\pi \in S_d$ and therefore is determined by a partition of d . A component of $\partial N_\pi(C)$ corresponds then to a summand of the partition determined by π . Here the neighborhoods $N(C)$ are chosen sufficiently small so that for disjoint components C and C' of X_1 , $N(C)$ is disjoint from $N(C')$.

Note that X may also be described as a quotient space $W \cup_\psi X^{(1)}$, where $\psi : \partial W \rightarrow X^{(1)}$ is a covering map (and $|\psi^{-1}(x)| > 2$ for every $x \in X^{(1)}$).

We construct an associated bicolored graph $G = G_X$ of $X = X_G$ by letting the white vertices w of G_X be the components W of $M := \overline{X - \cup_j N(C_j)}$ where C_j runs over the components of X^1 ; the black vertices b_j are the C_j 's. An edge e is a component S of ∂M ; it joins a white vertex w corresponding to W with a black vertex b corresponding to C_j if $S = W \cap N(C_j)$. The number of boundary components of W is the number of adjacent edges of W . G_X embeds naturally as a retract into X_G .

We label the white vertices w with the genus g of W ; here we use Neumann's [16] convention of assigning negative genus g to nonorientable surfaces; for example the genus g of the projective plane or the Moebius band is -1 , the genus of the Klein bottle is -2 . We orient all components C_j and S of $X^{(1)}$ and ∂W , resp., and assign a label m to an edge e , where $|m|$

is the summand of the partition π corresponding to the component $S \subset \partial N_\pi(C)$; the sign of m is determined by the orientation of C_j and S . In terms of attaching maps, m is the degree of the covering map $\psi : S \rightarrow C_j$ for the corresponding components of ∂W and $X^{(1)}$.

(Note that the partition π of a black vertex is determined by the labels of its adjacent edges).

3. Structure of $\pi_1(X_G)$

In this section we obtain a natural presentation for the fundamental group of a 2-stratifold X_G with associated bicolored graph $G = G_X$ and describe $\pi_1(X_G)$ as the fundamental group of a graph of groups \mathcal{G} with the same underlying graph G .

For a given white vertex w , the compact 2-manifold W has conveniently oriented boundary curves s_1, \dots, s_p such that

$$(*) \quad \pi_1(W) = \langle s_1, \dots, s_p, y_1, \dots, y_n : s_1 \cdots s_p \cdot q = 1 \rangle$$

where $q = [y_1, y_2] \dots [y_{2g-1}, y_{2g}]$, if W is orientable of genus g and $n = 2g$, $q = y_1^2 \dots y_n^2$, if W is non-orientable of genus $-n$.

Let \mathcal{B} be the set of black vertices, \mathcal{W} the set of white vertices and choose a fixed maximal tree T of G . Choose orientations of the black vertices and of all boundary components of M such that all labels of edges in T are positive.

Then $\pi_1(X_G)$ has a natural presentation with

generators:

$$\{b\}_{b \in \mathcal{B}}$$

$\{s_1, \dots, s_p, y_1, \dots, y_n\}$, one set for each $w \in \mathcal{W}$, as in $(*)$

$\{t_i\}$, one t_i for each edge $c_i \in G - T$ between w and b

and relations:

$s_1 \cdots s_p \cdot q = 1$, one for each $w \in \mathcal{W}$, as in $(*)$

$b^m = s_i$, for each edge $s_i \in T$ between w and b with label $m \geq 1$

$t_i^{-1} s_i t_i = b^{m_i}$, for each edge $s_i \in G - T$ between w and b with label $m_i \in \mathbb{Z}$.

As an example we show in Figure 1 (the graph of) a 2-stratifold X_G with $\pi_1(X_G) = \mathcal{F}$, an F -group as in Proposition (III)5.3 of [12], with presentation

$$(\mathcal{F}) \quad \mathcal{F} = \langle c_1, \dots, c_p, y_1, \dots, y_n : c_1^{m_1}, \dots, c_p^{m_p}, c_1 \cdots c_p \cdot q = 1 \rangle$$

where $p, n \geq 0$, all $m_i > 1$ and $q = [y_1, y_2] \dots [y_{2g-1}, y_{2g}]$ or $q = y_1^2 \dots y_n^2$.

Here we have denoted the generators corresponding to the black vertices by c_i , rather than b_i , to indicate that the finite order elements correspond to attaching disks along the boundary curves of W .

The fundamental group of X_G is best described as the fundamental group of a graph of

Fig.1. F-group

groups [8].

If $\pi_1(X_G)$ has no elements of finite order, then $\pi_1(X_G)$ is the fundamental group of a graph of groups \mathcal{G} , with underlying graph G , the groups of white vertices are the fundamental groups of the W 's, the groups of the black vertices and edges are (infinite) cyclic.

Elements of finite order occur when a generator b of a black vertex has finite order $o(b) \geq 1$. In this case we attach 2-cells d_b and d_e to C_b , the circle corresponding to b , as follows: d_b is attached by a map of degree $o(b)$. If e is an edge joining b to w with label m , attach d_e with degree $o(c) = o(b)/(o(b), m)$. Letting $\hat{X}_b = N(C_b) \cup d_b \cup (\cup d_e)$, where e runs over the edges having b as an endpoint, $\hat{X}_w = W \cup (\cup d_e)$, where e runs over the edges incident to w , and $\hat{X}_e = (\hat{X}_b \cap \hat{X}_w)$, for an edge e joining b to w , we obtain a graph of CW-complexes that determines a graph of groups \mathcal{G} with the same underlying graph as G_X .

The vertex groups are $G_b = \pi_1(\hat{X}_b)$ and $G_w = \pi_1(\hat{X}_w)$, the edge groups are $G_e = \pi_1(\hat{X}_e)$, the monomorphisms $\delta : G_e \rightarrow G_b$ (resp. $G_e \rightarrow G_w$) are induced by inclusion. Then (see for example [17],[18]) $\pi_1\mathcal{G} \cong \pi_1(\hat{X})$.

Note that the groups G_b of the black vertices and the groups G_e of the edges are cyclic. For a white vertex w with edges e_1, \dots, e_p labelled m_1, \dots, m_p with associated vertex space $X_w = W \cup_{i=1}^r d_{e_i}$, we obtain

$$G_w = \langle c_1, \dots, c_p, y_1, \dots, y_n : c_1 \cdots c_p \cdot q = 1, c_1^{m_1} = \cdots = c_r^{m_r} = 1 \rangle$$

where q is as in (\mathcal{F}) , $1 \leq r \leq p$ and $k_i \geq 1$.

If all $k_i \geq 2$ and $r = p$ then G_w is an F -group ([12] p. 126-127). If $r < p$ it is a free product of cyclic groups.

4. Necessary Conditions

In this section we show that a 2-stratifold group that is a closed 3-manifold group is a free product of cyclic or $\mathbb{Z} \times \mathbb{Z}_2$ groups.

First consider an F -group \mathcal{F} as in (\mathcal{F}) .

Proposition 1 ([12] Proposition (III)7.4). *Let H be a subgroup of an F -group. If H has finite index then H is an F -group. If H has infinite index then H is a free product of cyclic groups.*

Proposition 2 ([12] p.132). (a) \mathcal{F} is finite non-cyclic if and only if $n = 0$, $p = 3$ and $(m_1, m_2, m_3) = (2, 2, m)$ ($m \geq 2$) (the dihedral group of order $2m$) or $(m_1, m_2, m_3) = (2, 3, k)$

for $k = 3, 4$ or 5 (the tetrahedral, octahedral, dodecahedral groups). In each case, c_1 is a non-central element of order 2 .

(b) \mathcal{F} is finite cyclic if and only if $n = 0$, $p \leq 2$ (the 2-sphere orbifold with at most two cone points) or $n = 1$, $p \leq 1$ (the projective plane orbifold with at most one cone point).

Lemma 1. \mathcal{F} is not a non-trivial free product.

Proof. If $\mathcal{F} = A * B$ with A, B non-trivial, then A and B have infinite index and so, by Proposition 1, A, B and \mathcal{F} are free products of cyclic groups. However, \mathcal{F} is not such a group since it contains a subgroup isomorphic to the fundamental group of an orientable closed surface of genus ≥ 1 (see the remark after Proposition (III)7.12 in [12]). \square

The following remark is easy to see.

REMARK 1. If $\mathcal{F} \neq \mathbb{Z}_2$ then \mathcal{F} has no elements of finite order if and only if \mathcal{F} is a surface group.

Lemma 2. If M is an orientable (not necessarily closed or compact) 3-manifold with $\pi_1(M) \cong \mathcal{F}$ then $\pi_1(M)$ is cyclic or a surface group.

Proof. We may assume that ∂M contains no 2-spheres. By Scott's Core Theorem we may assume that M is compact and by Lemma 1 that M is irreducible.

If $\pi_1(M)$ is infinite then M is aspherical (see e.g. [1]). It follows that $\pi_1(M)$ is torsion-free and from Remark 1 that $\pi_1(M)$ is a surface group.

If $\pi_1(M)$ is finite then M is closed. If $\pi_1(M)$ is also non-cyclic then by Proposition 2, $\pi_1(M)$ contains a non-central element of order 2 . This can not happen by Milnor [15]. \square

We now consider a 2-stratifold X_G with $\pi_1(X_G) = \pi(\mathcal{G})$ as in section 3.

Up to conjugacy, the only elements of finite order of $\pi_1(X_G)$ are contained in the vertex groups; they correspond to black vertices of finite order and elements of white vertices w whose corresponding group in \mathcal{G} is finite. The latter are described in Proposition 2. It is also shown in [12] (proof of Proposition (III)7.12) that in an infinite F-group the only elements of finite order are the obvious ones, namely conjugates of powers of c_1, \dots, c_p .

For a group H , denote by QH be the quotient group of H modulo the smallest subgroup of H containing all elements of finite order of H .

Let w be a white vertex in G_X . We say that w is a *white hole*, if w has label -1 , all of its (black) neighbors have finite order and at most one of its neighbors has order > 1 .

If G_X has more than one vertex, note that $Q\pi_1(X_G)$ is obtained from $\pi_1(X_G)$ by killing the open stars of all the black vertices representing elements of finite order ≥ 1 of $\pi_1(X_G)$ and deleting the white holes. In the example of Figure 1, when genus $g = -1$ (and so $n = 1$), $Q\pi_1(X_G) = \mathbb{Z}_2$. (Note that the white vertex of genus -1 is not a white hole if $p \geq 2, m_i > 1$).

Proposition 3. If $Q(\pi_1(X_G))$ has no elements of order 2 , then $H_3(Q\pi_1(X_G)) = 0$.

Proof. Let G' be the labelled subgraph of G_X obtained by deleting the open stars of all black vertices representing elements of finite order of $\pi_1(X_G)$ and all white holes. ($\pi_1(X_\emptyset) = 1$ by definition). Let C be a component of G' . Then $Q\pi(X_G) = L * (*_C(\pi(X_C)))$, the free product of a free group L with the free product of the $\pi(X_C)$ where C runs over the components of G' .

If C consists of only one (white) vertex, then X_C is a closed 2-manifold, different from P^2 , since by assumption $Q(\pi_1(X_G))$ has no elements of order 2. We may ignore the C 's consisting of spheres, since they do not contribute to $Q\pi(X_G)$. (A nonseparating 2-sphere only changes the rank of L). In all other cases X_C is the total space of a bicolored graph of spaces with white vertex spaces 2-manifolds with boundary, edge spaces circles, and black vertex spaces homotopy equivalent to circles.

Thus every vertex and edge space of X_C is aspherical (with free fundamental group) of dimension ≤ 2 . By Proposition 3.6 (ii) of [17], X_C is aspherical. It follows that $Q\pi_1(X_G)$ has (co)homological dimension ≤ 2 and so $H_3(Q\pi_1(X_G)) = 0$. \square

The assumption that $Q(\pi_1(X_G))$ has no elements of finite order is satisfied if $\pi_1(X_G)$ is a 3-manifold group: We claim that $Q\pi_1(M)$ is torsion free if M is a closed orientable 3-manifold.

For let $M = M_1 \# \dots \# M_k$ be its prime decomposition. If M_i is irreducible with infinite fundamental group, then M_i is aspherical and so $\pi_1(M_i)$ is torsion free; if M_i has finite fundamental group, then $Q\pi_1(M_i) = 1$. Now the claim follows since $Q\pi_1(M) = Q\pi_1(M_1) * \dots * Q\pi_1(M_k)$.

Lemma 3. *Let M be a closed orientable 3-manifold with prime decomposition $M = M_1 \# \dots \# M_k$. If $\pi_1(M) \cong \pi_1(X_G)$, then each $\pi_1(M_i)$ is infinite cyclic or finite.*

Proof. If there is some M_i with $\pi_1(M_i) \neq \mathbb{Z}$, then M_i is irreducible. If $\pi_1(M_i)$ is infinite then M_i is aspherical and hence $H_3(Q\pi_1(M_i)) = H_3(\pi_1(M_i)) = H_3(M_i) \neq 0$. Since $Q\pi_1(M) = Q\pi_1(M_1) * \dots * Q\pi_1(M_k)$ it follows that $H_3(Q\pi_1(M)) \neq 0$, which contradicts Proposition 3. \square

REMARK 2. One can give an alternate proof of Lemma 3 by using the fact that 3-manifold groups are virtually torsion free. Using this fact one can show (by looking at torsion-free subgroups instead of torsion-free quotients) that if G is both a 2-stratifold group and a 3-manifold group, then the virtual cohomological dimension of G is at most 2. By a slight modification of the above proof of Lemma 3 this implies that no connected sum summand of a closed orientable 3-manifold M is aspherical.

Lemma 4. *Let M be a closed 3-manifold and suppose $\pi_1(M) = \pi_1(X_G)$. Then any finite subgroup H of $\pi_1(M)$ is cyclic.*

Proof. $\pi_1(X_G) \cong \pi_1(\mathcal{G})$ where \mathcal{G} is a graph of groups in which the groups of black vertices are cyclic and the groups of white vertices are F -groups or free products of finitely many cyclic groups. The finite group H is non-splittable (i.e. not a non-trivial HNN extension or free product with amalgamation). By Corollary 3.8 and the Remark after Theorem 3.7 of [17], H is a cyclic group or isomorphic to a subgroup of an F -group. If H is not cyclic, then (since H is not a non-trivial free product of cyclic groups), H is itself an F -group by

Proposition 1. Since H is a 3-manifold group it follows from Lemma 2 that this case can not occur. \square

Corollary 1. *Let M be a closed orientable 3-manifold. If $\pi_1(M) \cong \pi_1(X_G)$, then $\pi_1(M)$ is a free product of cyclic groups.*

Proof. This follows from Lemmas 3 and 4. \square

Theorem 1. *Let M be a closed 3-manifold. If $\pi_1(M) \cong \pi_1(X_G)$, then $\pi_1(M)$ is a free product of groups, where each factor is cyclic or $\mathbb{Z} \times \mathbb{Z}_2$.*

Proof. If M is orientable this is Corollary 1 (with each factor cyclic). Thus assume M is non-orientable and let $p : \tilde{M} \rightarrow M$ be the 2-fold orientable cover of M . Then $\pi_1(\tilde{M}) = \pi_1(X_{\tilde{G}})$ for the 2-stratifold $X_{\tilde{G}}$, which is the 2-fold cover of X_G corresponding to the orientation subgroup of $\pi_1(M)$. Hence $\pi_1(\tilde{M})$ is a free product of cyclic groups.

Let $M = \hat{M}_1 \# \dots \# \hat{M}_k$ be a prime decomposition of $M = M_1 \cup \dots \cup M_k$. If M_i is orientable, then M_i lifts to two homeomorphic copies $\tilde{M}_{i1}, \tilde{M}_{i2}$ of M_i , with each \hat{M}_{ij} a factor of the prime decomposition of \tilde{M} and it follows that $\pi_1(M_i)$ is cyclic.

If \hat{M}_i is non-orientable and P^2 -irreducible, then M_i lifts to \tilde{M}_i , where \hat{M}_i is irreducible. Then $\pi_1(\hat{M}_i)$, being a factor of the free product decomposition of $\pi_1(\tilde{M})$, is finite cyclic, which can not occur since $\pi_1(M_i)$ is infinite.

If \hat{M}_i is non-orientable irreducible, contains P^2 's, but is not $P^2 \times S^1$, then by Proposition (2.2) of [19], M_i splits along two-sided P^2 's into 3-manifolds N_1, \dots, N_m such that the fundamental group of the lifts \tilde{N}_i is indecomposable, torsion free and not isomorphic to \mathbb{Z} . Since $\pi_1(\tilde{N}_i)$ is a factor of the free product decomposition of $\pi_1(\tilde{M})$, this can not happen.

Therefore each non-orientable M_i is either the S^2 -bundle over S^1 or $P^2 \times S^1$, which proves the Theorem. \square

5. Realizations of spines.

Recall that a subpolyhedron P of a 3-manifold M is a *spine* of M , if $M - \text{Int}(B^3)$ collapses to P , where B^3 is a 3-ball in M .

An equivalent definition is that $M - P$ is homeomorphic to an open 3-ball (Theorem 1.1.7 of [14]).

We first construct 2-stratifold spines of lens spaces (different from S^3), the non-orientable S^2 -bundle over S^1 , and $P^2 \times S^1$.

EXAMPLE 1. Lens space $L(0, 1) = S^3$.

S^3 does not have a 2-stratifold spine. Otherwise such a spine X would be a deformation retract of the 3-ball and therefore contractible. However there are no contractible 2-stratifolds [7].

EXAMPLE 2. Lens spaces $L(p, q)$ with $q \neq 0, 1$.

Let r be the rotation of the disk D^2 about its center c with angle $2\pi p/q$, let $1 \in S^1 \subset D^2$ and let $x_i = r^{i-1}(1)$, $i = 1, \dots, q$. Let $Y \subset D^2$ be the cone of $\{x_1, \dots, x_q\}$ with cone point c . Embed $Y \times I/(x_i, 0) \sim (x_{i+1}, 1)$ into the solid torus $V = D^2 \times I/(x, 0) \sim (r(x), 1)$.

The punctured lens space $L(p, q)$ is obtained from V by attaching a 2-handle $D \times I$ with ∂D attached to the boundary curve of $(Y \times I)/\sim$. Then $L(p, q)$ deformation retracts to $(Y \times I)/\sim \cup D$, which is the 2-stratifold with one white vertex of genus 0, one black vertex, and one edge with label q .

EXAMPLE 3. Lens space $L(1, 0) = S^2 \times S^1$ and non-orientable S^2 -bundle over S^1 .

Consider $S^2 \tilde{\times} S^1$, the non-orientable S^2 -bundle over S^1 , as the quotient space $q(S^2 \times I)$ under the quotient map $q : S^2 \times I \rightarrow S^2 \tilde{\times} S^1$ that identifies $(x, 0)$ with $(\alpha(x), 1)$, $x \in S^2$, where α is the antipodal map.

Let $D_0 \subset S^2 \times \{0\}$ be a disk and B_1 be the 3-ball $D_0 \times I \subset S^2 \times I$, let D_1 be the disk $B_1 \cap S^2 \times \{1\}$, let A be the annulus $\partial B_1 - (Int(D_0) \cup Int(D_1))$, and let B_2 be the ball $S^2 \times I - Int(B_1)$, see Figure 2. Then $S^2 \times I - Int(B_2) = S^2 \times \{0\} \cup B_1 \cup S^2 \times \{1\}$ and $S^2 \tilde{\times} S^1 - Int(B_2) = q(S^2 \times I - Int(B_2)) = S^2 \cup q(B_1)$, where $S^2 = q(S^2 \times \{0\}) = q(S^2 \times \{1\})$. Collapsing the ball $q(B_1)$ across the free face $q(D_1)$ onto $q(A) \cup q(D_0)$ we obtain a collapse of $S^2 \tilde{\times} S^1 - Int(B_2)$ onto $(S^2 - Int(q(D_1))) \cup q(A)$, which is a torus with a disk attached. This is a 2-stratifold X_G with graph G_X in Figure 3(b). (The white vertices have genus 0).

Fig. 2. $S^2 \tilde{\times} S^1 - Int(B_2) \searrow S^1 \tilde{\times} S^1 \cup D^2$

A similar construction, considering $S^2 \times S^1$ as the obvious quotient space of $q : S^2 \times I \rightarrow S^2 \times S^1$ and first isotoping the ball B_1 such that $D_0 \cap D_1 = \emptyset$, we obtain a collapse of $S^2 \times S^1 - Int(B_2)$ onto a Kleinbottle with a disk attached. This is a 2-stratifold X_G with graph G_X in Figure 3(a).

Fig. 3. 2-stratifold spines of punctured $S^2 \tilde{\times} S^1$ and $P^2 \times S^1$

We would like to thank Mario Eudave-Muñoz for pointing out that in this example the spine for the non-orientable (resp. orientable S^2 -bundle over S^1) is a torus (resp. Kleinbottle) with a disk attached, rather than a Kleinbottle (resp. torus) with a disk attached.

EXAMPLE 4. $P^2 \times S^1$.

For a one-sided simple closed curve c in P^2 and a point t_0 in S^1 let $X = P^2 \times \{t_0\} \cup c \times S^1 \subset P^2 \times S^1$. Observe that the boundary of a regular neighborhood N of X in $P^2 \times S^1$ is a 2-sphere. Since $P^2 \times S^1$ is irreducible, ∂N bounds a 3-ball B^3 and therefore $P^2 \times S^1 - \text{Int}(B^3) = N$, which collapses onto $X = X_G$, a 2-stratifold with graph in Figure 3(c).

Proposition 4. *If the closed 3-manifold M_i ($i = 1, 2$) has a 2-stratifold spine and M is a connected sum of M_1 and M_2 , then M has a 2-stratifold spine.*

Proof. Let K_i be a 2-stratifold spine of M_i . Let $K_1 \vee K_2$ be obtained by identifying, in the disjoint union of K_1 and K_2 , a nonsingular point of K_1 with a nonsingular point of K_2 . By Lemma 1 of [9], $K_1 \vee K_2$ is a spine of M . Though $K_1 \vee K_2$ is not a 2-stratifold, by performing the operation explained below (replacing the wedge point by a disk) we will change $K_1 \vee K_2$ to a 2-stratifold spine $K_1 \Delta K_2$.

Fig.4. $K_1 \Delta K_2$

A 3-ball neighborhood B^3 of the wedge point of $K_1 \vee K_2$ intersects $K_1 \vee K_2$ in the double cone shown in Fig.4. Replace, in $K_1 \vee K_2$, $K_1 \vee K_2 \cap B^3$ by $A \cup D$, as shown in Fig. 4, where $A = S^1 \times [0, 1]$ is an horizontal cylinder, $\partial A = (K_1 \vee K_2) \cap \partial B^3$, D is a vertical 2-disk with $A \cap D = \partial D = S^1 \times (1/2)$. The result is a 2-stratifold $K_1 \Delta K_2$. There is a homeomorphism from $B^3 - (A \cup D)$ onto $B^3 - K_1 \vee K_2$ which is the identity on the boundary (roughly collapse D to a point) and so $M - K_1 \Delta K_2$ is homeomorphic to $M - K_1 \vee K_2$ which is homeomorphic to R^3 .

Therefore $K_1 \Delta K_2$ is a 2-stratifold spine of M . \square

Now Theorem 1 together with the examples and Proposition 4 yields our main Theorem. Here we do not consider S^3 to be a lens space.

Theorem 2. *A closed 3-manifold M has a 2-stratifold as a spine if and only if M is a connected sum of lens spaces, S^2 -bundles over S^1 , and $P^2 \times S^1$'s.*

ACKNOWLEDGEMENTS. J. C. Gómez-Larrañaga would like to thank LAISLA and the TDA project from CIMAT for financial support and IST Austria for their hospitality.

References

- [1] M. Aschenbrenner, S. Friedel and H. Wilson: *Decision Problems for 3-manifolds and their fundamental groups*; in Interactions between low-dimensional topology and mapping class groups, Geometry & Topology Monographs **19**, Geon. Topol. Publ., Coventry, 201–236, 2015.
- [2] P. Bendich, E. Gasparovics, C.J. Tralie and J. Harer: *Scaffoldings and Spines: Organizing High-Dimensional Data Using Cover Trees, Local Principal Component Analysis, and Persistent Homology*, Research in computational topology, 93–114, Assoc. Women Math. Ser. **13**, Springer, Cham, 2018.
- [3] S. Boyer, D. Rolfsen and B. Wiest: *Orderable 3-manifold groups*, Ann. Inst. Fourier (Grenoble) **55** (2005), 243–288.
- [4] J.S. Carter: *Reidemeister/Roseman-type moves to embedded foams in 4-dimensional space*; in New Ideas in low Dimensional Topology, Series on Knots and Everything **56**, World Sci. Publ., Hackensack, NJ, 1–30, 2015.
- [5] I.M. Chiswell: *Right orderability and graphs of groups*, J. Group Theory **14** (2011), 589–601.
- [6] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: *Categorical group invariants of 3-manifolds*, Manuscripta Math. **145** (2014), 433–448.
- [7] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: *2-dimensional stratifolds*; in A Mathematical Tribute to José María Montesinos Amilibia, Universidad Complutense de Madrid, 395–405, 2016.
- [8] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: *2-stratifold groups have solvable Word Problem*, Rev. R. Acad. Cienc. Exactas, Fís. Nat. Ser. A Mat. RACSAM **12** (2018), 803–810.
- [9] G.W. Knutson: *A characterization of closed 3-manifolds with spines containing no wild arcs*, Proc. Amer. Math. Soc. **21** (1969), 310–314.
- [10] M. Khovanov: *sl(3) link homology*, Algebr. Geom. Topol. **4** (2004), 1045–1081.
- [11] P. Lum, G. Singh, J. Carlsson, A. Lehman, T. Ishkhanov, M. Vejdemo-Johansson, M. Alagappan and G. Carlsson: *Extracting insights from the shape of complex data using topology*, Nature Scientific Reports **3** (2013), Article ID 12–36.
- [12] R.C. Lyndon and P.E. Schupp: Combinatorial Group Theory, Modern Surveys in Math. **89**, Springer Verlag, Berlin, 1977.
- [13] S. Matsuzaki and M. Ozawa: *Genera and minors of multibranched surfaces*, Topology Appl. **230** (2017), 621–638.
- [14] S. Matveev: Algorithmic Topology and Classification of 3-Manifolds, Algorithms and Computation in Mathematics **9**, Springer, Berlin, 2007.
- [15] J. Milnor: *Groups which act on S^n without fixed points*, Amer. J. Math. **79** (1957), 623–630.
- [16] W. Neumann: *A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves*, Trans. Amer. Math. Soc. **268** (1981), 299–344.
- [17] P. Scott and C.T.C. Wall: *Topological Methods in Group Theory*; in Homological Group Theory, London Math. Soc. Lecture Notes Ser. **36**, Cambridge Univ. Press, Cambridge-New York, 1979.
- [18] J.P. Serre: Trees, Springer-Verlag, Berlin-New York, 1980.
- [19] G.A. Swarup: *Projective planes in irreducible 3-manifolds*, Math. Z. **132** (1973), 305–317.

J.C. Gómez-Larrañaga
Centro de Investigación en Matemáticas
A.P. 402, Guanajuato 36000, Gto.
México
e-mail: jcarlos@cimat.mx

F. González-Acuña
Instituto de Matemáticas
UNAM, 62210 Cuernavaca, Morelos
México and Centro de Investigación en Matemáticas
A.P. 402, Guanajuato 36000, Gto.
México
e-mail: fico@math.unam.mx

Wolfgang Heil
Department of Mathematics
Florida State University
Tallahassee, FL 32306
USA
e-mail: heil@math.fsu.edu