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Abstract
We consider diagrams of links in S 2 obtained by projection from S 3 with the Hopf map and

the minimal crossing number for such diagrams. Knots admitting diagrams with at most one
crossing are classified. Some properties of these knots are exhibited. In particular, we establish
which of these knots are algebraic and, for such knots, give an answer to a problem posed by
Fiedler in [3].

1. Introduction

1. Introduction
Let p : S 3 → S 2 be the Hopf map in the Hopf fibration of S 3. For a link L in S 3, we

study the minimal number of crossings of p(L) among generic projections in S 2. Let us call
this number the Hopf crossing number of L and denote it by h(L). The classical crossing
number is denoted by c(L).

The Hopf crossing number was considered by Fiedler [3] in the context of algebraic
links coming from singularities of complex curves. For an algebraic link L realized as the
intersection of a complex plane algebraic curve X with a small sphere S 3 with a singularity
of X at its center, he considered the canonical Hopf fibration from S 3 to CP1 ≈ S 2, i.e.
the fibration induced by the intersection of S 3 with the complex lines through the center of
S 3. He defined Calg(L) as the minimal number of crossings under this Hopf fibration for all
generic realizations of L as X ∩ S 3. He computed Calg for torus knots T (p, q), 1 < p < q,
q < 2p and found lower bounds for Calg of other algebraic knots and links.

For an algebraic link L one has h(L) ≤ Calg(L) as the link does not have to be realized as
the intersection of a complex curve with a sphere. In fact Fiedler poses a problem: is this
inequality always an equality for algebraic links?

In this paper we classify knots with h(K) ≤ 1 (see Theorem 2) and show that, for such
knots, the answer to Fiedler’s problem is positive (see Theorem 3). In order to achieve it,
we use arrow diagrams introduced in [7], which are equivalent to gleams introduced in [12].

In section 2 we present the arrow diagrams of links in S 3 for which the minimal crossing
number is the Hopf crossing number.

In section 3 we consider several examples of arrow diagrams of knots.
In section 4 we compute the Jones polynomial of knots K with h(K) ≤ 1.
In section 5 we classify knots K with h(K) ≤ 1 and study some of their properties. In

particular, we find all knots K with at most 10 crossings (in the classical sense) satisfying
h(K) ≤ 1.

Finally, in section 6 we establish which knots K, with h(K) ≤ 1, are algebraic and show
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that, for such knots, h(K) = Calg(K).

2. Arrow diagrams of links

2. Arrow diagrams of links
Let T = S 1 × D be the solid torus. An arrow diagram of a link L in T is obtained by

cuting T along 1 × D×, 1 ∈ S 1, and projecting L from [0, 1] × D thus obtained onto D. One
keeps the information about over- and undercrossings in this projection. Also, the points in
L∩1×D are projected onto arrows pointing to the part of L that is close to 0 in [0, 1]×D. It
was shown in [7] that there are five Reidemeister moves connecting any two diagrams which
represent the same link in T : three classical (Ω1, Ω2 and Ω3) and two extra ones (Ω4 and
Ω5), presented in Figure 1.

Fig.1. Reidemeister moves

Given the solid torus T , S 3 is obtained from T by gluing to it a second solid torus T ′,
see Figure 2. In this figure, T is shown. As a basis for H1(∂T ) we choose a standard
longitude-meridian basis of a torus embedded in a standard way in S 3. In the decomposition
T = S 1×D, used for the arrow diagrams as above, we take as S 1 the curve passing through A
and A′ (i.e. a fiber in the Hopf fibration of S 3). Such S 1, when oriented, represents (1, 1) in
the chosen basis of H1(∂T ). The solid torus T ′ is glued to T in such a way that its meridional
disk D′, shown vertically in the middle of the figure, is glued to T along a (1, 0) curve in ∂T .
Here, we choose the orientations of S 1 and ∂D indicated on the figure by arrows.

Fig.2. Hopf fibration

Any link L in S 3 can be pushed inside T . Its projection onto D gives an arrow diagram
of L, as decribed above. If two links L and L′, lying in T , are ambiently isotopic in S 3, one
can pass from L to L′ by a series of ambient isotopies in T and gliding of arcs along the disc
D′. Such a gliding gives rise to one extra Reidemeister move, called the Ω∞ move, shown
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in Figure 3. Indeed, consider the small arc c above D in Figure 2. It projects onto an arc in
D as on the left of Figure 3. When c is glided over D′ and slightly beyond, its projection
in D will be such as the one depicted on the right of Figure 3. Indeed, going around ∂D in
counterclockwise direction, one meets in succesion: the unchanged endpoints of c, the arrow
where the glided c crosses D next to D ∩ D′ (the arrow is oriented in clockwise direction as
we go opposite to the orientation of the fibers S 1), a point next to A′ projecting to a point
next to A and, finally, a point next to B′ projecting to a point next to B.

Fig.3. The Ω∞ move

Let S 2 be obtained from D and D′ by identifying the points of ∂D and ∂D′ belonging to
the same fiber (such as A and A′ or B and B′ in Figure 2). Then the Hopf map, p : S 3 → S 2,
maps T onto D ⊂ S 2 and T ′ onto D′ ⊂ S 2. As any link L in S 3 can be pushed into T without
changing the number of crossings of p(L), the Hopf crossing number h(L) is the minimum
of crossings in all arrow diagrams of L.

For any link L its classical diagrams form a subset of its arrows diagrams (consisting of
diagrams with no arrows). Thus, obviously, h(L) ≤ c(L).

As in our later computations we use the Kauffman bracket, it is necessary to consider
framed links. Such a link is equipped with a framing i.e. a smooth family of unit vectors
orthogonal to the link. An arrow diagram represents a framed link where the framing is
orthogonal to the fibers S 1 of the Hopf fibration. All Reidemeister moves exceptΩ1 preserve
this framing. For Ω∞, notice that when we glide an arc, such as c in Figure 2, through D′,
the framing stays orthogonal to the fibers during the gliding.

Let D be an arrow diagram. Denote by w(D) the writhe of the diagram obtained from
D by ignoring all arrows. Denote by w(D) the writhe of the framed link represented by D.
If D′ has no arrows and is obtained from D by Reidemeister moves including a moves Ω1

increasing the writhe and b moves Ω1 decreasing the writhe, then w(D) = w(D′) + b − a.
For an oriented diagram an arrow is positive if it points in the same direction as the

orientation. Otherwise it is negative. An arrow is removable if it can be eliminated with an
Ω∞ move followed by an Ω4 move. Thus, an arrow is removable if it is not separated from
the boundary of the diagram by any arc and is clockwise (so it will be opposite to the arrow
created by Ω∞).

Lemma 1. Suppose D is an oriented arrow diagram of a knot with all arrows being
removable. Suppose that there are a > 0 positive and b ≥ 0 negative arrows. Then w(D) =
w(D) + a(a − 1) + b(b − 1) − 2ab.

Proof. Denote D by Da,b. Eliminate a positive arrow by Ω∞ and Ω4, then push with Ω2

and Ω5 the other arrows through the new arc so that they are again removable. Denote the
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resulting diagram by Da−1,b. This is shown in Figure 4 and one sees that the remaining a− 1
positive arrows contribute +2 each to w(Da−1,b) whereas the b negative arrows contribute
−2 each. Thus w(Da−1,b) = w(Da,b) + 2(a − 1) − 2b. We apply the same moves to Da−1,b

getting w(Da−2,b) = w(Da−1,b) + 2(a − 2) − 2b. Continuing until a = 0 we get w(D0,b) =
w(Da,b) + 2(a − 1) − 2b + 2(a − 2) − 2b + ... + 2 − 2b + 0 − 2b = w(Da,b) + a(a − 1) − 2ab.

Now reverse the orientation of D0,b to get Db,0 (w is unchanged). By the first part
w(D0,0) = w(Db,0) + b(b − 1). As D0,0 has no arrows w(D0,0) = w(D0,0).

We have not used Ω1 moves, so w(D) = w(Da,b) = w(D0,0). Thus w(D) = w(D) + a(a −
1) − 2ab + b(b − 1).

Fig.4. Removing a positive arrow

�

We will later need to estimate, from an arrow diagram of a knot K, the classical crossing
number c(K). The following lemma will be useful:

Lemma 2. Suppose that a knot K has an arrow diagram D with k crossings, a+b arrows
of which a are removable and b are not removable but are not separated from the boundary
of the diagram.

Then c(K) ≤ k + a(a − 1) if b = 0 and c(K) ≤ k + b − 1 + (a + b)(a + b − 1) if b > 0.

Proof. If b = 0, remove all a arrows just as in the proof of the preceding lemma. This
creates 2(a− 1)+ 2(a− 2)+ ...+ 2 = a(a− 1) crossings and all arrows have been eliminated.

If b > 0, create b − 1 kinks with Ω1 moves next to each arrow that is not removable
except for one (so do nothing if b = 1). Then push such arrows into the kinks with Ω5. This
increases the number of crossings by b−1. Now a+b−1 arrows are removable. Remove these
arrows as in the proof of the preceding lemma. This creates 2(a+b−2)+2(a+b−3)+ ...+2
crossings. Push the last non removable arrow across the a+b−1 arcs withΩ2 andΩ5 creating
2(a+ b− 1) crossings. At this stage there are k+ b− 1+ 2(a+ b− 1)+ 2(a+ b− 2)+ ..+ 2 =
k + b − 1 + (a + b)(a + b − 1) crossings. Now create a kink, push the last arrow into it with
Ω5 and eliminate the arrow with Ω∞. As there are no more arrows, the arc created by Ω∞
going next to the boundary of the diagram can be shrinked above the rest of the diagram and
the crossing coming from the last kink created can be eliminated with Ω1. So we get the
required number of crossings. �

3. Examples: arrow diagrams of torus knots and some other knots

3. Examples: arrow diagrams of torus knots and some other knots
In this section we consider some arrow diagrams of torus knots and a couple of other

knots that will be needed later.
Consider a torus knot T (n,m), n < m, gcd(n,m) = 1, lying on the boundary of the solid

torus T (see Figure 2), going in a uniform way n times in the longitudinal and m times
in the meridional direction. Thus, its homology class in H1(∂T ) is (n,m), in the standard
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Fig.5. Torus knots T (3, 4), T (3, 5), T (5, 7) and T (4, 7)

longitude-meridian basis of H1(∂T ).
The Hopf map projects T onto D and T (n,m) onto the circle ∂D. Push the knot into T

and perturb it slightly, to get a generic projection with all crossings near each other (see
Figure 5). We may choose the cut in T (which creates the arrows) and the perturbation of
the knot in such a way that there is an arrow just before all crossings and pointing to the
undercrossings. All other arrows are uniformly spaced on the resulting curve. Now each
arrow corresponds to going once along a Hopf fiber i.e. going around a curve (1, 1). Going
around the disk corresponds to a meridional curve (0, 1). Thus, going a times around the
disk, with b arrows, will correspond to a torus knot of type a(0, 1) + b(1, 1) = (b + a, a) (the
addition and multiplication in H1(∂T )). In Figure 5 the first knot is of type (1, 1) + (1, 1) +
(1, 1)+(0, 1) = (3, 4) i.e. the knot T (3, 4). The second knot is of type 3(1, 1)+2(0, 1) = (3, 5),
the third is of type 5(1, 1)+ 2(0, 1) = (5, 7) and the fourth is of type 4(1, 1)+ 3(0, 1) = (4, 7).

It follows that an oval with n counterclockwise arrows on it is the torus knot T (n, n + 1).
Thus h(T (n, n + 1)) = 0. More generally we see that T (n, n + k) has a diagram with k − 1
crossings so h(T (n, n + k)) ≤ k − 1. Indeed, consider a diagram D going around the disk k
times with k − 1 crossings, generalizing the diagrams of Figure 5 (for example k = 3 for the
last diagram in this figure). Suppose that there are n arrows on D spaced uniformly, where
the first arrow is just before the crossings. Then D is a diagram of the torus knot of type
k(0, 1) + n(1, 1) = (n, n + k). Fiedler has shown in [3], that Calg(T (n, n + k)) = k − 1 if k < n.
It does not imply that h(T (n, n + k)) = k − 1 if k < n. We will get the last equality for k ≤ 3,
see Proposition 5.

If k > n, there are less arrows contributing (1, 1) than meridional curves contributing
(0, 1) in the arrow diagrams such as in Figure 5. Consider the same diagram D with k − 1
crossings as in the preceding paragraph: going around the disk k times with n arrows spaced
uniformly, the first arrow just before the crossings. As n < k, the second arrow will not be
on the most nested kink, so this kink can be removed with Ω1, yielding a diagram with k− 2
crossings. Thus, h(T (n, n+ k)) ≤ k − 2 if k > n. It is possible that more nested kinks may be
removed. The most extreme case is T (2, 2 + k) with a diagram containing only two arrows,
so that all the most nested kinks up to the second arrow can be removed. One checks easily
that h(T (2, 2 + k)) ≤ k−1

2 .

Example 1. Three arrow diagrams of the torus knot T (2, 5) are shown in Figure 6.

Example 2. Consider the knot with a diagram shown in Figure 7. In this figure Reide-
meister moves are used to show that it is the knot 942. In the last row of this figure arcs that
are moved in the diagrams are thickened. The third diagram from the end is transformed by
a rotation by π of a solid torus containing the knot indicated with dashed lines.
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Fig.6. Knot T (2, 5)

Fig.7. Knot 942

Example 3. Denote the first arrow diagram in Figure 7 by K2,1. Denote a similiar diagram
with 3 counterclockwise arrows on the right loop instead of 2 by K3,1 (see Figure 8 below).
Later, we will see that K2,1 and K3,1 share the same Jones polynomial. By eliminating all
arrows the HOMFLY polynomial of these two knots can be computed with KnotPlot[9].
One gets for K2,1 and K3,1 respectively:

PK2,1 = −2l−2 − 3 − 2l2 + m2l−2 + 4m2 + m2l2 − m4

PK3,1 = 5 + 10l2 + 8l4 + 2l6 − 10m2 − 25m2l2 − 14m2l4 − m2l6

+6m4 + 22m4l2 + 7m4l4 − m6 − 8m6l2 − m6l4 + m8l2

Thus these two knots are distinct (including mirror images) and because of the assymetry of
the l terms K3,1 is chiral. One can check that the reductions of the two HOMFLY polynomials
to the Jones polynomial give indeed the same polynomial.

4. Jones polynomial of knots K with h(K) ≤ 1

4. Jones polynomial of knots K with h(K) ≤ 1
In this section we compute the Jones polynomial of knots with Hopf crossing number at

most 1. This will allow us to classify such knots in the next section.
For n ≥ 0, let Tn be an oval with n counterclockwise arrows on it. It is the right handed

torus knot T (n, n + 1) (see the previous section). The Jones polynomial of a torus knot
T (m, n) is given by [4]:
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(VT1) VT (m,n) = t
(m−1)(n−1)

2
1 − tm+1 − tn+1 + tm+n

1 − t2

Thus, for right handed torus knots T (n, n + 1) the Jones polynomial is:

(VT2) VTn = t
n(n−1)

2
1 − tn+1 − tn+2 + t2n+1

1 − t2

We extend to n ∈ Z the definition of Tn: if n < 0, Tn is an oval with |n| clockwise arrows
on it. If n < 0, Tn can be transformed with Ω∞ and Ω4 into T−n−1. In the same way, for
n ∈ Z, let T ′n be an oval with n clockwise arrows, if n ≥ 0, and |n| counterclockwise arrows,
if n < 0. One can transform T ′n into Tn−1 with Ω∞ and Ω4, so these diagrams represent the
same knot. One checks easily that in the equation (VT2) VTn and VT−n−1 are equal for all n.
Thus, this equation is also valid for negative n.

An arrow diagram of a knot with no crossings is just an oval with some arrows on it.
Opposite arrows can be removed with Ω4. Thus, from the preceding paragraph we get
immediately (see also [3]):

Lemma 3. A knot K satisfies h(K) = 0 if and only if K is a torus knot T (n, n + 1).

We use the Kauffman bracket in order to compute the Jones polynomial (see [5]). Sub-
stituting t = A−4, for a framed knot, < K >= (−A)3w(K)V(K), where <>, V and w stand
for the Kauffman bracket, Jones polynomial and writhe of the knot, respectively. Until the
end of this section we will use both A and t, sometimes in the same formulas, with the
understanding that t = A−4.

Notice that the Kauffman bracket and Kauffman relations (smoothing a crossing and re-
moving a trivial component) are defined for the orthogonal projection of framed links from
R

3 to R2. However, the Kauffman is also defined for arrow diagrams, which, as classical
diagrams, represent framed links in S 3. Also, Kauffman relations hold for arrow diagrams.
Indeed, to apply a Kauffman relation to an arrow diagram, we may first remove all arrows
with appropriate Reidemeister moves, apply the relation to a classical diagram, then recreate
the removed arrows with Reidemeister moves.

Lemma 4. The writhe of Tn is n(n + 1), for n ∈ Z.

Proof. If n = 0, then it is trivial. If n > 0, then apply Ω∞ to Tn to get T ′n+1. This does
not change the writhe. Orient the diagram so that all the arrows of T ′n+1 are positive and
removable as in the definition before lemma 1. From this lemma, w(T ′n+1) = w(T ′n+1) + (n +
1)n = n(n + 1).

If n < 0, orient the diagram so that there are |n| postive removable arrows. From the same
lemma, w(Tn) = w(T ′|n|) = |n|(|n| − 1) = (−n)(−n − 1) = n(n + 1). �

Using equation (VT2) and the last lemma, one gets:

< Tn >= A3n(n+1)t
n(n−1)

2
1 − tn+2 − tn+1(1 − tn)

1 − t2

Let us write < Tn >= Un +Vn where Un contains 1− tn+2 and Vn contains −tn+1(1− tn) of
the numerator of the bracket.

Let us also write < Tn >= U′n+V ′n where U′n contains 1−tn+1 and V ′n contains −tn+2(1−tn−1)
of the numerator of the bracket.



286 M. Mroczkowski

Lemma 5. Let n ∈ Z. Then Vn + A2Un−2 = 0 and V ′n + A−2U′n−2 = 0.

Proof.

Vn = −tn+1A3n(n+1)t
n(n−1)

2
1 − tn

1 − t2 = −Av
1 − tn

1 − t2

A2Un−2 = A2A3(n−2)(n−1)t
(n−2)(n−3)

2
1 − tn

1 − t2 = Au 1 − tn

1 − t2

One has to check that v = u so these two terms cancel each other.

v = −4(n + 1) + 3n(n + 1) − 2n(n − 1) = n2 + n − 4

u = 2 + 3(n − 2)(n − 1) − 2(n − 2)(n − 3) = n2 + n − 4

The proof for V ′n and U′n−2 is similar. In fact, using the same v and u as above one has:

V ′n = −tAv
1 − tn−1

1 − t2

A−2U′n−2 = tA2U′n−2 = tAu 1 − tn−1

1 − t2

As v = u, the equality follows. �

Lemma 6. For n,m ∈ Z, m > 0 let:

S n,m = < Tn > +A2 < Tn−2 > +... + A2m < Tn−2m >

S ′n,m = < Tn > +A−2 < Tn−2 > +... + A−2m < Tn−2m >

Then:

S n,m = A3n(n+1)t
n(n−1)

2

[
1 − tn+2 − t(m+1)(n−m+1)(1 − tn−2m)

1 − t2

]

S ′n,m = A3n(n+1)t
n(n−1)

2

[
1 − tn+1 − t(m+1)(n−m+2)(1 − tn−2m−1)

1 − t2

]

Proof. From Lemma 5, S n,m = Un+A2mVn−2m, as the other terms cancel each other. Thus:

S n,m = A3n(n+1)t
n(n−1)

2
1 − tn+2

1 − t2

+A2mA3(n−2m)(n−2m+1)t
(n−2m)(n−2m−1)

2

(
−tn−2m+1 1 − tn−2m

1 − t2

)

For the second term:

A2mA3(n−2m)(n−2m+1) = A3n(n+1)A2mA−6m(n−2m+1)−6mn

= A3n(n+1)A−12mn+12m2−4m = A3n(n+1)t3mn−3m2+m

and

t
(n−2m)(n−2m−1)

2 tn−2m+1 = t
n(n−1)

2 t−m(n−2m−1)−mn+n−2m+1

= t
n(n−1)

2 t−2mn+2m2−m+n+1
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Thus, factoring out A3n(n+1)t
n(n−1)

2 in the second term one gets:

−t−2mn+2m2−m+n+1+3mn−3m2+m = −tmn−m2+n+1 = −t(m+1)(n−m+1)

For the second part, again from Lemma 5, S ′n,m = U′n + A−2mV ′n−2m. Thus:

S ′n,m = A3n(n+1)t
n(n−1)

2
1 − tn+1

1 − t2

+A−2mA3(n−2m)(n−2m+1)t
(n−2m)(n−2m−1)

2

(
−tn−2m+2 1 − tn−2m−1

1 − t2

)

The difference between the coefficient of the second term in S ′n,m compared to S n,m is the
multplication by A−2m instead of A2m (which corresponds to multiplying by A−4m = tm)
and −tn−2m+2 instead of −tn−2m+1. Overall, this corresponds to multiplying by tm+1. Thus,
factoring out A3n(n+1)t

n(n−1)
2 in the second term one gets:

−t(m+1)(n−m+1)tm+1 = −t(m+1)(n−m+2)

�

From the definition of the Kauffman bracket (see [5]) one gets easily the two following
relations:

For a ≥ 0, b ≥ 0, let Ka,b, K′a,b and K′′a,b be the framed knots shown on the left of Figure 8,
where a next to an arrow stands for a arrows (and the same for b). In this figure the Kauffman
bracket of these knots is calculated using the previous two relations (for simplicity, the
bracket is omitted in the figure). For example, applying Ω5 and Ω4 moves, in the first case
one gets:

< Ka,b >= A2 < Ka−1,b−1 > +(A−1 − A3) < Ta+b >

Iterating the first relation until b = 0 and removing the positive kink with −A3 in the

Fig.8. Relations for K, K’ and K”
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Kauffman bracket one gets:

< Ka,b >= (A−1 − A3)[< Ta+b > +A2 < Ta+b−2 > + . . .(1)

. . . + A2b−2 < Ta−b+2 >] − A2b+3 < Ta−b >

Symmetrically, exchanging A and A−1 and Tk with T ′k = Tk−1, one gets for K′:

< K′a,b >= (A − A−3)[< Ta+b−1 > +A−2 < Ta+b−3 > + . . .(2)

. . . + A−2b+2 < Ta−b+1 >] − A−2b−3 < Ta−b−1 >

For K′′ one gets:

< K′′a,b >= (A−1 − A3)[< Ta−b−1 > +A2 < Ta−b+1 > + . . .(3)

. . . + A2b−2 < Ta+b−3 >] − A2b+3 < Ta+b−1 >

Proposition 1. Let n = a + b, then:

< Ka,b > = A3n(n+1)t
n(n−1)

2 A−1
[
1 − tn+2 − tb(a+2)(1 − ta−b+2)

1 − t2

−t−1 1 − tn+2 − t(b+1)(a+1)(1 − ta−b)
1 − t2

]

< K′a,b > = A3n(n−1)t
(n−1)(n−2)

2 A
[
1 − tn − tb(a+2)(1 − ta−b)

1 − t2

−t
1 − tn − t(b+1)(a+1)(1 − ta−b−2)

1 − t2

]

< K′′a,b > = A3n(n−1)A2b+3t
(n−1)(n−2)

2

[
tn+2 1 − tn−2 − tba(1 − ta−b−2)

1 − t2

−1 − tn − t(b+1)(a+1)(1 − ta−b−2)
1 − t2

]

Proof. Using S n,m and S ′n,m as in Lemma 6, equation (1) can be rewritten as:

Ka,b = A−1S n,b−1 − A3S n,b = A−1(S n,b−1 − t−1S n,b)

Similarily, equation (2) can be rewritten as:

K′a,b = AS ′n−1,b−1 − A−3S ′n−1,b = A(S ′n−1,b−1 − tS ′n−1,b)

Equation (3) can be rewritten as:

K′′a,b = A−1A2b−2S ′n−3,b−1 − A3A2bS ′n−1,b = A2b−3S ′n−3,b−1 − A2b+3S ′n−1,b

The result follows from the formulas for S and S ′ from Lemma 6. For the first term of
< K′′a,b > one uses the identity that is easily checked:

A2b−3A3(n−3)(n−2)t
(n−3)(n−4)

2 = A3n(n−1)A2b+3t
(n−1)(n−2)

2 tn+2

�
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To get the Jones polynomial from the Kauffman bracket it suffices to compute the writhes
of the knots.

Lemma 7. w(Ka,b) = 1 + a(a + 1) + b(b + 1) − 2ab
w(K′a,b) = −1 + a(a − 1) + b(b − 1) − 2ab
w(K′′a,b) = 1 + a(a − 1) + b(b + 1) + 2ab

Proof. In order to use lemma 1 we want all arrows to be removable. This is the case for
K′a,b. The single crossing of K′a,b is negative. Also we can orient K′a,b in such a way that the
a arrows on the left loop are positive and the b arrows on the right loop are negative. From
lemma 1 we get:

w(K′a,b) = w(K′a,b) + a(a − 1) + b(b − 1) − 2ab = −1 + a(a − 1) + b(b − 1) − 2ab

In Ka,b none of the arrows are removable. Let Da,b be the diagram obtained from Ka,b by
putting with Ω1 a negative kink next to each arrow then pushing each arrow with Ω5 into
each such kink which become positive. The Ω1 moves change the writhe so that w(Ka,b) =
w(Da,b) + a + b. Because of the positive kinks w(Da,b) = w(Ka,b) + a + b = 1 + a + b, as
the single crossing of Ka,b is positive. Now in Da,b all arrows are removable and it can be
oriented so that there are a postive and b negative arrows. Applying again lemma 1 we get:

w(Ka,b) = w(Da,b) + a + b = w(Da,b) + a(a − 1) + b(b − 1) − 2ab + a + b

= a(a − 1) + b(b − 1) − 2ab + a + b + a + b + 1 = 1 + a(a + 1) + b(b + 1) − 2ab

In K′′a,b the a arrows on the left kink are removable and the b arrows on the right kink
are not. As in the previous case, we make these b arrows removable by Ω1 and Ω5 moves
getting a diagram D′′a,b with w(K′′a,b) = w(D′′a,b) + b and w(D′′a,b) = w(K′′a,b) + b = 1 + b, as the
single crossing of K′′a,b is positive. D′′a,b can be oriented so that it has a+b positive removable
arrows and from lemma 1 we get:

w(K′′a,b) = w(D′′a,b) + b = w(D′′a,b) + (a + b)(a + b − 1) + b = (a + b)(a + b − 1) + 2b + 1

= 1 + a(a − 1) + ab + b(a + b − 1) + 2b + 1 = 1 + a(a − 1) + 2ab + b(b + 1)

�

Theorem 1. Let n = a + b, then:

VKa,b = t
a2+b2−4ab−a−b

2

[
1 − tn+2 − t(b+1)(a+1)(1 − ta−b)

1 − t2

−t
1 − tn+2 − tb(a+2)(1 − ta−b+2)

1 − t2

]

VK′a,b = t
a2+b2−4ab−3a−3b

2

[
t
1 − tn − t(b+1)(a+1)(1 − ta−b−2)

1 − t2

−1 − tn − tb(a+2)(1 − ta−b)
1 − t2

]
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VK′′a,b = tbt
(n−1)(n−2)

2

[
−tn+2 1 − tn−2 − tba(1 − ta−b−2)

1 − t2

+
1 − tn − t(b+1)(a+1)(1 − ta−b−2)

1 − t2

]

Proof. As VK = (−A)−3w(K) < K > let us compute the contributions of the writhe from
Lemma 7 times the coefficients in front of the parentheses for the Kauffman bracket of Ka,b,
K′a,b and K′′a,b from Proposition 1.

For VKa,b it is:

(−A)−3(1+a(a+1)+b(b+1)−2ab)A3n(n+1)t
n(n−1)

2 A−1

= −A−3−3a2−3a−3b2−3b+6ab+3a2+3b2+6ab+3a+3b−2a2−2b2−4ab+2a+2b−1

= −A−4−2a2−2b2+8ab+2a+2b = −tt
a2+b2−4ab−a−b

2

Multpliying the terms in the parenthesis of < Ka,b > by −t we get the required Jones poly-
nomial.

For VK′a,b one has:

(−A)−3(−1+a(a−1)+b(b−1)−2ab)A3n(n−1)t
(n−1)(n−2)

2 A

= −A3−3a2+3a−3b2+3b+6ab+3a2+3b2+6ab−3a−3b−2a2−2b2−4ab+6a+6b−4+1

= −A−2a2−2b2+8ab+6a+6b = −t
a2+b2−4ab−3a−3b

2

For VK′′a,b one has:

(−A)−3(1+a(a−1)+b(b+1)+2ab)A3n(n−1)A2b+3t
(n−1)(n−2)

2

= −A−3−3a2+3a−3b2−3b−6ab+3a2+3b2+6ab−3a−3b+2b+3−2a2−2b2−4ab+6a+6b−4

= −A−4−2a2−2b2−4ab+6a+2b = −A−4b−2(a+b−1)(a+b−2) = −tbt
(n−1)(n−2)

2

�

5. Classification of knots K with h(K) ≤ 1

5. Classification of knots K with h(K) ≤ 1Lemma 8. Let K be a knot with h(K) = 1. Then K is one of Ka,b, K′a,b with a ≥ b ≥ 1 or
K′′a,b with a > 1 and b ≥ 1.

Proof. By assumption K has an arrow diagram with one crossing i.e. with two loops.
If one loop is nested in the other, perform an Ω∞ move to get two unnested loops (so the
diagram now looks like ∞ with a positive or negative crossing). Let us call the loops of
the diagram of K a left loop and a right loop. On each loop, we eliminate opposite arrows
with Ω4. Now, if there are no arrows on one of the loops it can be eliminated with Ω1 and
h(K) = 0, a contradiction. Thus, there are some arrows on each loop.

Suppose first that the arrows on each loop are counterclockwise (as in Ka,b). If the unique
crossing is different from Ka,b, then we push one arrow from the left loop to the right with
Ω5 changing the crossing. Then we eliminate opposite arrows with Ω4. There should be
arrows on each loop otherwise, as above, h(K) = 0. If there are more arrows on the left loop
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than on the right loop, then rotate the diagram of K by π. The crossing is unchanged, the
arrows are counterclockwise and we get Ka,b with a ≥ b ≥ 1.

Suppose now that the arrows on each loop are clockwise (as in K′a,b). By the same method
as above we can change the crossing if needed and put more arrows on the left by rotating
the diagram. Thus we get K′a,b with a ≥ b ≥ 1.

Finally suppose that the arrows are counterclockwise on one loop and clockwise on the
other (as in K′′a,b). First, modify as above the crossing if needed. If the counterclockwise
arrows are on the left loop, then rotate the diagram by π. In this way we get K′′a,b. If there
is only one arrow on the left loop it can be pushed to the right loop and h(K) = 0. Thus we
may assume that a > 1. Notice that in this case it is not necessary that a ≥ b. �

We will use the Jones polynomials from Theorem 1 to distinguish the knots Ka,b, K′a,b and
K′′a,b. First, one can consider their Jones polynomials multiplied by 1− t2 and by a power of t
so that the lowest coefficient has degree zero. Denote by JK such polynomial obtained from
the Jones polynomial VK of a knot K. For Ka,b, a ≥ b ≥ 1 one has:

JKa,b = 1 − t − ta+b+2 + ta+b+3 + tab+2b+1 − tab+a+b+1 − tab+a+b+3 + tab+2a+1

In this formula, we want to have increasing powers of t and check for possible cancellations.
One has to consider some special cases.

First, suppose that b = 1. Then:

(JK1) JKa,1 = 1 − t + ta+4 − t2a+2 − t2a+4 + t3a+1

In the last forumla the powers are increasing except for a = 1 giving JK1,1 = 1 − t + t5 − t6

and a = 2 or a = 3 giving JK2,1 = JK3,1 = 1 − t + t7 − t8.
Suppose now that b > 1. If a = b, a = b + 1 or a = b + 2, one has, respectively,

JKb,b = 1 − t − t2b+2 + t2b+3 + tb2+2b+1 − tb2+2b+3,(JK2)

JKb+1,b = 1 − t − t2b+3 + t2b+4 + tb2+3b+1 − tb2+3b+2 + tb2+3b+3 − tb2+3b+4,(JK3)

JKb+2,b = 1 − t − t2b+4 + t2b+5 + tb2+4b+1 − tb2+4b+3.(JK4)

Finally, if a > b + 2,

(JK5) JKa,b = 1 − t − ta+b+2 + ta+b+3 + tab+2b+1 − tab+a+b+1 − tab+a+b+3 + tab+2a+1.

Similarily, for K′a,b, a ≥ b ≥ 1 one has:

JK′a,b = −1 + t + ta+b − ta+b+1 + tab+2b − tab+a+b − tab+a+b+2 + tab+2a

Again, we consider special cases. Suppose first that b = 1. Then one has:

(JK’1) JK′a,1 = −1 + t + ta+1 − t2a+1 − t2a+3 + t3a

In the last formula the powers are increasing except for a = 1 giving JK′1,1 = −1 + t + t2 − t5,
a = 2 giving JK′2,1 = −1 + t + t3 − t5 + t6 − t7 and a = 3 giving JK′3,1 = −1 + t + t4 − t7.

Suppose now that b > 1. If a = b, a = b + 1 or a = b + 2, one has, respectively,

JK′b,b = −1 + t + t2b − t2b+1 + tb2+2b − tb2+2b+2,(JK’2)
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JK′b+1,b
= −1 + t + t2b+1 − t2b+2 + tb2+3b − tb2+3b+1 + tb2+3b+2 − tb2+3b+3,(JK’3)

JK′b+2,b
= −1 + t + t2b+2 − t2b+3 + tb2+4b − tb2+4b+2.(JK’4)

Finally, if a > b + 2,

(JK’5) JK′a,b = −1 + t + ta+b − ta+b+1 + tab+2b − tab+a+b − tab+a+b+2 + tab+2a.

Consider the third family K′′a,b now. We suppose that a > 1, b ≥ 1 but it is not necessary
that a ≥ b. One has:

JK′′a,b = 1 − ta+b − ta+b+2 + t2a+2b − tab+a+b+1 + tab+a+b+2 + tab+2a−1 − tab+2a

Suppose first that b = 1. One has:

(JK”1) JK′′a,1 = 1 − ta+1 − ta+3 + t2a+3 + t3a−1 − t3a

In the last formula the powers are increasing except for a = 2 giving JK′′2,1 = 1 − t3 − t6 + t7,
a = 3 giving JK′′3,1 = 1 − t4 − t6 + t8 and a = 4 giving JK′′4,1 = 1 − t5 − t7 + 2t11 − t12.

Suppose now that b > 1. As a special case suppose that a = 2, then,

(JK”2) JK′′2,b = 1 − tb+2 − tb+4 + t2b+3 − t3b+3 + t3b+4.

Now suppose that a > 2 (and b > 1). There may be some cancellations in the four last terms
of the general formula. One has: (ab + 2a − 1) − (ab + a + b + 1) = a − b − 2. So there are
some terms with the same degree if a − b is 1, 2 or 3.

If a ≤ b,

(JK”3) JK′′a,b = 1 − ta+b − ta+b+2 + t2a+2b + tab+2a−1 − tab+2a − tab+a+b+1 + tab+a+b+2.

If a = b + 1, a = b + 2 or a = b + 3, one has, respectively,

JK′′b+1,b
= 1 − t2b+1 − t2b+3 + t4b+2 + tb2+3b+1 − 2tb2+3b+2 + tb2+3b+3,(JK”4)

JK′′b+2,b
= 1 − t2b+2 − t2b+4 + t4b+4,(JK”5)

JK′′b+3,b
= 1 − t2b+3 − t2b+5 + t4b+6 − tb2+5b+4 + 2tb2+5b+5 − tb2+5b+6.(JK”6)

Finally, if a > b + 3,

(JK”7) JK′′a,b = 1 − ta+b − ta+b+2 + t2a+2b − tab+a+b+1 + tab+a+b+2 + tab+2a−1 − tab+2a.

Theorem 2. The knots Ka,b, K′a,b, a ≥ b ≥ 1 and K′′a,b, a > 1, b ≥ 1 are distinct. Any knot
K with h(K) = 1 is such a knot.

Proof. If two such knots are the same then their polynomials J must be the same, so it
is sufficient to check that all these polynomials are different (except for K2,1 and K3,1 which
are distinguished by the HOMFLY polynomial, see example 3 in section 3).

First we notice that JK′a,b starts with −1 whereas JKa,b and JK′′a,b start with 1. Also, the
second term in Ka,b is −t whereas in K′′a,b it is −ta+b and a + b ≥ 3. Thus these three families
of knots are distinguished by J.
• Consider the family Ka,b. In the five formulas for J above there are 6 or 8 terms except

for the special cases K1,1, K2,1 and K3,1 for which there are 4 terms. Thus, these special cases
are distinct from the rest (and K1,1 is distinct from K1,2 and K1,3).
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Consider the formulas with six terms i.e. equations (JK1), (JK2) and (JK4). In equation
(JK1) the last term has coefficient 1, which distinguishes it from the other two equations with
last coefficient −1. For these two equations, suppose that JKb,b = JKc+2,c for some integers
b > 1 and c > 1. By comparing the different terms in these polynomials we must have
2b + 2 = 2c + 4 and b2 + 2b + 1 = c2 + 4c + 1. From the first equation b = c + 1 so
b2 + 2b + 1 = c2 + 4c + 4 � c2 + 4c + 1.

Also, the knots Ka,1 are distinguished by a, Kb,b are distinguished by b and Kb+2,b are also
distinguished by b.

Now consider the formulas with eight terms i.e. equations (JK3) and (JK5). These two
subfamilies are distinguished by the coefficient of the last term (−1 and 1). The knots Kb+1,b

are distinguished by b. For the general JKa,b of equation (JK5), notice that the difference
between the powers of the second and third term determines a + b, whereas the difference
between the powers of the last two terms determines a − b. Together, this determines the
couple (a, b) so all such knots are distinct.
• Consider the family K′a,b. In the five formulas for J above there are 6 or 8 terms except

for the specials cases K′1,1, K′3,1 for which there are 4 terms. Thus, these special cases are
distinct from the rest (and K′1,1 is distinct from K′3,1). Also, K′2,1 for which there are 6 terms is
distinct from the other knots with a > 3 in equation (JK’1) and from the knots in equations
(JK’2) and (JK’4) because the third term of K′2,1 is t3 whereas in these two equations the
power of the third term is even.

Consider the formulas with six terms i.e. equations (JK’1), (JK’2) and (JK’4). In equation
(JK’1) the last term has coefficient 1, which distinguishes it from the other two equations
with last coefficient −1. For these two equations, suppose that JK′b,b = JK′c+2,c

for some
integers b > 1 and c > 1. By comparing the different terms in these polynomials we
must have 2b = 2c + 2 and b2 + 2b = c2 + 4c. From the first equation b = c + 1 so
b2 + 2b = c2 + 4c + 3 � c2 + 4c.

Also, the knots K′a,1 are distinguished by a, K′b,b are distinguished by b and K′b+2,b are also
distinguished by b.

For the remaining subfamilies with eight terms the proof that they all have distinct poly-
nomials J is exactly like for Ka,b in the previous case.
• Consider the family K′′a,b. For J one has 4, 5, 6, 7 or 8 terms. The knots with 4 terms

are K′′2,1 (with second term −t3), K′′3,1 (with second term −t4) and the knots K′′b+2,2 of equation
(JK”5) (with second term −t2b+2 and b > 1 so 2b+ 2 ≥ 6). Thus, all these knots are distinct.

The only knot with 5 terms is K′′4,1 so it is distinct from all other knots.
The knots with 6 terms occur in equations (JK”1) and (JK”2). These two subfamilies are

distinguished by the coefficient of the last term (−1 and 1). Also, K′′a,1 are distinguished by
a and K′′2,b are distinguished by b.

The knots with 7 terms occur in equations (JK”4) and (JK”6). Again, the two subfamilies
are distinguished by the coefficient of the last term (1 and −1) and inside each family the
knots are distinguished by b.

Finally, the knots with 8 terms occur in equations (JK”3) and (JK”7). Once again, the
two subfamilies are distinguished by the coefficient of the last term (1 and −1). Inside each
family the second term determines a+b and the difference between the powers of the seventh
and the sixth terms determine b − a or a − b. This together determines the couple (a, b)
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For the second part of the theorem, it follows from Lemma 8 that if h(K) = 1 then
K is a knot in one of the three listed families. One has to check that these knots do not
have the Hopf crossing number equal to 0, i.e. that they are not right handed torus knots
T (n, n + 1) (see Lemma 3). From equation (VT2) the J polynomials of T (n, n + 1) are equal
to 1 − tn+1 − tn+2 + t2n+1. Consider all knots in the three families having J polynomials
with four terms. One checks easily that all these J polynomials are different from the J
polynomials of the knots T (n, n + 1). �

Now we identify the knots K with h(K) = 1 and the classical crossing number c(K) ≤ 10
in the Rolfsen knot table[8].

Proposition 2. There are eight knots K up to 10 crossings with h(K) = 1, namely K1,1 =

41, K2,1 = 942, K′1,1 = 31, K′2,1 = 52, K′3,1 = 10132, K′2,2 = 10145, K′′2,1 = 51 = T (2, 5) and
K′′3,1 = 10124 = T (3, 5).

Proof. The span of the Jones polynomial is a lower bound on the number of crossings.
It is equal to the span of the polynomial J minus 2, as one divides by 1 − t2. Thus it is
sufficient to consider the knots with span of J not greater than 12. Apart from the listed
knots there are also the knots K3,1, K2,2, K′4,1, K′′4,1, K′′2,2 and K′′4,2. Except for K3,1, checking
their Jones polynomial shows that these knots have more than 10 crossings. The knot K3,1

was considered in example 3 in section 3. As it is distinct from K2,1 = 942 and 942 and there
are no knots up to 10 crossings sharing the Jones polynomial with 942, the knot K3,1 has
more than 10 crossings.

Using Lemma 2 one checks that K1,1, K2,1, K′1,1, K′2,1 and K′′2,1 have diagrams with at most
9 crossings. Their Jones polynomials allow to identify these knots. For K′3,1 and K′2,2 the
lemma gives an upper bound of 13 crossings. Drawing their diagrams one can easily reduce
the number of crossings to 11. Using their DT codes and KnotFinder[1] one identifies K′3,1
as 10132 and K′2,2 as 10145.

Finally K′′3,1 is the torus knot T (3, 5) = 10124 (apply Ω∞ to the diagram of T (3, 5) in
Figure 5 to get K′′3,1). �

Let us study now the effect of taking the mirror image of a knot K with h(K) ≤ 1. We
show that, except for the knots 31 and 41, the Hopf crossing number of such a mirror image
is greater than 1. The right handed trefoil knot satisfies h(31) = h(T2,3) = 0 and h(31) =
h(K′1,1) = 1. The figure eight knot 41 = K1,1 is amphicheiral.

Proposition 3. Let K be a knot with h(K) ≤ 1, K � T (2, 3), K � K1,1 and K � K′1,1. Let
K be the mirror of K. Then h(K) > 1. In particular all such knots K are chiral and none is
a mirror image of another one.

Proof. Notice that as VK(t) = VK(t−1), JK(t) = −tsJK(t−1) where s is the degree of JK(t).
Thus, JK is obtained from JK by symmetrically reversing the coefficients and multiplying
by −1. In particular the number of terms in JK and JK is the same. Let us use in this proof
the notation g(K) for the ordered tuple of successive gaps between the powers of JK . For
instance, as the J polynomials of T (n, n + 1) are equal to 1 − tn+1 − tn+2 + t2n+1, we have
g(T (n, n + 1)) = (n + 1, 1, n − 1). Obviously, g(K) is obtained from g(K) by reversing the
order of the gaps.
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Suppose that K satisfies the hypothesis of the proposition. We need to show that JK is not
equal to any J of a knot with h(K) ≤ 1. We consider case by case JK with 4,5,...,8 terms.
• The knots K with JK having 4 terms (excluding K1,1 and K′1,1) are T (n, n+1) (with Hopf

crossing number 0), K2,1, K3,1, K′3,1, K′′2,1 and K′′b+2,b, b ≥ 1 (the exceptional case K′′3,1 can
be included in this family). The gaps for J of these knots are g(K2,1) = g(K3,1) = (1, 6, 1),
g(K′3,1) = (1, 3, 3), g(K′′2,1) = (3, 3, 1) and g(K′′b+2,b) = (2b + 2, 2, 2b).

Reversing any of these gaps one never gets (n+ 1, 1, n− 1) so these are not mirror images
of torus knots T (n, n + 1). This is also true for the knots T (n, n + 1) as the equation (n +
1, 1, n− 1) = (n′ − 1, 1, n′ + 1) has no solutions. Thus h(K) > 0 (notice that this is obviously
also true for knots K having JK with more than 4 terms). Furthermore, this implies that
h(T (n, n + 1)) > 1 for n > 2.

From examples 2 and 3 in section 3 it follows that K2,1, K2,1, K3,1 and K3,1 are pairwise
distinct (K2,1 = 942 is chiral). Thus, in particular, h(K2,1) > 1 and h(K3,1) > 1. K′3,1 is not the
mirror image of K′′2,1 because the first knot is 10132 and the second is 51. Finally, for K′′b+2,b
the last even 2b cannot be equal to 1 or 3 and the equation (2b + 2, 2, 2b) = (2b′, 2, 2b′ + 2)
has no solutions. Thus h(K) > 1 for all knots with JK having 4 terms.
• The knot K′′4,1 is the only knot with JK′′4,1 having five terms and this polynomial is changed

after reversing the coefficients and multiplying by minus one. So K′′4,1 is chiral and h(K′′4,1) >
1.
• Consider the gaps of knots K with JK having 6 terms. These are:

g(K′2,1) = (1, 2, 2, 1, 1)

g(Ka,1) = (1, a + 3, a − 2, 2, a − 3), a ≥ 4

g(Kb,b) = (1, 2b + 1, 1, b2 − 2, 2), g(Kb+2,b) = (1, 2b + 3, 1, b2 + 2b − 4, 2), b > 1

g(K′a,1) = (1, a, a, 2, a − 3), a ≥ 4

g(K′b,b) = (1, 2b − 1, 1, b2 − 1, 2), g(K′b+2,b) = (1, 2b + 1, 1, b2 + 2b − 3, 2), b > 1

g(K′′a,1) = (a + 1, 2, a, a − 4, 1), a ≥ 5

g(K′′2,b) = (b + 2, 2, b − 1, b, 1), b > 1

None of the gaps starts with 1, 1 so h(K′2,1) > 1. We get the same inequality for Kb,b,
Kb+2,b, K′b,b and K′b+2,b because the last gap for these knots is 2 and none of the gaps starts
with 2. The reversed gap of K′′a,1 is (1, a − 4, a, 2, a + 1) and the reversed gap of K′′2,b is
(1, b, b − 1, 2, b + 2). None of these gaps can be equal to (1, a′ + 3, a′ − 2, 2, a′ − 3) or
(1, a′, a′, 2, a′ − 3). The last possibility of gaps symmetry to exclude is when a = 4 so
g(Ka,1) = (1, 7, 2, 2, 1) and g(K′a,1) = (1, 4, 4, 2, 1) but these gaps are not symmetric and
reversing the first one does not give the second one.
• The two families of knots K with JK having 7 terms have coefficient 2 or −2 in the sixth

term. Thus JK has 2 or −2 in the second term so h(K) > 1.
• Consider the gaps of knots K with JK having 8 terms. These are:

g(Kb+1,b) = (1, 2b + 2, 1, b2 + b − 3, 1, 1, 1), b > 1

g(Ka,b) = (1, a + b + 1, 1, ab + b − a − 2, a − b, 2, a − b − 2), b > 1, a > b + 2

g(K′b+1,b) = (1, 2b, 1, b2 + b − 2, 1, 1, 1), b > 1
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g(K′a,b) = (1, a + b − 1, 1, ab + b − a − 1, a − b, 2, a − b − 2), b > 1, a > b + 2

g(K′′a,b) = (a + b, 2, a + b − 2, ab − 2b − 1, 1, b − a + 1, 1), a ≤ b, a > 2

g(K′′a,b) = (a + b, 2, a + b − 2, ab − a − b + 1, 1, a − b − 3, 1), b > 1, a > b + 3

None of the gaps starts with 1, 1, 1 so h(Kb+1,b) > 1 and h(K′b+1,b) > 1. The reversed gaps of
K′′a,b end with (..., a + b − 2, 2, a + b) (for both cases of K′′a,b) so the last gap a + b is larger
than the gap a + b − 2. The gaps of Ka,b and K′a,b end with (..., a − b, 2, a − b − 2) so the last
gap a − b − 2 is smaller than a − b. Thus h(K′′a,b) > 1. Finally the next to last gap of Ka,b and
K′a,b is 2 which cannot be the second gap for these knots. �

The Jones polynomials of knots K with h(K) = 1 have relatively simple form (the J poly-
nomials have at most 8 terms). We show now that the coefficients of these Jones polynomials
are bounded in absolute value by 2.

Proposition 4. If K is a knot with h(K) = 1 then its Jones polynomial can have as
coefficients only ±1 and ±2.

Proof. Consider the knots Ka,b. If a + b is even we can write the J polynomials grouping
terms in couples:

JKa,b = (1 − ta+b+2) − t(1 − ta+b+2) + tab+2b+1(1 − ta−b) − tab+a+b+3(1 − ta−b−2)

The Jones polynomial is obtained from J by dividing by 1 − t2 and multiplying by t to
some power (the last operation only shifts the coefficients so we can ignore it). Dividing the
first couple 1 − ta+b+2 by 1 − t2 contributes 1 to some coefficients of the Jones polynomial.
The same is true for the third couple, whereas for the second and the fourth dividing by
1− t2 contributes −1. Adding these contributions we see that the coefficients are bounded in
absolute value by 2.

If a + b is odd we use a different grouping:

JKa,b = 1 − tab+a+b+1 − t(1 − tab+2b) − ta+b+2(1 − tab+a−b−1) + ta+b+3(1 − tab)

Again, we get 1 from two couples and −1 from the other two couples, which gives the
required bound on the Jones polynomial coefficients.

For the two other families of knots the reasoning is similar so let us just group in couples
the terms of J polynomials. For K′a,b, suppose that a + b is even:

JK′a,b = −1(1 − ta+b) + t(1 − ta+b) + tab+2b(1 − ta−b) − tab+a+b+2(1 − ta−b−2)

Suppose now that a + b is odd:

JK′a,b = −1(1 − tab+2b) + t(1 − tab+a+b−1) + ta+b(1 − tab+2) − ta+b+1(1 − tab+a−b−1)

For K′′a,b, suppose that a + b is even:

JK′′a,b = 1 − ta+b − ta+b+2(1 − ta+b−2) − tab+a+b+1(1 − ta−b−2) + tab+a+b+2(1 − ta−b−2)

Suppose now that a + b is odd:
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JK′′a,b = 1 − tab+a+b+1 − ta+b(1 − tab+2) − ta+b+2(1 − tab+a−b−3) + t2a+2b(1 − tab−2b)

�

Proposition 5. Let k > 0, then h(T (n, n + k)) = k − 1 for k ≤ 3 except for h(T (2, 5)) = 1.
Also, h(T (n, n + k)) ≥ 2 for k > 3.

Proof. For k = 1 or 2 the equality follows from Lemma 3 and section 3. From equation
(VT1) the J polynomial of T (n, n + k) is 1 − tn+1 − tn+k+1 + t2n+k. If k > 2 the J polynomials
are different from the J polynomials of T (n, n + 1) and T (n, n + 2). One checks case by
case that they are also different from the J polynomials with four terms of all other knots
K with h(K) = 1 except for K′′2,1 which is 51 = T (2, 5). Thus, excluding T (2, 5), if k > 2
then h(T (n, n + k)) ≥ 2 and, as in section 3 we saw that h(T (n, n + 3)) ≤ 2, it follows that
h(T (n, n + 3)) = 2. �

6. Algebraic knots K with h(K) ≤ 1

6. Algebraic knots K with h(K) ≤ 1
An algebraic knot is an iterated torus knot of type {(p1, q1), (p2, q2), . . . , (ps, qs)}. Denote

such a knot Ks. It is constructed inductively: K1 is the torus knot of type (p1, q1), and, for
2 ≤ i ≤ s, Ki is a (pi, qi) cable of Ki−1. Also, for every i ∈ {1, . . . , s}, gcd(pi, qi) = 1,
1 < pi < qi, and, for every i ∈ {1, . . . , n − 1}, pi pi+1qi < qi+1 (see [11]).

In order to detect which knots K, with h(K) ≤ 1, are algebraic knots, we use a formula for
the colored Jones polynomial of the (p, q) cabling of a knot K, denoted K(p, q), from [10]
(see also [6]):

(Kpq) VK(p,q)(n) = A−pq(n2−1)

n−1
2∑

j=− n−1
2

A4q j( jp+1)VK(2p j + 1)

Note, that the conventions in [10] are: J for our V , t for our A, s for p and r for q. The
colored Jones VK(n) is normalized so that VU(n) = [n] for the unknot U, where:

[n] =
A2n − A−2n

A2 − A−2

The usual Jones polynomial of K, denoted VK , equals VK (2)
[2] and VK(1) = 1 for every K. Also,

by convention, VK(−n) = −VK(n).
We have

[2](A2 − A−2) = A4 − A−4 = t−1 − t = t−1(1 − t2).

Let JK(n) = (A2 − A−2)VK(n). For n = 2, it is the polynomial JK of section 5, up to some
power of t. Indeed, by definition of JK , we have, for some a ∈ Z:

JK = ta(1 − t2)VK = tat[2](A2 − A−2)VK = ta+1JK(2)

Let Ks be an algebraic knot of type {(p1, q1), . . . , (ps, qs)}. We want to compute the highest
power of A in JKs and a few gaps between the following decreasing powers of A.

Let l1 = −2(q1 − 1)(p1 − 1) + 2 and, for 1 < i ≤ s, li = −2qi pi + 2qi + pili−1.
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Lemma 9. For any i ≥ 1, −2qi pi < li < 0

Proof. Clearly −2q1 p1 < l1 < 0. Assume the lemma is true up to i − 1.

li = −2qi pi + 2qi + pili−1 > −2qi pi + 2qi − 2piqi−1 pi−1 > −2qi pi

The last inequality comes from qi > pi pi−1qi−1. Also, li is clearly negative by induction.
�

Lemma 10. For s ≥ 2, 4qs − 4(p1 + q1)p2 . . . ps + 2ls−1 > 0

Proof. First we check it for s = 2:

4q2 − 4(p1 + q1)p2 − 4(q1 − 1)(p1 − 1) + 4 > 4q1 p2 p1 − 4(p1 + q1)p2 − 4q1 p1 + 4p1 + 4q1

= 4(p2 − 1)q1 p1 − 4(p1 + q1)(p2 − 1) = 4(p2 − 1)(q1 p1 − q1 − p1) > 0

Assume s > 2. By the previous lemma and using qs > ps ps−1qs−1, it is sufficient to prove

4ps ps−1qs−1 − 4(p1 + q1)p2 . . . ps − 4ps−1qs−1 > 0

or

(ps − 1)ps−1qs−1 − (p1 + q1)p2 . . . ps > 0.

As ps−1
ps
≥ 1

2 , it is sufficient to show

(p1 + q1)p2 . . . ps−1

ps−1qs−1
<

1
2
.

One checks easily by induction on s > 2 that

(p1 + q1)p2 . . . ps−1

ps−1qs−1
≤ p1 + q1

q2
<

2q1

p1 p2q1
≤ 1

2
.

�

Proposition 6. Let n ≥ 1. The highest power of A in JKs(n) is (n − 1)ls + 2. For n ≥ 2,
the three consecutive gaps between the four highest powers of A are:

4p1 . . . ps(n − 1) + 4, 4(q1 − p1)p2 . . . ps(n − 1), 4p1 . . . ps(n − 1) − 4.

Proof. If n = 1, one has for any knot K, JK(1) = (A2 − A−2)VK(1) = A2 − A−2 and the
highest power of A is indeed 2. For the rest of the proof we assume that n ≥ 2.

Assume that s = 1 so K1 is a torus knot, K1 = T (p, q), p < q (to simplify the notation we
use p and q instead of p1 and q1 in the case s = 1). Using [n](A2 − A−2) = A2n − A−2n in
formula (Kpq), with K the unknot, we get:

JT (p,q)(n) = A−pq(n2−1)

n−1
2∑

j=− n−1
2

A4q j( jp+1)(A4p j+2 − A−4p j−2)

For a given j > 0, consider the four terms in the sum coming from ± j:

A4qp j2 (A4q j+4p j+2 − A4q j−4p j−2 − A−4q j+4p j−2 + A−4q j−4p j+2)

If j ≥ 1, we check that the term with the lowest degree coming from ± j has higher degree
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than any of the terms coming from ±( j − 1):

4qp j2 − 4q j − 4p j + 2 > 4qp( j − 1)2 + 4q( j − 1) + 4p( j − 1) + 2

or

4(q j − 1)(p j − 1) − 2 > 4(q j − q + 1)(p j − p + 1) − 2

which is clearly true if j ≥ 1.
Thus, the highest power of A comes from j = n−1

2 and equals:

− pq(n2 − 1) + pq(n − 1)2 + 2q(n − 1) + 2p(n − 1) + 2 = (n − 1)(−2pq + 2q + 2p) + 2

= (n − 1)(−2(p − 1)(q − 1) + 2) + 2 = (n − 1)l1 + 2

The first three gaps come from j = ± n−1
2 and are: 4p(n−1)+4, 4(q−p)(n−1) and 4p(n−1)−4.

Suppose now that s > 1 and the proposition is true for all Ki, i < s. Formula (Kpq) holds
when we replace V(n) with J(n), since the second polynomial is A2 − A−2 times the first.
Using induction on s and this modified formula, the term for j = n−1

2 gives a power of A:

− psqs(n2 − 1) + psqs(n − 1)2 + 2qs(n − 1) + ((ps(n − 1) + 1) − 1)ls−1 + 2

= (n − 1)(−2psqs + 2qs) + ps(n − 1)ls−1 + 2 = (n − 1)ls + 2

Also, for j = n−1
2 , the highest gap in JKs−1 (2ps j + 1) = JKs−1 (ps(n − 1) + 1) is, by induction,

4p1...ps−1((ps(n − 1) + 1) − 1) + 4 = 4p1...ps−1 ps(n − 1)

Similarly, the two following gaps are: 4(q1 − p1)p2...ps(n − 1) and 4p1...ps(n − 1) − 4.
We will prove now that the other terms in the sum in the formula for JKs (i.e. for j < n−1

2 )
have sufficently low powers so they do not perturb the four highest powers coming from the
term for j = n−1

2 . Denote by d( j) the highest power of A for the j term in the sum (we ignore
the common factor in front of the sum).

Let j ≥ 1
2 . We compare d( j) and d(− j). By induction the highest power of A in

JKs−1 (2ps j + 1) is 2ps jls−1 + 2. As JKs−1 (2ps(− j) + 1) = −JKs−1 (2ps j − 1), its highest power
of A is (2ps j − 2)ls−1 + 2. The difference between these powers is −2ls−1. The coefficients
in front of these two terms are A4qs j( jps+1) and A4qs(− j)((− j)ps+1) giving a difference of −8qs j.
Thus, the overall difference is

d(− j) − d( j) = −8qs j − 2ls−1.

This means that the drop in power of A between j and − j is

d( j) − d(− j) = 8qs j + 2ls−1 ≥ 4qs + 2ls−1 > 0

the last inequality from Lemma 10. For j = n−1
2 the drop is 4qs(n − 1) + 2ls−1. We check

that even after substracting the three first highest gaps for j = n−1
2 , the drop is still positive.

The sum of these three gaps is 4(p1 + q1)p2 . . . ps(n − 1). Using Lemma 10 twice (once for
ls−1 < 0 together with n − 1 ≥ 1),

4qs(n − 1) − 4(p1 + q1)p2 . . . ps(n − 1) + 2ls−1

≥ (n − 1)(4qs − 4(p1 + q1)p2 . . . ps + 2ls−1) > 0

This shows that the term for j = − n−1
2 does not affect the four highest powers of A coming
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from the term j = n−1
2 .

Now let j ≥ 1 be an index in the sum. Since, for n = 2, j = ± 1
2 , this means that n ≥ 3.

We compare d( j) and d( j − 1). For JKs−1 the difference between the term for j − 1 and j is,
by induction,

((2ps( j − 1) + 1 − 1)ls−1 + 2) − ((2ps j + 1 − 1)ls−1 + 2) = −2ls−1 ps.

For the coefficients the difference is

4qs( j − 1)(( j − 1)ps + 1) − 4qs j( jps + 1) = −4qs(1 + ps(2 j − 1)).

Thus the drop in power of A is

d( j) − d( j − 1) = 4qs(1 + ps(2 j − 1)) + 2ls−1 ps > ps(4qs + 2ls−1) > 0.

The last inequality comes from Lemma 10.
For j = n−1

2 the drop is 4qs(1+ ps(n−2))+2ls−1 ps. We check again that after substracting
the three first gaps, the drop, say D, is still positive, i.e.

D = 4qs(1 + ps(n − 2)) − 4(p1 + q1)p2 . . . ps(n − 1) + 2ls−1 ps > 0

We have:
D

ps(n − 1)
= 4qs

1 + ps(n − 2)
(n − 1)ps

− 4(p1 + q1)p2 . . . ps−1 +
2ls−1

n − 1

As n ≥ 3, n−2
n−1 ≥ 1

2 , so 1+ps(n−2)
(n−1)ps

≥ 1
2 . Also ps ≥ 2, 2

n−1 ≤ 1 and ls−1 < 0, so:

D
ps(n − 1)

≥ 1
2

(4qs − 4(p1 + q1)p2 . . . ps−1 ps + 2ls−1) > 0

the last inequality from Lemma 10 again. Thus D > 0.
In conclusion, we have shown that: the term for j0 = n−1

2 gives the wanted 4 highest
powers of A; the terms for j0 − 1 and − j0 do not affect these 4 powers; all other j terms have
lower powers than the term for j0 − 1 (since d( j)− d( j− 1) > 0 if j ≥ 1 and d( j)− d(− j) > 0
if j > 0). Thus, we get the wanted 4 highest powers of A for JKs(n). �

Corollary 1. If Ks is an algebraic knot with h(Ks) ≤ 1, K not a torus knot (i.e. s ≥ 2),
then Ks is doubly iterated of type {(p1, p1 + 1), (2, q2)} and it belongs to the family K′′a,b.

Proof. Recall that t = A−4. Thus, the gaps between the highest powers of A become gaps
between the lowest powers of t divided by 4 for the J polynomials. As JKs equals JKs(2), up
to a power of t, the first gap of JKs equals the first gap of JKs(2) which is p1 . . . ps + 1. We
check the gaps for Ka,b, K′a,b and K′′a,b in section 5. As the first gaps of J of Ka,b and K′a,b are
equal to 1, these knots are not algebraic. The second gap of the JKs is (q1 − p1)p2 . . . ps. For
K′′a,b, the second gap equals 2 (except for the torus knot K′′2,1 = T (2, 5)). Thus, if K′′a,b is an
algebraic knot, which is not a torus knot, then s = 2, q1 − p1 = 1 and p2 = 2. �

We want to find necessary conditions on q2 in the preceding corollary in order to have
h(Ks) ≤ 1. Let K be of type {(p, p+1), (2, q)} and let K′ be the torus knot T (p, p+1). Using
formula (Kpq),
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VK(2) = A−6q(A4qVK′(3) + VK′(−1)) = A−6q(A4qVK′(3) − 1).

Thus,

JK(2) = (A2 − A−2)VK(2) = A−6q(A4qJK′(3) − A2 + A−2).

In the proof of Proposition 6 is a formula for JT (p,q)(n). Specializing to K′ and n = 3,

JK′(3) = A−8p(p+1)
(
A4p(p+1)(A8p+6 − A2 − A−6 + A−8p−2) + A2 − A−2

)
= A−4p2+4p+6(1 − A−8p−4 − A−8p−12 + A−16p−8 + A−4p2−12p−4 − A−4p2−12p−8)

Thus,

JK(2) = A−6q+4q−4p2+4p+6(1 − A−8p−4 − A−8p−12 + A−16p−8+

+A−4p2−12p−4 − A−4p2−12p−8 − A−4q+4p2−4p−4 + A−4q+4p2−4p−8)

Switching to t and ignoring the factor in front, so that the lowest term is 1, we get:

(JK) JK = 1 − t2p+1 − t2p+3 + t4p+2 + tp2+3p+1 − tp2+3p+2 − tq−p2+p+1 − tq−p2+p+2

We get now a necessary condition on q in order to have h(K) ≤ 1:

Proposition 7. Let K be algebraic of type {(p, p + 1), (2, q)}. If h(K) ≤ 1 then q =
2p(p + 1) + 1 and K = K′′p+1,p.

Proof. Let q0 = 2p(p + 1) + 1. As K is algebraic, q ≥ q0. We have

q0 − p2 + p + 1 = p2 + 3p + 2.

Thus, for q0, there are 7 increasing terms in equation (JK) with the sixth term having coeffi-
cient −2. If q > q0, there are 8 increasing terms in this equation. We use the J polynomials
of K′′a,b in section 5 to determine which K′′a,b may be equal to K. Because of the five first
terms of JK , the only candidates are K′′b+1,b, b ≥ 2 with 7 terms in J and K′′a,b, 2 < a ≤ b, with
8 terms. We want to reject the second possibility in order to reject q > q0.

Notice that for q0 the last term in equation (JK) is tp2+3p+3 and if q > q0 the power of
the last term is greater than p2 + 3p + 3. If K′′a,b = K, then, comparing the second terms of
J in equations (JK”3) and (JK), we get a + b = 2p + 1. As a ≤ b, one checks easily that
ab ≤ p(p + 1). The last term of J for K′′a,b is tab+a+b+2 and we have

ab + a + b + 2 ≤ p(p + 1) + 2p + 1 + 2 = p2 + 3p + 3.

So K′′a,b cannot be equal to K if q > q0.
Finally, for JK , the first gap in equation (JK) is 2p + 1, whereas for JK′′b+1,b

it is 2b + 1.
Thus, if K = K′′b+1,b, then p = b, so K = K′′p+1,p. �

Notice: we cannot conclude from the last proposition, that the knots K′′p+1,p are algebraic.
It will be shown to be true in Theorem 3.

In the remaining part of this section we will show that, if K is algebraic and h(K) ≤ 1,
then Calg(K) = h(K). This gives a positive answer, for knots with h(K) ≤ 1, to the problem
of Fiedler (see the introduction). Because of Corollary 1 and Proposition 7, we have to show
that if K is a doubly iterated knot of type {(p, p + 1), (2, 2p(p + 1) + 1)}, then Calg(K) ≤ 1.
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We also need to check that for torus knots K in Proposition 5 satisfying h(K) ≤ 1, we have
Calg(K) ≤ 1.

Let S 3
ε be a small sphere in C2, centered at the origin. Let (x, y) ∈ S 3

ε , with x = rxeiθx ,
y = ryeiθy and r2

x + r2
y = ε

2. Intersecting S 3
ε with complex lines through the origin gives the

Hopf map p : S 3
ε → CP1 ≈ S 2, p(x, y) = [x, y].

We can visualize p with the help of Figure 2. S 3
ε is decomposed into an infinite family

of tori and two S 1’s. For fixed rx and ry with rxry > 0, (x, y) lies on a torus such as ∂T (see
Figure 2). Let us choose the solid torus T in such a way that (x, y) ∈ ∂T if rx = ry (T is
’half’ of S 3, the other half being T ′).

If θx varies, θx ∈ [0, 2π], we get the longitudes of the tori. Similarly, for θy ∈ [0, 2π], we
get the meridians of the tori. We choose the parametrization in such a way that, if (x, y) ∈ D
then θx = 0. Increasing rx (and keeping r2

x + r2
y = ε

2), we get increasingly thinner tori inside
T . The two S 1’s correspond to (rx, ry) = (ε, 0) (the fiber going through the center of D) and
(rx, ry) = (0, ε) (the fiber going through the center of D′).

Now, p(x, y) = [rxeiθx , ryeiθy] = [rx, ryei(θy−θx)]. If rx > 0 the map: f : (x, y) →
(rx, ryei(θy−θx)) is well defined. Let us restrict f to {(x, y) ∈ S 3

ε , rx ≥ ry}. Then f maps
the solid torus T onto D and, by definition, it represents the Hopf map p, restricted to T .
Thus, if L is a link in T and f (L) generic in D, then an arrow diagram of L is obtained from
f (L) by adding some arrows and information of under/over at the crossings. In particular,
the number of crossings of this arrow diagram equals the number of crossings of f (L). Using
f : T → D we can now estimate Calg(K) for algebraic knots K with h(K) ≤ 1.

Let X be a complex plane algebraic curve with a singularity at the origin of C2. Let ε << 1
be small and let K = X ∩ S 3

ε . Assume that, for some p ∈ N, the Puiseux expansion of X in 0
(see [2]) is:

y = x
p+1

p (1 + x
1

2p )

We use the notations of [2], where y = x
q1
p1 (a1 + x

q2
p1 p2 ), so q1 = p + 1, p1 = p, q2 = 1 and

p2 = 2. It is shown there that K is an iterated torus knot of type {(p1, α1), (p2, α2)} with
α1 = q1 and α2 = q2 + p1 p2α1 (Proposition 1A.1 in [2]).

As, in our case, α2 = 1 + 2p(p + 1), K is of type {(p, p + 1), (2, 1 + 2p(p + 1))}. Notice,
that p = 1 is not excluded, in which case K is a (2, 5) cable of the trivial torus knot of type
(1, 2), i.e. K is the torus knot T (2, 5).

We can choose a parametrization of X with t = reiθ:

x = t2p

y = t2p+2(1 + t)

For (x, y) ∈ K = X ∩ S 3
ε , we have

r2
x + r2

y = r4p + r4p+4|1 + reiθ|2 = r4p + r4p+4(1 + r2 + 2r cos θ) = ε2.

We assumed that ε is small. It can be checked easily that, for each θ ∈ [0, 2π), there is a
unique r satisfying the preceding equality. Denote it by rθ. It is also easily checked, that rθ
is increasing for θ ∈ [0, π] and decreasing for θ ∈ [π, 2π].

Now x = r2p
θ e2ipθ and y = r2p+2

θ ei(2p+2)θ(1 + rθeiθ). As ε << 1 is arbitarily small, we can
also assume that rθ << 1. Then it is clear that rx > ry, so (x, y) ∈ T and:
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f (x, y) = (r2p
θ , r

2p+2
θ e2iθ(1 + rθeiθ))

We see that for θ ∈ [0, 2π], r2p
θ will be increasing from 0 to π, then decreasing from π

to 2π. Also, for θ ∈ [0, 2π], the argument of the second coordinate of f (x, y) goes from 0
to 4π, because of e2iθ, and it does so monotonically. Indeed, d

dθarg(e2iθ) = 2, whereas it is
easily checked that | ddθarg(1 + rθeiθ)| < 1 for rθ << 1. Thus, for θ ∈ [0, 2π], f (x, y) is a
curve going twice around the center of D, first closer to it (as rx increases), then away from
it (as rx decreases). It follows that f sends K onto a curve with 1 crossing. This means that
Calg(K) ≤ 1. From Lemma 3, h(K) � 0. As h(K) ≤ Calg(K), we get Calg(K) = 1.

Finally, we consider the torus knots in Proposition 5 satisfying h(K) ≤ 1. These are the
torus knots T (n, n + 1), T (n, n + 2) and T (2, 5). The knot T (2, 5) has been considered above
as a (2, 5) cable of the trivial knot, so Calg(T (2, 5)) = 1. For T (n, n + k), k = 1 or 2, Fiedler
states in [3] (remark on page 260), that Calg(T (n, n + k)) = k − 1, with T (n, n + 1) being
realized by the curve X : zn = wn+1 and T (n, n+ 2) by a slight perturbation of the curve with
equation zn = wn+2. The second case can be checked using the following paramatrization for
the perturbation of equation zn = wn+2: z = tn and w = tn+2(1 + t). With the same proof as
for the doubly iterated torus knots above, one can show that this perturbation gives the knot
T (n, n + 2) with a projection on the disk D with 1 crossing.

We resume the results of this section in the following theorem:

Theorem 3. The family of algebraic knots K with h(K) ≤ 1 consists of: torus knots
T (n, n + 1), if h(K) = 0; torus knots T (n, n + 2), T (2, 5) or K′′p+1,p if h(K) = 1. The knots
K′′p+1,p are doubly iterated torus knots of type {(p, p + 1), (2, 2p(p + 1) + 1)}. Furthermore,
for all such knots Calg(K) = h(K).

Proof. The only remaining thing to check is that the knots K′′p+1,p are indeed algebraic.
Let K be an algebraic knot of type {(p, p+ 1), (2, 2p(p+ 1)+ 1)}. We have shown above that
Calg(K) = 1. But h(K) ≤ Calg(K). By Proposition 7, K must be equal to K′′p+1,p. �

We conclude with two remarks.

Remark 1. It can be shown directly, using Reidemeister moves, that K′′p+1,p is doubly
iterated of type {(p, p + 1), (2, 2p(p + 1) + 1)}. For example, we can transform K′′3,2 with Ω∞
and Ω4 into a diagram shown in Figure 9. Then one could remove the two couples of arrows
in this figure with appropriate Reidemeister moves to get a cable of the trefoil knot T (2, 3)
and check that it is the (2, 13) cable. This generalizes to any number p of couples of arrows
(for p = 1 we get the middle diagram of Figure 6). However, this proves only that such
doubly iterated torus knots K satisfy h(K) = 1 and we have shown above that Calg(K) = 1,
which is stronger.

Fig.9. Doubly iterated torus knot
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It can also be checked that changing the crossing in Figure 9 gives a (2, 11) cable of the
trefoil, which is also the knot K′′4,1. More generally, we would get the family K′′p+2,p−1, p ≥ 2,
of doubly iterated knots of type {(p, p + 1), (2, 2p(p + 1) − 1)}. Notice, that these are not
algebraic knots.

Remark 2. Fiedler has shown in [3], Theorem 1, the following inequality for K algebraic
of type {(p1, q1), . . . , (pn, qn)}, q1 < 2p1:

Calg(K) ≥ (q1 − p1)p2 . . . pn − 1

The right hand side of this inequality equals one if: q1 − p1 = 2 and n = 1 (torus knots
T (p1, p1 + 2)) or q1 − p1 = 1, p2 = 2 and n = 2 (type {(p1, p1 + 1), (2, q2)}). In the second
case, it follows from Proposition 7 that Calg(K) ≥ h(K) > 1, if q2 > 2p1(p1 + 1) + 1. Thus,
for such q2, Fiedler’s inequality is not sharp. This can be compared to Theorem 2 in [3],
which gives a sharper inequality then Theorem 1 for doubly iterated torus knots with p1 and
q1 both odd.
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