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Abstract
We consider generalized Hodge-Laplace operators adé + éd for @, > 0 on p-forms on
compact Riemannian manifolds. In the case of flat tori and round spheres of different radii, we
explicitly calculate the spectrum of these operators. Furthermore, we investigate under which
circumstances they are isospectral.

1. Introduction

Can one hear the shape of a drum? Can one draw conclusions on its shape just based on

its sound? This question was raised by Mark Kac already in 1966 ([8]). However, he was not
able to answer it completely. Mathematically, in his paper, a clamped elastic membrane is
modeled by a domain G in the plane. The resonance frequencies are just the eigenvalues of
the Dirichlet problem of the Laplacian Ay on functions, i.e. those real numbers A, for which
there are functions f : G — R, f # 0 which vanish on the boundary of G and comply with
the eigenvalue equation Ay f = Af.
In spectral geometry, similar problems are investigated in a more general setting. Here one is
interested in the relationship between the geometric structures of Riemannian manifolds and
the spectra of elliptic differential operators. In particular, one wonders which information
the spectrum of these operators provides about the geometry of the underlying manifolds.
One of the first results of this type was discovered by Hermann Weyl 1911 ([12]). He
showed that the volume of a bounded domain in the Euclidian space is determined by the
asymptotic behaviour of the eigenvalues of the Dirichlet problem of the Laplace-Beltrami
operator. To reconstruct a manifold completely up to isometry, the knowledge of the eigen-
values is, however, not sufficient. The answer to the question “Can One Hear the Shape of
a Drum?” therefore is “no”. This was already recognized by John Milnor, who proved the
existence of two non-isometric 16-dimensional tori with identical spectra of the Laplacians
([9]). Later, Gordon, Webb and Wolpert constructed different domains in the plane for which
the eigenvalues coincide ([5]).

In this paper, we consider the family of differential operators F % = adoé + pod for
real numbers @, > 0 on differential forms on a compact Riemannian manifold (M, g) of
dimension n. Here d denotes the exterior derivative on differential forms and ¢ the adjoint
operator of d. For @ = 8 = 1 this yields the well-known Hodge-Laplace operator. Our aim
is to determine the spectrum Spec(F 3,48) of the operators F 34,3 explicitly for certain manifolds
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358 S.F. Beitz

and to investigate under which circumstances these operators are isospectral, i.e. possess the
same spectra.

The investigation of the spectrum of the operator F’ % finds applications, for example, in
elasticity theory, where the operator appears in the classical problem of linear electrodynam-
ics ([13, Section 61.10, p. 212]). Physically, this is relevant when computing the oscillation
frequencies of an elastic body (for bodies made of simple materials); it turns out that these
are determined by the eigenvalues of the operator in linear approximation.

The operator F g’é is elliptic and self-adjoint on its domain of definition. Together with the
compactness of M it follows (see for example [4, Lemma 1.6.3]) that its spectrum is discrete
and only consists of real eigenvalues of finite multiplicities. Furthermore, the associated
eigenforms are smooth. Hence, to determine the spectrum of the operator F 34,8 it suffices to
investigate the algebraic eigenvalue problem, i.e. to find solutions A € R and w € QP(M)
of the eigenvalue equation F i’éw = Aw. Moreover, we just need to understand F' (]rllf as an
operator on the smooth p-forms QF(M).

In this work, we will calculate the spectrum, that is to say, the eigenvalues with the as-
sociated eigenspaces, of the operators F Za for two sample-manifolds M — the spheres S of
different radii » > 0 and the flat tori R"/A induced by lattices A C R” (see theorems 3.7 and
4.11). We will thereby discover that the spectrum splits into eigenvalues of the operators
adé and Bod, which depend linearly on @ and g3, respectively.

Proposition. Ifn = 2p, the spectrum is symmetric in a and .

It will turn out that the eigenvalues of F gﬁ on flat tori T are just @A and 54 where A are

the eigenvalues of the ordinary Laplacian Ay on smooth functions. With this knowledge
statements about the isospectrality of two operators F gﬁ, and F gﬁ for a, @, 5,5 > 0 on flat
tori 7 and 7’ can be made.
First we will fix the coefficients @ and 8 and notice that obviously for two compact isometric
Riemannian manifolds M and N the operators F i’é and F gﬁ have the same spectrum. Then
the question arises whether the converse of this statement in the case of flat tori holds as
well, i.e. whether the spectrum of F gﬁ already determines the flat torus 7 up to isometry. In
dimension n = 1, that is to say for 1-dimensional tori, one directly sees that the answer is
“yes”. Next we prove the following theorem for two flat tori 7, and 7,. We remark that in
the case @ = 3, this was already observed by Milnor in [9].

Theorem. The operators F;} and FZZ; are isospectral if and only if the Laplacians Ag :

and Agz have the same spectrum.

Thereby we also can answer the above question for higher dimensions since the answer
in the case of the Laplacian on functions is already known: In dimensions n = 2,3 it is
“yes” as well (see the proof of Proposition 3.17 below). For higher dimensions, we have the
following result:

Proposition. From dimension n = 4 onward there are non-isometric flat tori the spectra
of which with respect to F .z coincide.

On the other hand, fixing a flat torus 7 of dimension n # 2p and allowing arbitrary
parameters @, a’, 3,8 > 0, we find that
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Theorem. F gﬁ and F g, 5 can only be isospectral in the trivial case that these operators
are already the same.

Finally, we consider two flat tori, the lattices of which are related by stretching by a factor
¢ > 0. We show:

Corollary. F 5;/ Aand F ﬁlf;;/,m have the same spectrum if and only if (a’,8') = (c*a, ¢*p).

In dimension n = 2p, similar statements hold which take into consideration that the
spectra of the operators F,z are symmetric in « and §3, as already mentioned above.
The question of what can be said about the spectra of F 5;/ Nand F 5;/,’\’ for arbitrary lattices
A and A’ remains open. For n = 2, it is tempting to conjecture that these coincide if and
only if there exists a ¢ > 0 and a Q € O(n) such that A’ = cQA and {¢/, 8’} = {c*a, ?B}.

In contrast to flat tori where the eigenvalue 0 always has the multiplicity (Z), the eigen-

values on spheres are all positive for p # 0. Here again, we compare the operators F iﬁ and
sn,
Fo g
Proposition. If these operators have the same spectra, then the radii r and v' are equal
ifand only if « = o' and B = B’ (for n = 2p, up to exchange of the roles of a and 3).
For ¢ > 0 such that ¥’ = cr we can show:

Proposition. The isospectrality of the two above mentioned operators is equivalent to
(@,B) = (c’a, ?B) (for n = 2p, again up to exchange of the roles of a and j3).

2. Preliminaries

Let M be an n-dimensional compact Riemannian manifold, @, > 0and 0 < p < n.

Throughout the paper, we write QP(M) := I'(M, APT*M) for the space of all smooth
differential forms of degree p on M and, for its complexification, we write QP(M,C) :=
QOP(M)®C. We denote by Q’L’Z(M) := L>(M, APT* M) the completion of the smooth p-forms
with respect to the L?-scalar product (-, -), and we write Q’ZZ(M, C) := Qiz(M) ® C for its
complexification.

Now we introduce the central object of this paper.

DeriniTion 2.1. We define the operator

Fyp, = ads + Bod

on the space Q”(M). Here, d is the exterior derivative on differential forms and ¢ the formal
adjoint of d, i.e. for all w € QF(M) and n € QP (M) we have (dw, n) = (w, 517). We simply
write F g’é if it is clear from the context on which forms the operator is considered.

The Hodge-Laplace operator on Q(M) we denote by A} := F}{ = dé +dd.

REMARK 2.2.

i) The principal symbol of F' g’é is

—BiElid - (@ - Bé A (€5 0),
where & € T*M. Here & .w = w(&f, -, ..., ) for w € QP(M) and § denotes the musical
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isomorphism which assigns to each ¢ € T*M the uniquely determined vector & €
T M such that g(¢,-) = & For each & # 0, the principal symbol is invertible with
inverse map

1 —
i+ = /i
Bl¢l aplél
This shows that F % is elliptic.
ii) It is easy to check that F 2’;), is formally self-adjoint. It then follows from the gen-

ENE.

eral theory of elliptic operators on compact manifolds that F' % considered as an
unbounded operator on QZZ(M ) with domain Q’L’Z(M) has a unique self-adjoint ex-
tension, with domain the Sobolev space H?>(M,APT*M). As such, it has a discrete
spectrum, finite-dimensional eigenspaces, and its eigenvalues tend to infinity.

Remark 2.3. The exterior differential ¢ and the co-derivative § can be written in terms of
the connection on forms in the following way: Let {ey, ..., e,} be a local orthonormal basis
of TM and {e', ..., ¢"} the associated dual basis of T*M. Then

n

(1) d= iemve,, and 6=->" eV,

i=1 i=1

In order to understand the spectrum of F Zi’ (in the case that M is compact) as a set of
eigenvalues with associated multiplicities, we introduce the concept of a weighted set, which
is essentially a set (here we specialize to subsets of C) in which elements can be contained
more than once; this can be modelled by a function on C with values in Ny; to 4 € C, the
function assigns the number of times that A is contained the set described by it.

DEeFINITION 2.4.

1) A weighted set is a function W : C — Nj.
ii) If W has a countable support supp(W) := {1 € C | W(1) # 0} = {4, | i € N}, we
write

W= {4, W), (A2, W(A2)), ...}
and respectively

W= {/?.1, ceey /l] , /12, ceey /12, }
—— —
W(A;)-times W(A;)-times

iii) Let W and W’ be weighted sets. Then their weighted union W U W’ is defined as:
(WU W) = W)+ W ()

for all 1 € C.
iv) In addition, we introduce the following notation for m, m’ € Ny:

W'y Wi=WU..UWUW U..uW.

m -times m’ -times

For m = 1 or m" = 1 we usually omit the index.
v) The difference of W and W’ is the weighted set W \ W’, which is defined by
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(W\ W)(Q) := max{W(1) — W'(Q), 0}

forall 2 € C.

vi) The minimum of a weighted set W with support supp(W) C R is given by min(W) :=
min(supp(W)) .

vii) For r € R* let rW(1) := W(2) forall 1 € C.

DEriniTION 2.5. Let M be compact.
1) We call

) i={we QM) | FM, w = lw)

- oM
Eig(F obp

ap,p’

the eigenspace of F' g”ﬁ , o the eigenvalue A.
ii) The spectrum of F (’Z},,p is the weighted set for A € C defined by

Spec(Fjy; ,)(A) := dim(Eig(Fjy . ).
REMARK 2.6. The measure

> Spec(Fl )6,
AeC

M

where 9, is the Dirac measure at A € C, is exactly the spectral measure of F' ap.p-

Proposition 2.7. Let M be an n-dimensional orientable Riemannian manifold, a,8 > 0

and 0 < p < n. Then the spectra of F™, and FM

coincide.
aB,p Pa,n—p

Proof. Let *, : QP(M) — Q" P(M) be the Hodge-Star operator on p-forms. Using the
properties

suprp = (1P and 6= (=D dx
one can show that
M -1 _ M
*PFaﬁ»p*p - Fﬁmn—p’

Using this, it is then easy to see that = gives a bijection between the eigenspaces Eig(F g/llf A

and Eig(FM A). m]

Ba,n—p’

3. Spectrum on flat tori

In this section, let &, 8 > 0 and 1 < p < n. We will investigate and determine explicitely
the spectrum of F g; ,on n-dimensional flat tori 7.

DermNttioN 3.1. Let B := {by, ..., b,} be a basis of R” and {b', ..., b"} the associated dual
basis of (R")*, i.e. b'(b;) = 63. forall i, j € {1,...,n}. Then

Ap :=7b, + ...+ Zb,
is the lattice induced by B and
Ay :=7Zb' + .. +Zb" ={le R")" |VAe A : 1) €Z)
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the dual lattice of Ap.

Let A be a lattice in R” and 7 : R” — R"/A : x — [x] the canonical projection on R"/A.
Then (R"/A, g) is an n-dimensional flat torus associated to the lattice A, which we often de-
note by 7", where R"/A is endowed with the Riemannian metric g induced by the standard
metric ggq on R” via ggq = m*g. We remark that flat tori are Lie groups with respect to the
usual addition.

We write {31, ..., d,} and {dx', ..., dx"} for the global bases of TT" and T*T" induced by the
standard basis of R".

Due to the existence of a global basis of 77", for flat tori 7" we have the following isomor-
phism:

LA(T",C)® AP(R")" — QF(T",C)
2

where {e!, ..., ¢"} is the dual basis of the standard basis in R”.

DeriNTION 3.2. Let {e', ..., "} be the dual basis of the global standard basis of TR" and
T" aflat torus. Then
a;lmip S R}

a;, i, €R

Q(T") = {w € Q'(T") | Vo = 0)

n
= { Z ai, . dx" A ... A dx'
lp
i

and

are the spaces of all parallel p-forms on 7" and R" respectively.
Furthermore let Qp, (7", C) := Qf,(T") ® C and Q),,(R",C) := Qp, (R") ® C.

RemMARK 3.3. For flat tori 7", we have

Op(T") = AP@R")’
n n
by virtue of Z aj,.i, dx" A ... Adx'" — Z aj,..i €' N..Nev,
P

if,.dp=1 i]ensip=1

where {e', ..., ¢"} is the dual basis of the standard basis of R”. We will identify both vector
spaces without always stating it explicitly.

We need to know how ¢ acts on Q7(T", C) for flat tori 7" with respect to the bases induced
by the dx', i € {1,...,n}. To this end, let w = }" 1 w,-lml-pdx"' A ... Adx» € QP(T",C).

il yeemip
Then one can check that
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n V4 - '
3) Sw== > (=1 Twi, i, dx" A AdxE A A dx.
it yoemip=1 k=1

This is also true when 7" and {dx!, ..., dx"} are replaced by R”" and the dual basis {¢', ..., ¢"}
of the global standard basis of TR", respectively.

RemMark 3.4. Let T" := R"/A be the flat torus to the lattice A.

1) For [ € A" the funcions y; : 7" - C : [x] — €2 are exactly the characters of the
Lie group T" and form a basis of L>(T", C), according to the Peter-Weyl theorem
([11, p. 250)).

The y; are well defined, since for all [ € A* the map R” — C : x + ¥ jg
A-periodic, more precisely: For 4 € A, we have

/\/l([x + /1]) — e27ril(x+/l) — eZﬂil(x)eZm'l(/l) — eQm’l()c) :Xl([x])

since /(1) € Z.
ii) For [ € A" the y; (and multiples of it) are exactly the eigenfunctions of Ay on
C*(T",C) to the eigenvalues 47°||> and we have

™ _ U 20712
4) Spec(Aj’) = U (4nlIf)
as a weighted set.

3.1. Eigendecomposition. In this section, let A be a lattice in R", n > 0 and 7" := R"/A
the associated flat torus. For @, > 0 and 1 < p < n we calculate the eigenvalues of F g;p
together with the associated eigenspaces.

Let w € QP(T",C). By the isomorphism 2 and Remark 3.4 (i), we can write w =
Siea: xiw', where w! € AP(R™)*. Using (1), a straightforward calculation then shows

déw = 4n® Z)(ll A (lﬁ_nwl)
leA*
and analogously
sdw =47 > i — LA (Fawh) + 1P,
leA*
Put together, we obtain
Frgw =47 3" yi((@ = Pl A (Faw') + plIP).
leA*
Due to Remark 3.4, comparison of coefficients gives that the eigenvalue equation
Fg;w =Adw=241 Z/\/lwl
leA*

is satisfied for a A € R if and only if for all / € A*, we have

(EG,,) 4 ((a = B)L A (o) + BlIPW!) = A
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DeriniTioN 3.5. Forl € A* and y € R, we set
/lly = 4712)/|l|2
and
VI =l A | € Qb T,
WP = yilw € Qb (T™) | FFaw = 0},
RemaRK 3.6. It is obvious that for all k,/ € A* with k # I the spaces V', V/', W] and W/

are pairwise orthogonal. Therefore V,f ® le , W,f ® Wlp , V,f @ Wlp and V,f ® W,f are direct
sums.

Now let/ € A*. We notice that [An, withn € Qp ar (T”) and *1n = 0, satisfies the equation
(EGy ;) and W e Qpar T™), with I 1w' = 0, the equation (EG P - Therefore, we have
Fg,;)(ll A= /lf%ll An and F(Z;/\/lw’ = /lé)(lwl.

Hence, if 1, ' # 0, then x;l A i and y,w' are eigenforms of F[, to the eigenvalues A, and
/lllg, respectively. Because

- -1
dim({{ A q|ne Q! (T",C)) = (” 1)
p —_—
n # n—1
dim ({w € Qp,(T",C) | Faw = 0}) = ,
p
we already know that

!
(ze%{*{/l“}(?iii )U (lg\ “ }(n l)) < SpeC(leB p)
and that, for all [ € A¥,

5) VP C Eig(F}, ALy and W‘DCElg(F

rr/ﬁ’p’ @ ap,p’ )‘

In fact, with A/, and /lé for [ € A*, we already found the whole spectrum of F' g;g

Theorem 3.7. Let o, > 0 and 1 < p < n. The spectrum of the operator F gﬁ , s given
by

SpectF15,) = (9 1) @ (8 )

p-1

and the associated eigenspaces are for k € A~

6) Eig(FT, . A\) = @ v e Hw!
i |1|ZE\Af|k|

and

@) Eig(Fs,n 4 =DV @ D W
leA”:

=2 i |l| Ikl
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Proof. By elliptic regularity, any eigenfunction w of F’ Zﬁ must be smooth so that we can
write w = Y ea- xiw'. In order for A € R to be an eigenvalue, for each [ € A*, we get the
necessary condition (EG, ;). Now because for each [ € A, we have

APRY ={lAn|ne A" RN} @ {we APRY | Faw =0},

the statement follows with a view on Remark 3.3. O

REMARK 3.8.

i) We can express the spectrum of Fop r , in terms of the spectrum of AT

Spect 1) = (.14 © (,eA{ ) = (8.00) D (w )
= (Y 0) G0 y 1in)

Ve Spec(Ag")(ﬂill) v (n;])ﬁ- Spec(Al).

ii) We have Eig(F? Qﬁp 0) =
iii) For k € A*, we have

Elg<Fw,,,ﬂ">—@(V” W”)—@xlﬂ (T,

u| \kl \ll Ikl

QL (T").

iv) Let the dual lattice A* now be rational, i.e. |/|> € Q for all / € A*. Then for a
generic choice of @ and g (i.e. if for example they are chosen at random from a finite
interval with uniform distribution) the second summand of (6) and first summand of
(7) disappear for k # O:

Eig(FT; . a)—@vf’ and Eig(Fl, . 1) = D W/,
leN™:
ok =i

because generically |[> = g|k|2 and |I? = Elklz are satisfied for no / € A*. For
instance, this happens for % ] irrational. In this case, the eigenvalues X and /ll are
different for all k,[ € A*.

However, in the non-generic case that € Q, there can exist k,/ € A* such that

A = /llﬁ. Consequently, in this case, nnxed” eigenspaces can occur.
3.2. Multiplicities.

DEeriniTION 3.9. Let A be a lattice. For r € Ry we set
Ar(r) =#{le A" ||| =r}.

Hereafter, we simply write A instead of A, if it is clear which lattice is meant.

Remark 3.10. In the case that the dual lattice A* is generated by an orthonormal basis,
finding the value of N(R) := )}, .r A(r) for n = 2 is just the Gauss circle problem ([6]).

From (6) and (7) we can directly read off the geometric multiplicities of the eigenvalues:
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Corollary 3.11. Let a,8 >0, 1 < p <nandk € A*. Then we have

. . n n-1 n—1 a
dlm(Elg(Fgﬁ’p,/li)) = (p ~ 1)A(Ikl) + ( » )A (\/%Ikl)

) . n n—1 n—1 B
dim(Eig(Fy, . 45)) = ( ) )A(|k|) + (p ~ 1)A (\/;Ikl].

3.3. Isospectrality. Subsequently, we investigate under which circumstances the opera-
tors Fop ), for @, 8> 0 and 1 < p < n can have the same spectrum on different flat tori.

and

3.3.1. Isometric flat tori.

Remark 3.12. Let A; and A, be two lattices in R”. Then R”/A; and R"/A, are isometric
if and only if there is a linear isometry I : R* — R" with I(A;) = A;.

If M and N are compact isometric Riemannian manifolds, the spectra of F’ g’/’ip and F fl’ﬁ’p
coincide. In particular, two isometric flat tori have the same spectra with respect to Fog .
Now one faces the question whether the converse of this statement is true, i.e. whether the
spectrum of F' gﬁ » already determines the flat tori 7" up to isometry.

In the case n = 1 the answer is found to be “yes”, because the lattices then have the form
rZ for r € R\ {0} and the spectrum of the associated flat torus R/rZ, which is isomorphic to
the one-dimensional sphere S, with radius 35 18:

2r

12
R/rZy _ 2
Spec(Faﬁ’p) 152{4” ozrz}(

n-1
p-1

Soif R/rZ and R/r'Z for r,r" € R \ {0} have the same spectrum, then r = +7/, i.e. both tori
are identical, thus trivially isometric.

To give an answer to the above question for further dimensions 7, first we show the
following useful Lemma 3.14.

DeriniTion 3.13. Let M := {M C R | M is a discrete weighted set bounded from below}.

Lemma 3.14. Let o, > 0, [,m € Nand A, B € M with A Lym BA = aB Lym BB. Then
A =B

Proof. First suppose @ < 8. We consider the map
faﬁ:MHM:CHaClUm,BC.

and show that it is injective, i.e. we show that for M € f,z(M) C M there exists an unique
C € M such that M = aC '™ BC. This can be seen from the following reconstruction:

We set My := M and for k € Ny iteratively 4, := émin(Mk) and My, =
M\ {(adg, D), (BAx, m)}. (The minima exist because the sets M) are discrete and bounded
from below as subsets of M.) Then M = aC 'u” BC with C := Uiy, {4;};. By construction,
C is unique and f,g therefore injective.

Thus, due to fo5(A) = aA 'U™ BA = @B 'U™ BB = f,5(B), we have A = B.

The case @ > B is shown analogously by setting A; := émin(Mk) in the above proof. m|
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RemARk 3.15. Without the concept of the weighted set and union, an ordinary set C can
just be reconstructed from the set «C U SC with the method from the proof if «C N SC = 0.

Theorem 3.16. Let Ay and A, be two lattices in R”, @, 8> 0and 1 < p < n. Then F ff;’/p Ar

and F 5;7/;\2 are isospectral if and only if Aélfn/ M and AE)R"/ A2 gre isospectral.
Proof. “=": Fori = 1,2 we have seen in (4), that on functions,

Spec(Aan/A") = lg\f{/lll b

The eigenvalues are non-negative and thus the spectra are weighted subsets of R which
are bounded from below and discrete due to A7 = Z". Furthermore, Remark 3.8 and the
assumption imply

aspec(Ay ™) G0l )pSpec(af ™) = Spec(Fi/M) = Spec(F o)

= aSpec(A%n/’\z) ()] U(nl_’l)ﬁSpec(Aﬂ(f"/M)_

Lemma 3.14 therefore yields Spec(A; /™) = Spec(A; /™).
“er I ABR"/ Al and AgR"/ A2 are isospectral, it follows immediately that
Spec(FX/A1) = aSpec(AE ™) G- u () gspec(al /A

= aSpec(Aan/Az) G-) U(n;l)ﬁSPeC(Aé)Rn/Az) = Spec(F 5;’/1)/\2).

O

Using Theorem 3.16, we can now give an answer to the above asked question for the
dimensions n = 2 and n > 4, because it is already known that the following results are true
for Laplace-Beltrami operators on functions.

Proposition 3.17. Let A; and A, be two lattices in R", n = 2,3, a,>0and 1 < p < n.

2 2
Then if F fﬁ/p M oand F fﬁ/p A gre isospectral, the flat tori R>/A; and R* |\, are isometric.

Proof. Because Fg;f ;\‘ and Fg;f ;\2 are isospectral, by Theorem 3.16 this is also true for
Afz/ Al and Afz/ A2 In dimension n = 2, the claim then follows from [1, Proposition B.IL.5];

in dimension n = 3, the claim follows from the work of Schiemann [10]. O

Proposition 3.18. Let o, > 0, 1 < p < nandn > 4. Then there exist two lattices A,
and A, in R", such that F f;/:‘ and F 5;/;\2 are isospectral, whereas the flat tori R* | A and
R" /A, are not isometric.

Proof. In the paper of J. H. Conway and N. J. A. Sloane ([3]), it is shown for the dimension
n = 4 that there are lattices A; and A, in R” such that Aan/ A and Aﬂsn/ A2 are isospectral, but
R"/Ay and R"/A; are not isometric. Due to [1, chapter III, Proposition B.III.1] therefore
there are such in every dimension n > 4. The result follows with Theorem 3.16. O

For the dimension n = 3 this question still seems to be open.
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3.3.2. Variation of parameters. For flat tori 7y and 7>, @,8 > 0 and 1 < p < n we have
shown that if F gép and F Zép are isospectral, we can conclude that 7'} and T, are isometric in
dimensions 1 and 2, while from dimension 4 onward, there are cases in which they are not
isometric. Now we consider the case that F (Q,p and F fﬁp are isospectral for (a, 8) # (o, ")
and n # 2p, respectively {a, 8} # {¢/, '} and n = 2p (see Remark 3.19), where o/, 8" > 0 as
well.

Remark 3.19. In Proposition 2.7 we already recognized that for n-dimensional flat tori
T" with n = 2p the spectrum of F gﬁp is symmetric in @ and £:

Spec(FT; ) = aSpec(Al) (I ul Dgspec(Al’) = Spec(Fl. ).

Theorem 3.20. Let T" be a flat torus, a,a’,B,8 >0, 1 < p<nandn # 2p. Then F g;’p
and F 5,’:8,7 , are isospectral if and only if (a, ) = (¢, ).
For n = 2p the statement holds with {a, 8} = {a’, '} instead of («,B) = (¢, ).

Proof. “=": Let A be a lattice in R” with 7" := R"/A and A := SpeC(Ag”).
Let first n # 2p. We consider the map

Ja:(0,00) X (0,00) > M
7,0) > yA (DU )6A = Spec(FT; )

and show that it is injective. For M in the image of f4, we obtain a unique preimage under
fa in the following way:

LetM =M \{(O0, (:"))}. The minimum m := min(]l71 ) is positive because 0 has the multiplicity
(Z) Now we choose k € A* in such a way that

k| = min |I].
leA*\{0}

Then /l’f is the smallest positive element of A, A(lk]) # O and we have A(r) = 0 for all
0 < r < |k|. Hence due to Corollary 3.11, the multiplicity mult(m) of m is either (Zj)A(lkl),
(" )AKD or (%)A(K).

(n:]

e In the case that mult(m) = (;’;ll)A(lkl), we set y 1= % Let now M’ .= M \ Uiﬁl' vA
and M’ := M’ \ {(0, (”;1))}. Then 7’ := min M’ > 0 and we putoé := Z"—k
1
—_ n—1 .
o If mult() = ("')A(KD), we set 6 := %. Let now M’ := M\ {54 and i1 =
1

M\ {(0, (;:ll))}. Then 77’ := min(M’) > 0 and we define v = ’j—k

1
e In the last case that mult(m) = (Z)A(lkl), weputy =0 := ﬂﬂk
1
In each case, M = yA G-y, sA. Here v and § are unique by construction and therefore
fa 1s injective.
By assumption, fs(a,f) = Spec(F(Z;’p) = Spec(Fg,fB,’p) = fa(a’, ), thus (a,B) = (¢, ).
Now let n = 2p. We show that the map

fa:{C c(0,00) | #C € {1,2}} > M

iy, 6} > yA (D54 = Spec(FT

Ton) = Spec(F)
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is injective. To this end, let M be in the image of f4, m > 0 and k € A* as above. We set y :=

_ 2p-1 ~ ~
L Now let M’ 1= M\ U} yA and M’ := M’ \ {(0, (*7"")}. We have i’ := min(M’) > 0
1

and we define 6 := /17' Then M = yA SRITeA l)6A where {, 6} is unique by construction.
1

Thus £y is injective. With fa({e, 8}) = Spec(F1. ) = Spec(FT;, ) = fa(le/,B'}) we obtain
that {a, 8} = {’,B'}.

<": The converse implications are trivial. m|

The next corollary shows that there are «, ', 8,8 > 0 and lattices A, A’ in R” such that

R"/A R"/A' .
Foy and F wp.p ATe isospectral.

Corollary 3.21. Let A be a lattice inR", a,a’, 8,8 > 0 and c € R\{0}. Then forn # 2p:
F 5;/;\ and F~, B/,CA are isospectral if and only if (o, 8') = (c*a, c*B).
For n = 2p the statement holds with (o', 8’} = {c*a, B} instead of (&, 8') = (c*a, ¢*B).

Proof. For the spectrum of F*./* we have

Q’/ﬂ,,p ’

SpeC(Filf"ﬁ/»f?)=a’( v {4n2|l|2}1] (ﬁi'Du("z?')ﬁ'( v {4n2|l|2}1)
le

N lelns
c c

_a 22y (D) (",:‘)li’( 22 )

= Spec (Fﬂiff\ ) .

(‘2 (/7 ’p

R" /A and FR,ﬁ/,CA
and only if (¢/, ") = (c*a, ¢*B) and in dlmenswn n = 2p if and only if {o’, 8’} = {a, *B}.
O

Theorem 3.20 therefore implies that Fop are isospectral in dimension n # 2p if

Remark 3.22. Given two n-dimensional flat tori 7 and T’ together with parameters «, §3,
o', > 0, one can consider the operators F r and FT ',a' . Fora =da,B =4, itis clear
from Prop. 3. 18 that in dimensions n>4, one can choose non-isometric tori 7, T’ in such

a way that F' (lﬁ » and FT) B’ are isospectral. The author expects that in a similar way, one
can find an example of non-isometric tori 7', 7" such that Fop r and F T, wpp Are isospectral for
{o. B} # { . B'}.

On the other hand, the following question is still open: In dimension n = 2 or 3, does the
isospectrality of F T and F g ., already imply that 7" is isometric to 7" and @ = o/, B = f/

(respectively {a/,ﬁ} {a B} 1fn =2and p =1)?

4. Spectrum on round spheres

Now we consider for n € N the n-dimensional unit sphere (S”, g) € (R**!, g4q), which is
embedded in R"*! via the canonical inclusion ¢ : $” — R"*! and endowed with the metric
g = "gsq induced by the standard metric ggq(-, ) := {-,-) on R,

In the following, let @, >0and 1 < p < n.

For vector fields X € [(R"!, TR"!') on R"! we denote by X := X ¢ the restriction of
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X to §”". Note that this is a vector field on S” if and only if X is tangent to S”. From now
on, let V be the Levi-Civita connection on R”*! and V the one on S”. The outward directed
normal vector field we call

X

> —.
1]

Its covariant derivative with respect to X € T(R™!, TR™!) is

v R™I\ {0} > TR™! : x

(8) Vxv = %(X —(X,v)v).

Here, r : R™! — Ry is defined by x = r(x) := |lxl.
The connections V and V are related as follows: For X, Y € T(R"*!, TR") tangent to S,
we have

9) VxY = Vi¥ — (X, Y)V.
On can easily convince oneself of the fact that
(10) C(@X1s 0 Xp)) = ()XY, o Xp)

for all w € QP(R™!) and all X, ..., X, € [(R™!, TR™*!) tangent to S, since du(X;) = X; for
ie{l,..,p)

The exterior derivative d is natural, i.e. commutes with the pullback f* along differen-
tiable maps f. In general, this is not true for the co-differential ¢ instead of d. In the fol-
lowing lemma, we investigate in which way ¢ commutes with the pullback ¢* : Q*(R"*!) —
Q(S™).

Lemma 4.1. Ler w € QP(R"). Then

U w0 =60 - (- p+ 1) - (Vaw) + vaVyw).

Proof. Using the naturality of d and formulas (9) and (10), it is straightforward to show
that

U'Vyw = FVw)?L*a) + L*(Xb A (Vaw)),

where b denotes the inverse of the musical isomorphism §.

Let U € S" be open and {¢1, ...,€,} C I'(U,TS") a local orthonormal basis of 7S". We set
V= {y € R™! | ﬁ € U). Fori € {1,...,n}, let ¢; € T(V, TR™!) be the radial constant
extension of & on V c R"!,i.e. defined via ¢;(y) := éi(”i—”) fory € V. Then {ey, ...,e,, v} is a
local orthonormal basis of TR"*!.

Now with a view on (1), one can use the above calculation to obtain
n
G = = (Z e,uVe,.w] —'(vaV,w)

i=1
= - Z ZJFVVEL*w - Z e (' A (Vaw)) — ' (vaVyw)
i=1 i=1
=65""w—-C((n-p+1) - (vaw) + vaV,w).
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4.1. Eigendecomposition. To determine the spectrum Spec(F g ;,), we first investigate the

relation between the operators F 5;“ and F’ (SX ﬁ

Proposition 4.2. For w € QP(R""), we have

L*Fg;ﬂw = Fi;L*w + a/L*((p —n— 1d(vaw) — d(v.:Vva)))
+,8L*((n —p - Dd(vaw) + d(vaV,w) + p(p —n + Dw — nV,w — VVVVa)).

Proof. Due to the naturality of d and Lemma 4.1, we see that
(11 Cds® w0 = dr ™ w = dsS w - C((n=p+ Dd(vaw) + d(vaV,w)),
which is the first term, and
(12) o dw = 65" diw — ((n = p) - (vadw) + vaV,dw).

Now we rewrite the last two terms of (12). A straightforward calculation shows that

n

vadw = E (Ew —dviw) + V,w — VA (VJVVLL))),
r
i=1

hence
(13) ' (vadw) = ' (pw — dvaw) + V,w).
Now let {ey, ..., en, €411 := v} be alocal orthonormal basis of TR"*! as in the proof of Lemma

4.1. We notice that V,e; = 0 fori € {1, ...,n + 1}, which is used to calculate

n

(14) vaVydw == 3" ' A (139, V00) + V,V,0 =V A (v29, V).
i=1

Moreover, using [e;, v] = %ei, one calculates

1

(15) vaV,V,w=V,V,(vaw) — ;Ve,.(ww) + ﬁeluw - ;e,qua).
Inserting this into (14) and applying the pullback gives
(16) ' vaV,dw) = F(=d(V,(vaw)) + d(vaw) — pw + pV,w + V,V,0).

Finally, inserting (13) and (16) into (12), we obtain
FF dw = 68 diw + L*((n —p-=Dd(vaw)+ p(p —n+ Dw — nV,w + d(vaV,w) — Vvaw).

Together with (11), the proposition follows. O
Corollary 4.3. For w € QP(R™), we have

AR W) = A (Cw) + C(p(p = n+ D = 2d(vaw) - nV,w - V,V,0).

Proof. This is Proposition 4.2 fora =8 = 1. O

DEriniTiON 4.4. Let {ey, ..., e,+1} be the global standard basis of TR™! and {e!, ..., &™)}
the associated dual basis. For each k € Ny we define
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H,? := {P € C®(R"") | P is a homogeneous polynomial of degree k with ABRMP = 0}

and the space

i i n+l1
H,f ={w Z wj,..i,e" N...Nev € QP (R"™ 1) wj,..i, € H,? and 6% w= O}
1<iy<..<ip<n+1

of all co-closed harmonic homogeneous p-forms of degree k on R"*!.

Noration 4.5. For f € C*(R"*!) and x € R\ {0}, we set f(x) := f(z). Then fn =
f | ¢» and fis radially constant, i.e. f(Ax) = f(x)forall 2 > 0 and x € R"*'\ {0}, and therefore
dyf =0.

DEeriniTiON 4.6. For k € N we set

(17) Ay, =Bk +p)k+n—p-1),
(18) ph, = atk+p)k+n—p+1)
and

V] :=1{we H] | vaw = 0},

WP = Cd(HD).

+

4.1.1. Eigenforms of 6°"d. Let w =€ H}. Because of %' w = 0, we have
ds¥" w=0
and

n+1 n+1 n+1 n+1 n+1
& dw =ds"" +6" dDw-ds" w=A, w=0.
———— P

=0

Moreover, since w is homogeneous of degree k, we have

k

(19) Vw=-w
r
and therefore
k k k> k(k—1
VVw=-=w+-Vow=—-—w+—w= ( )w.
r2 r r2 r2 r2

For w € H{ with vaw = 0, we have w = 0. Hence, ¢‘w = 0 is not an eigenform of 7, .
Therefore, let w € H]f with £ # 0 and vaw = 0. Proposition 4.2 together with the above
calculations gives

Fi;L*w =pk+pk+n—-p-1Dw.

Thus ¢*w is an eigenform of F};  to the eigenvalue 45 . Consequently, we have shown
that

U {2k

Sn
2 5. phdim(v?y S Spec(Fog )

and for all k € N that
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* . n k
V] ={weH] | vaw =0} C Elg(Fgﬁ’p, s p)-
4.1.2. Eigenforms of d5°". Now let w € d(H}

+

11), i.e. w=dnwithn e H,f;ll. We have

déRnHw — CﬁRn+ld7 — dA%an_ dd 6Rn+1]7 — 0’

N———
:A‘E‘”H—d(sRnH -0 =0
n+l n+l
& dw=6%" dd n=0
N——

=0

as well as

k+1
Fdvaw) B dit(—dvag) + (p— D+ V) B e [(p = Do + —w) = (p+k'w.
r

Since w(e;y, ..., €;,) are homogeneous polynomials of degree k for 1 < iy < ...i, <n+1,
similar to (19) we have
k
Vw=-w
The last two equations yield
k(k—1
V.,V,w = ( 5 )
;

and

. k
Fd(vaV,w) = di* (; . (v_na))) = kdi* (vaw) = k(k + p)*w.

Altogether, with Proposition 4.2 we obtain

FS

aﬁt*w =ak+p)k+n-p+ Dw.

So t*w is an eigenform of F' i ;!p to the eigenvalue ,u’fl’p. As aresult
k s"
kEQNO{:ua,p}dim(Wf) C Spec(Fz )
and, for all k € Ny,

* -1 . n
W) = Cd(HY,)) S Big(Fig il )

4.1.3. Proof of the completeness. Now the question arises wether /lé’p and ,ufh pforkeN

and [ € Ny already form the entire spectrum of ), .

RemARK 4.7. We already showed that V} C Eig(F3 ",p, /lg’p) and W/ C Eig(F? [Z,’p, w, ) for
allkeN, [l e Ny, a,>0and 1 < p < n,i.e. the elements of V,f and Wlp are eigenforms of

F g/; » for every positive @ and 5.

Lemma 4.8. Forall o, >0, 1< p <nandk,l € Ny, we have
1) /lg’p = /llﬁ’p ifand only if k = L.

ii) ,u’g’p = ,ufw if and only if k = L
iil) For a = B, we have /lz’p = ué,p ifand only if k =1+ 1 and n = 2p.
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: a k l
iv) For 5 € R\ Q, we have /lﬁ’p # o p-

Proof. It follows directly from the explicit formulas (17) and (18) that & +— /12,,, and

k— u’fy,p are injective functions. This implies i) and ii).

iii) “=>”: Let(k+ p)k+n—p-1)=U+p)l+n—-p+1),ie. ’;j—;’ = ,ﬁj’;:gj.

k # 1. If kK <, then ]:—5 < 1 and therefore ,i:’;:’;tll < 1. Thus [ < k — 2, and due to
[ > k we would obtain k£ < k — 2, a contradiction. So k > [. That is why, similarly to
above, we obtain that [ > k — 2, hence k > [ > k — 2. Therefore [ = k — 1. With the
assumption it follows that (k + p)(k+n—p—1) = (k+ p— 1)(k+ n — p). Expanding
gives that n = 2p.
“&": This direction is trivial.

iv) Let now% e R\Q. If/l’fj{’p = yé’p, then %(l+p)(l+n—p+1) = (k+p)(k+n—p—-1) € N,
which is impossible. O

Hence

ReMARK 4.9. For k € N, there is at most one € No with A5 - = ul, , since, if there was an
I' € No with A | = u;, . this would imply that u}, , = u, ,- But by Lemma 4.8, = 1.

Lemma 4.10. Let k,[ € N with k # 1. Then the spaces V¥, le , W,f and Wlp are pairwise
perpendicular with respect to the L*-scalar product.

In particular, V,‘: &) le, W,f @ Wl‘", V,f @ Wll7 and V,‘: @ W,‘f are direct sums.

Proof. Let k,/ € N with k # [. Then V/ and V/ are, due to Remark 4.7 and Lemma 4.8,
subspaces of eigenspaces of F g';’p for the distinct eigenvalues /lg’ » and /lé’ » and therefore
perpendicular with respect to the L?-scalar product, since F, op 18 self-adjoint. In the same
manner, W,f and Wlp are subspaces of eigenspaces for the distinct eigenvalues u’(‘l’p and ,ufh »

and hence perpendicular.
Now let @,8 > 0 such that that % € R\ Q. Then, due to Lemma 4.8, /lg’p * /“’fr,p and

/lff, o u’;’p, so the statement follows for V| and W, respectively V and W} . O

Now we can show that the eigenvalues of the operator F g [Z,p we derived in the previous
both sections already form its whole spectrum.

Theorem 4.11. Let 1 < p < nand a, > 0. The spectrum of the operator Fg;p is given
by

S" N _ k k
Spec(F,s,) = (ng{/lﬁ,p}dim(v[)) y (kg\%{“(y,p}dim(Wf))

and the corresponding eigenspaces are, for k € N,

; Ve if AL #ul  foralll € N
B 50 = g o prone e

' VieWw,, zf/lﬁ’p = g, for one | € Ny
and, for k € Ny,

Wi

W,fGBVIP, if,uﬁ’p =/lg’pf0ronel€N.

. v ifuf AL foralll e N
Eig(FS5,ht,) :{ P = 2p !
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Proof. By [2, Lemma 3.1] we have H” = {0 € H! | vaw = 0} @ d(H!.) for all k € N,

+

In [7, Korollar 6.6] it is shown that L*(@ kello H,f ) is dense in ”(S") and, therefore, dense
in Q‘L’Z S™).
Let A € Spec(F i;,p) and w € Eig(FS,, , 1) with w # 0. Due to the density and Lemma 4.10,

aB,p’
we have

2

? L
Eig(F3, . D) € Q08" = (P H;j)L =PviePpw .

keNy leN [eN,

ie.w = Yanv + Yiew, w for vy € V) and w; € W), Therefore, with Remark 4.7 it follows
that

J[Zvﬁzwl

leN [eN

= Aw = F‘;;a) = Z /l;;,pvl + Z,ué’pwl.

leN leN,
As a result, agp = Aforall / € N with v; # 0 and ug,p = Afor all [ € Ny with w; # 0 and,
therefore,

2

T
. N P P _ P P
EigF, . hc P viePw =P vieP w!
! : leNy: €€N: leNy:
/Iﬁ,p:/l I“lft,p:/l AB,P:/{ ‘uéypz/l

Since w # 0 we have A = /l;),’p, forsome !l € N, or A = ,uf,,p, for some [ € Ny, i.e. A is one
of the already known eigenvalues. Hence, with /lé’p for [ € N and ufw for [ € Ny, we have
already found the entire spectrum of F iﬁl o

In order to determine the associated eigenspaces, we choose k € N fixed and consider
A = /lé’p. Lemma 4.8 then tells us that /llﬁ’p = /l;;,p for an / € N if and only if [ = k.
Furthermore, due to Remark 4.9, ufy’ p = /lf;,p can be true for at most one / € Nj,.

We have shown that

I )
Eig(FS, Ak ) c Vi» if A, # Mg, forall 1 € No |
e Vlf ®© sz’ if /lz,p = ufl,p for one [ € Ny

We have V;' C Eig(F}; . A; ) and W' C Big(F}, i, ,) = Eig(Fop A5 ), if A5 = 41, ,

for some / € Ny. Hence, in this case V; @ W, C Eig(F iﬁp /l;‘),’p). This yields

ek !
ofp> “Bp View!, if /lg’p = yé’p for one [ € Ny
Analogously one shows that
W/, if/u’;,p # /lé’p forall/e N

Eig(FS, ik )= '
W ap,ps Havp W’ eV, if'ulé’p = ,12[7 forone/ e N

REMARK 4.12.

i) For @ = B and n = 2p we have seen in Lemma 4.8 that /lg“ = pk for all k € Ny,
Thus, in this case we have that, for all kK € N,
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Eig(FS, . atk+p)k+p+ 1) =V oW’

aa,p’

and
Spec(Fy, ,) = U {a(l+ p)+ P+ Ddimvy, ewp)-
0

ii) Ifa =Fandn # 2p or if % € R\ Q, we have, again by Lemma 4.8, that for all k € N
and [ € Ny

Eig(F?3,

<¥/3,P’/léyp) = V/f and Elg(F(Sx‘;,p’l’tﬁt,p) = Wlp

iii) The eigenvalues of F' i ; , are all positive since n — p > 0.

4.2. Multiplicities. With the following proposition we can directly read off the geometric
multiplicities of the eigenvalues.
Proposition 4.13. Forall 1 < p <nandk € N, we have
m+k—-DIn+2k-1)
plk—=DIin—p-Dn+k—-—p—-1Dk+p)

dim(V?) =

and, for all k € N,

m+k)!n+2k+1)
(p-DKn—pn+k—p+1)k+p)
Proof. Forn # 2p and 1 < p < n, we have by Remark 4.12 that

dim(W?) =

dim(V?) = dim(Eig(F}; . 1))
forall k € N, and, for all k € N, that
dim(Wy) = dim(Eig(F}, .} ).

In [2, table I] the multiplicities of the eigenvalues of AIS," =F flnp are listed. m|

4.3. Isospectrality.

4.3.1. F 5 on spheres of different radii. We consider n-dimensional spheres S of radius
r > 0 embedded in R"*! via the canonical inclusions ¢, : §” — R™!. First of all, the
following proposition says that the spectrum of F(Slg,’p emanates from the one of F (Sl;,’p by
multiplication with the factor riz

Proposition 4.14. Let ,B,r > 0and 1 < p < n. Then

S’rl _ 1 S _ S
SpeC(FQB’p) == . Spec(Faﬁ,p) = Spec(Fl%’p).

2

reor

We omit the proof as it is an easy calculation.

DeriNtTION 4.15. For @, 8,7 > 0,1 < p < nand k € Ny we set

A pr = %(k +p)k+n—p-1) and

@
Hopr =k p)k+n=p+1).
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Below we show that the operators F,z on spheres of different radii can never be isospec-
tral.

Proposition 4.16. Let a,B,r,7" > 0and 1 < p < n. Then Faﬁp and Faép are isospectral

ifand only if r = 1.

Proof. “=": Since F S and F 5 have the same spectrum, in particular their smallest
eigenvalues coincide. In the case that & > %, we have that /l[lg LS <ul . and /1;3 o S
,ua o It follows that mm(Spec(Fa/;p)) = mln(Spec(Fag p)) if and only if ’w =

1 _ 1 Blp+D(n—p) -  : e a o (prhn-p) 1 0
Aﬁpr /lﬁpr =—>——,le.ifand only if r = r". If W, ehave/lﬁpr>,uapr
and &épr > ,ua’ .- Hence mm(Spec(Faﬁp)) = mm(Spec(F ) if and only if Sl AR (” ALV
,ua,p,, = uapr, = w, i.e.ifand only if r = 7.

<" This direction is trivial. m|

4.3.2. Varlatlon of parameters We now discuss the question how the spectra of two
operators F and F "B’ are related for different parameters «, ', 3,5 ,r,r" > 0and 1 <
p,p <n. As a ﬁrst step, we will fix the radii of the spheres.

REmARK 4.17. Proposition 2.7 implies that for all @, 8,r > 0 and n = 2p
Spec(F p.p ) = Spec( ﬁap)

Theorem 4.18. Let o, a,B,8,r > 0and 1 < p < nwithn # 2p. ThenFaﬁpandF
are isospectral if and only if (a, ) = (&, ).
For n = 2p the statement holds with {a, 8} = {a’, '} instead of («,B) = (¢, ).

/ﬁ/

Proof. “=": Let at first n # 2p. We show that the map

f:(0,00) x(0,00) > M : (y,0) — Spec(Fy(;p

)

is injective. To this end, let M be in the image of f. Due to Remark 4.12, we have m :=
min(M) > 0. Furthermore, due to Theorem 4.11 and Proposition 4.14, the multiplicity
mult(m) of m satisfies

+1 +1 +2
mult(m) € {dim(V?), dim(W?), dim(V?) + dim(W?)} *2’ {(” ) (" )(” )}
p+1 P p+1
Since 1 < p < mand n # 2p, the set in fact consists of three different elements.
—_ g P . r’m ’
e In the case that mult(m) = dim(Vy), we set 6§ := —(p+l)(n—p)'l Let M' == M\
UkeN{/lg,p,r}dim(Vé’) and m’ := min(M’). Thenzwe define y := I}(L—?I).
— A; P - r . rem’ 7.
e If mult(m) = dim(W;), we put y = p(”_—l’il) and § = m Here M’ =
M\ UkeNo{:u];/,p,r}dim(W,f) and m’ := min(M").
e In the last case that mult(n) = dim(V]) + dim(W}) let y := % and ¢ =
r2m
(p+1)(n-p)*
In each case, M = Spec(Fyap) Here y and ¢ are unique by construction. Thus f is injective.
Since by assumption f(«,8) = f(a’,[’), it follows that (o, 8) = (¢, ).

Now let n = 2p. We consider the map
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F{C € (0.00) [ #C € (1,2}) = M : (.6} > Spec(FS; ).
Let M be in its image. Then m := min(M) > 0. We set y := p(’;’fl). Let M' := M\
ieriy 1l Jaimwry and m’ := min M’. We define o ﬁ Then M = Spec( W)

whereat {y, ¢} is unique by construction. Consequently, f is injective. Hence, f( a,B)) =

S, p'}) implies that {«, 8} = {o/, B}

<": The opposite directions are trivial. |

For different radii, the spectra are related as follows:

Corollary 4.19. Let o,a’,B,8,r,7 > 0and 1 < p < n such that Faﬁp and F° ,'ﬁ, are
isospectral and n # 2p. Then r = v if and only if (a,8) = (&', ).
For n = 2p the statement holds with {a, 8} = {a’, '} instead of («,B) = (¢, ).

Proof. The first direction is just Theorem 4.18 and the opposite direction Proposition
4.16. ]

Proposition 4.20. Let a,a’,B,8',r,¢> 0,1 < p<nandn # 2p. Then F
are isospectral if and only if (', B") = (c*a, ).
For n = 2p the statement holds with {a’, '} = {*a, czﬁ} instead of (&, 8") = (c*a, ¢*p).

aﬁp and F ﬁ

Proof. Proposition 4.14 tells us that F jﬁl and F wp.p A€ isospectral if and only if

Spec(FfZ;,p) = rZSpec(Fi' ) = rZSpec(F wpp )= Spec(F W p ) = Spec(F‘z_,"ﬁ )

(72 C2 51)

Due to Theorem 4.18, for n # 2p this is equivalent to (@,) = ( S, Cz) and forn = 2p to
{CL’ IB} {02 P 2} O
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