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Abstract

We study asymptotic error distributions associated with standard approximation scheme for
one-dimensional stochastic differential equations driven by fractional Brownian motions. This
problem was studied by, for instance, Gradinaru-Nourdin [6], Neuenkirch and Nourdin [14] and
the second named author [13]. The aim of this paper is to extend their results to the case where
the equations contain drift terms and simplify the proof of estimates of the remainder terms in
[13]. To this end, we represent the approximation solution as the solution of the equation which
is obtained by replacing the fractional Brownian path with a perturbed path. We obtain the
asymptotic error distribution as a directional derivative of the solution by using this expression.

1. Introduction

For a one-dimensional fractional Brownian motion (fBm) B with the Hurst 1/3 < H < 1,
we consider a one-dimensional stochastic differential equation (SDE)

(1.1) X,:§+fb(XS)ds+fo-(Xs)d°Bs, telo,1],
0 0

where ¢ € R is a deterministic initial value and d°B stands for the symmetric integral in
the sense of Russo-Vallois. We may write X,(&, B), X;(B) to indicate the dependence of the
initial value and the driving path. We consider three schemes to approximate the solution
to (1.1) and study asymptotic error distributions of them. We treat the Euler scheme, the
Milstein type scheme and the Crank-Nicolson scheme as real-valued stochastic processes
on the interval [0, 1].

There are several frameworks to treat SDEs driven by fBm. For multidimensional case,
the Young integration theory and the rough path analysis are powerful tools [10, 11]. We can
however deal with SDEs in dimension one more easily by using the theory of the symmetric
integral [15]. The symmetric integral was proposed by Russo-Vallois [21] with a motivation
to establish non-causal stochastic integration theory. Recently, Nourdin and his coauthors
developed a theory of integration with respect to general integrators including fBm [15, 7]
with a spirit of [21]. In the present article, we adopt the symmetric integral and give a
meaning to (1.1).

The Euler scheme, the Milstein type scheme and the Crank-Nicolson scheme for SDEs
driven by fBm are considered by many researchers. In the consideration of approximation

2010 Mathematics Subject Classification. 60F05, 60H35, 60G15.
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schemes, they are interested in the sharp error bounds (convergence rates) and the limits of
errors normalized by the convergence rates (asymptotic error distribution). In multidimen-
sional case, Mishura-Shevchenko [12], Friz-Riedel [5] and Bayer et al. [1] obtain an almost
sharp convergence rate of the Euler scheme and the Milstein type scheme, respectively. Hu-
Liu-Nualart [8] consider asymptotic error distributions of the Euler scheme for SDEs driven
by fBm with 1/2 < H < 1. Liu-Tindel [9] treat the same problem in the case 1/3 < H < 1/2.
There are a lot of results on asymptotic error distributions of schemes for one-dimensional
SDEs. For example, Neuenkirch-Nourdin [14] show the convergence of the normalized er-
ror of the Euler scheme for an SDE with a drift term driven by fBm with 1/2 < H < 1.
Gradinaru-Nourdin [6] deal with the Milstein type scheme for an SDE without a drift term,
namely b = 0 in (1.1), and prove that the normalized error of it converges to some random
variable.

We next explain preceding results on the Crank-Nicolson scheme for one dimensional
SDE. The first result on the error of it is obtained in [14]; the authors obtain an almost sharp
convergence rate. In [6], the authors treat the error of the Crank-Nicolson scheme for an
SDE without a drift term driven by a standard Brownian motion and obtain the convergence
of the normalized error. The second named author in the present paper shows the conver-
gence of the normalized error for fBm with 1/3 < H < 1/2 in [13]. It is crucial to these
studies that the solution is given by a function of B; as X,(&, B) = ¢(&, B;), where ¢ is a
certain smooth increasing function depending only on ¢o. This is a Doss-Sussmann type
representation of the solution. Let denote the approximation solution by )_(,('")(f, B), where m
is a positive integer. Let Bf'") be the dyadic polygonal approximation of the fBm B such that
ng) = BTzkn for every k = 0,...,2", where 7}' = k27". For the Wong-Zakai approximation,

X" (&, B) = ¢(& B"™) holds. Hence the analysis of the error X" — X, is almost similar to
that of B — B"™ itself. Clearly, this simple relation does not hold any more for other approx-
imation schemes such as the Euler, Milstein and Crank-Nicolson schemes. However, if the
dispersion coefficient o is strictly positive, there exists unique B-dependent random variable
h" such that X%’,f)(g, B) = ¢(¢, B + h™) for all k. After obtaining this formula, it is clear

that the analysis of {A} is important to the study of the error X;(¢£, B) — }_(t(m)(f, B). This is
one of main ideas of the proof in [14, 13].

Even if the equations contain the drift terms, the Doss-Sussmann representation still holds
and the solution mapping B — X(&, B) is Lipschitz continuous in the uniform convergence
topology in one dimensional cases. Further, under the nondegeneracy assumption of o, we
can show that there exists a unique piecewise linear 2™ such that Xi'z'f) (&, B) = Xp(§, B+
h™) (0 < k < 2™) hold. By this perturbation representation of the approximate solutions
and the analysis of 4™, we can show the convergence of the normalized error distribution.
Hence, the present paper is a natural extension of the preceding studies. We use central limit
theorem for the Hermite variation process to see the asymptotic behavior of the normalized
error similarly to [14, 13]. The proof that the remainder term is negligible in [13] was done
by a long calculation. In this paper, we give simpler and shorter argument for estimates of
remainder terms.

The organization of this paper is as follows. In Section 2, we explain three approximation
schemes, that is, the Euler, Milstein and Crank-Nicolson scheme. We next state our main
theorems which determine the asymptotic error distributions in Theorem 2.5, Theorem 2.6
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and Theorem 2.7. The next two sections are preliminaries for the proofs of these theorems.
In Section 3, we recall the definition of Russo-Vallois symmetric integral. We consider the
solutions to SDEs driven by fractional Brownian motions with the Hurst parameter 1/3 <
H < 1/2. In this case, the solution has a Doss-Sussmann representation and the Russo-
Vallois integral is the same as the symmetric Riemman-Stieltjes integral as Stratonovich
integral. By using this, we obtain estimates of iterated integrals. Also we prepare lemmas
for directional derivative of the solution with respect to the driving path. In Section 4, we
collect necessary results for convergence of variation functionals. These are essential for the
proof of our main theorems. We give the proof of these results in Appendixes B and C. In
Section 5, we consider the Crank-Nicolson scheme and prove Theorem 2.7. For the reader’s
convenience, we give a skecth of the proof by using the perturbation path A" in Remark 5.4.
The proof of other two theorems are essentially similar to that of this theorem. We give the
sketch of the proof for other two schemes, the Euler scheme and Milstein type scheme in
Section 6. In Appendix A, we prepare the Gaussian analysis and Malliavin calculus. In
Appendixes B and C, we prove the results stated in Section 4.

Throughout this paper, we use the following notaion. For m € N, we denote by {TZI}%:O the
m-th dyadic rationals, that is, 7" = k27" for k = 0, ...,2". For n € {0} UNU {oo}, C"(R%R)
denotes the set of all n-times continuously differentiable R-valued functions defined on RY.
For n € {0} UNU {eo}, Cpyy(R% R) (resp. €t (R?;R)) stands for the set of all functions f €
C"(R?; R) which are bounded (resp. polynomial growth) together with all their derivatives.
For k,1 € {0} UN, C*(R?; R) denotes the set of all functions f : R> — R which is k-times
(resp. [-times) continuously differentiable with respect to the first (resp. second) variable.
We denote the set of right continuous paths on R? whose left limit exist by D([0, 1]; R%). For
A € (0,1], €40, 1]; R) stands for the set of all A-Holder continuous functions from [0, 1]
to R. The space €;'([0, 1]; R) is the set of all functions g € ([0, 1]; R) starting from zero.
For g € €*([0,1];R) and 0 < ¢ < 1, we define the uniform norm by lglco,f0,1 = SUP<s<; |Gsl-
We simply write ||gll = [|gllw.0.17- For fixed 0 < s < 1, we define the shift operator ; by
0s9)(1) = g5 —gsfor0 <t <1-s.

2. Main results

We state our main result. For b, o € C (R; R), we consider an SDE (1.1). Throughout
this paper, we consider a solution X to (1.1) given by (3.3). We refer the meaning of SDEs
driven by fBm to Section 3. To state our main results, we recall the definitions of three
approximation schemes.

DerNTION 2.1 (THE EULER scHEME). For every m € N, the Euler scheme X" : [0,1] - R
is defined by
=g,

g(m) _ (m) g (m) o (m)
X" = X0+ b )= 7)) + o (XD NBi = Bry) for il <1<

(—1

DerNiTION 2.2 (THE MILSTEIN TYPE SCHEME). For every m € N, the Milstein type scheme
X™ :[0,1] — R is defined by
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X =g,

_ _ _ 1, -

X" = X+ b - Tl + S0 (X ) - 1)

1 ’ ’ vim m
+5lob + o DIXE )(t = 7L )(B: — Bay)

_ 1 _
+ 0 (XU Y(B; = Bon )+ 00 (X9 )(B, — B ¥ for7 | <t <t
Ti-1 k-1 2 Tt k-1
DeriniTion 2.3 (THE CrANK-NIcOLsON scHEME). For every m € N, the Crank-Nicolson
scheme X : [0, 1] — R is defined by a solution to an equation
X" =g,
_ _ 1 _ _
X=X+ 2 {b(xj’:) ) + b(X,(m))} t-1")
k-1 k-1
1 yvim v im m m
+3 {a(xgz,j) + (X! >)} (B,—Bw ) fortj, <t<1.
Since the Crank-Nicolson scheme is an implicit scheme, we need to restrict the domain
of it and assure an existence of a solution to the equation above. Roughly speaking, the

existence of the solution is ensured for large m.
In order to state our main results concisely, we set w = ob’ — ¢’b and

@2.1) J, = exp ( f t b (X,)du + f [ o' (X,) d°Bu).
0 0

We assume the following hypothesis in order to obtain an expression of the error of the
scheme;

Hypotuesis 2.4. info > 0.

The following are our main results.
Theorem 2.5 (The Euler scheme). We consider the Euler scheme. Assume that Hypothe-
sis 2.4 is satisfied. For 1/2 < H < 1, we have

lim 2"CH=D(X™ _ X}y = o(X)U + J f J\W(X) U, ds
0

m—oo

in probability with respect to the uniform norm. Here U is defined by

!
u:fﬁmwm
0
where f, = —0' /2.

In this theorem, the limit is a continuous stochastic process indexed by the elements of
the interval [0, 1]. When we emphasize the time parameter ¢, we express the limit process as
-
cX)U; + Iy [5 I W(X)U, ds.

Theorem 2.6 (The Milstein type scheme). Assume that Hypothesis 2.4 is satisfied. We
consider Milsten type scheme. For 1/3 < H < 1/2 (resp. H = 1/2), we have

m—o0

lim 24X _ Xy = o(X)U + J f J\W(X) U, ds
0
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in probability (resp. weakly) with respect to the uniform norm. Here U is a stochastic

process defined as follows; we set

4 o

| , , ’ 7’ // 1
~ o' (ob +d'b)+o(c"b+ob )]’ f3:_§[((r')2+mf”],

1
ﬁj = ﬂ[aza’” +600’c” +3(07)], g1 =

(1) For1/3 < H < 1/2, we set

SRS

U = 3f fiX,) du.
0

(2) For H = 1/2, we set

Ut=flﬂ(Xu)du+\/6ff3(Xu)qu+3ff3(Xu)0dBu
0 0 0

! 1 [ .
+3 f (X)) du + — f (X,)dW,,
0 f4 V12 Jo g

where W and W are standard Brownian motions and B, W and W are independent.
Also dW,,dW, and o dB, stand for the Ité integral and the Stratonovich integral,

respectively.
Theorem 2.7 (The Crank-Nicolson scheme). Assume that Hypothesis 2.4 is satisfied. For
1/3 < H <1/2, we have

lim 272X _ Xy = o(X)U + J f J\W(X) U, ds
0

nm—00
weakly with respect to the uniform norm. Here U is a stochastic process defined as follows;

we set
1 N 7 1 N2 17 w
v =-[c'b+0"b], = —=ld") +05"], g = —.
4 12 o
(1) For1/3 < H < 1/2, we set
!
U, = 0’3,Hf LX) dwW,,
0

where o3y is a positive constant defined by (4.1) and W is a standard Brownian

motion independent of B.
(2) For H =1/2, we set

f t t 1 f »
U, = X,) du + V6 f X,)dW, +3 f X,) o dB, + — f X,)dW,,
fom )du + 0f3( ) + Ofa( ) +\/E 0gl( )

where W and W are standard Brownian motions and B, W and W are independent.

We make remarks on our main results.

(1) We explain how we derive ﬁ,gl,go,-,gl/,fj (i =2,3,4,i = 011,101,110). Since
Theorems 2.5, 2.6 and 2.7 are proved by the same method, we explain the case of the
Crank-Nicolson scheme (Theorem 2.7) as an example. In the first step of our proof,
we need to calculate one-step error k; of each approximation scheme as in (5.4). In
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that calculation, the functions fi, g1, @, @i, which are defined by o and b, appear as
the coefficients of the monomials of the increments of AB;, = Br;g' _BTL andA =27"
and iterated integrals of B, and ¢t (Lemma 5.6). We define the functions f;, g1, ¢, ¢;
by using £, §1,®, ¢; and express main part of the piecewise linear function A in
terms of f;, g1, ¢, ¢; (Lemma 5.7). Finally, we study asymptotic of 4" and then
define ¥ = ¢ + (wo11 + ¢110)/4 (Lemma 5.10). In the case of the Euler and Milstein
scheme, we show lemmas corresponding to Lemmas 5.6, 5.7 and 5.10. The function
fj in the Milstein scheme appears in studying in asymptotic of 2.

(2) Theorem 2.5 is an extension of [14], but the proof is completely different and com-
paratively more simple.

(3) In [6], the authors consider higher order schemes for SDEs without drift terms.
Theorem 2.6 coresponds to the second order scheme for an SDE containing a drift
term.

(4) Theorem 2.7 is an extension of [6, 13]. To our knowledge, the convergence of the
approximation solution itself is not unknown for 1/6 < H < 1/3 ([16]). When o(x)*
is a quadratic function of x, Theorem 2.7 is proved in [14] for 1/6 < H < 1/2. In the
case where H > 1/3, the convergence of the approximation solution is a pathwise
result, that is, the result holds for SDEs driven by Holder continuous paths with
Holder exponent which is greater than 1/3. However, the proof of [14] is due to a
central limit theorem and it is not clear that this is also a pathwise result.

3. ODEs driven by Holder continuous functions and SDEs

In this section, we define the symmetric integral in the sense of Russo-Vallois and discuss
a unique existence and properties of a solution to an ordinary differential equation (ODE).

Let 1/3 < A < 1. For a A-Holder continuous function g : [0,1] — R, we consider an
ODE

3.1 Xy =&+ f b(x,)du +f o(x,)dg,, te€]0,1],
0 0

where ¢ € R and d°g denotes the symmetric integral. We shall also write x,(¢, g), x(&), or
x(g) for the solution x to emphasize dependence on the initial value & and/or the driver g.
Since fBm with the Hurst 1/3 < H < 1 is (H — €)-Holder continuous with probability one,
we can deal with SDE (1.1) in pathwise sense by using the theory of ODEs (3.1). We have
A = H — € in mind. See Section 3.4.

We prepare notation. For g € €4([0, 1];R), we use the symbol C,, which may change
line by line, to denote a constant which has a bound

¢ {1 . sup 9 gsl}C2
0<s<i<t (= )1
for some constants C| and C,, which may depend on the Holder exponent A but not on g.

3.1. Existence and uniqueness. We collect facts on the symmetric integral and a solution
to an ODE (3.1). In what follows, we assume 1/3 < A < 1.
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Derinition 3.1. For continuous functions f,g : [0,1] — R, we define the symmetric
integral in the sense of Russo-Vallois by

! !
+ —
f fu dogu = llmf f(u+6)/\t fu ) g(LH—E)M Ju du
0 €l0 0 2

€

if the limit of the right-hand side exists.

Proposition 3.2 ([15, Theorem 4.1.7]). Leta € €'([0,1];R) and g € %0/1([0, 1]; R). Then,
for any f € C'3(R*;R), fot 02 f(ay, gu) d°g, exists and it holds that

f(at’ gt) = f(aOa gO) + j()‘ 6lf(aua gu) dau + L aZf(aus gu) dogu-

ReMArRk 3.3. Let a € €'([0,1];R) and g € %O/l([O,l];R). Let f € C"? (R%R) N
C!'(R*;R). Then, we can choose a primitive function F € C L3(R%;R) N C(R*;R) with
respect to the second variable, that is, f(x,y) = 0,F(x,y) for any x,y € R. Indeed,
F(x,y) = fo‘y f(x,n)dn is a primitive function and the continuity of 9 f implies 0, F(x,y) =

foy 01f(x,n)dn. Hence, from Proposition 3.2, we see fot f(a,, g,)d°g, exists and it holds
that

t 1
f fauws gu) d°gu = F(ar, g1) — F(ao, go) — f 01F(ay, gu) day.
0 0

The next proposition asserts that a symmetric integral is a limit of a modified Riemann
sum.

Proposition 3.4. Let a € €'([0, 1];R) and g € €;/([0,11;R). Let 0 =1y < -+ <1, =t be
a partition of [0, t]. For any f € C*(R?*;R), we see that

(glk - gtk,l)

Zn: f(atk—l > gtk—l) + f(atk’ gtk)
k=1 -

converges to fol flay,g9,)d°g, as max{ty — ty_1;k=1,...,n} tends to 0.

Proof. We use the formula in Remark 3.3. We have

t t
ff(au,gu)a’"gu=F(at,gt)—F(as,gs)—f61F(au,gu)dau

N

= {F(az, 9, — F(ag, g;) — f o\ F(ay, gu) dau} +{F(ay, g:) — F(ay, g5)}
- f (01 F @y, 91) — 1 F(ay. g2)) da

1
+ f(a5,9.(9: = 9) + 2 f(ay, 95 (9 - gs)

( - s)3
+ 6§f(as, gs + e(gt - gs))%

1
= (a5, 95)(g: = 95) + 02f (5,95 (9, - go)> + O(lt — 5" + O(lt - sI*),

where we used the Taylor formula and the Holder continuity of g. On the other hand, by
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using the Taylor formula again, we have

flag,g5) + f(ai, g1)
2

(9: = gs) = f(as, 9s)(g: — gs) + % {fas,g90) — f(as, 9} (g — g5)
b3 a9 ~ flas 0 (g~ 92
= (@901~ 9+ 59:f(@r, 906, ~ 9.7
+ iaif(as, gs + 0(g: = 9:))g: — 95)°

1 4
+ Ealf(as +0°(g: — 95), 9)(a: — as)(gs — gs)-
Therefore, we obtain

f f(au’ gu) dogu = f(al’ gt) -;f(as, gs)

(gl - gs) + R(Sa t)’

where |R(s, )| < Cylt— s|(I+VAGY By the additivity property of the integral, ﬁ ' flay,9,)d°gy
+ J;U flay,g.)d°g, = j;v flay,g.)d°g, (s <t < v) and a limiting argument, we obtain the
desired result. m|

Next we consider properties of (3.1). Let us start our discussion with properties of the
flow ¢ associated to o, that is, ¢ is a unique solution ¢ to an ODE

el
(32) o(@.B) = a + fo c($@m)dy. BeR.

Proposition 3.5 ([4, Lemma 2]). Let n > 1. For any o € C ,(R; R) and an initial point

a € R, there exists a unique solution to (3.2). The unique solution ¢ satisfies the following:
(1) ¢ € C""(R*R) N C"(R%; R),
() ¢(a.p) = ¢(d(a.B). 8- B),
() 16(@.p) = exp [ o (@t ) )

To state assertion about uniqueness of solutions to (3.1), we introduce a class € of the
solutions by

_ 1 .. there exist f € C'3(R%;R) and k € €'([0, 1];R) }
¢= {x € ¢"([0.11: R); such that x, = f(k;, g,) for all ¢ € [0, 1] ’

Note that € depends on g € €;([0, 1]; R).

Proposition 3.6 ([15, Theorem 4.3.1], [18, Section 3]). Let g € (50”([0, 11;R). Assume
that b € Ctl)dd(R; R) and o € Cﬁdd(R; R). Then, a unique solution to (3.1) in the class €
exists and it is given by

(3.3) X = ¢(ar, gr)s

where ¢ and a = a(¢, g) are given by solutions to (3.2) and

f
at = ‘i: + f f(r,b(am gu)du’ t E [0’ 1]’
0
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respectively. Here f,, = fi f> with

Y
filx, y)=eXP(— fo ff'(¢(x,77))d77), F(x,y) = b($(x, ).

Proof. It is easily shown that x given by (3.3) belongs to € and satisfy (3.1). Indeed,
Proposition 3.5 (1) implies ¢ € C>*(R*R) c C*(R?*R) and a € €'([0,1];R). From
Proposition 3.2 and Proposition 3.5 (3), we see that x satisfies (3.1). To prove the uniqueness,
we borrow results from [18, Section 3]. Let x be a solution in the class € and given by
x = f(k,g) for f € C3(R*;R) and k € €' ([0, 1]; R). Since f; x,d°g, = f; flkusg4)d°gy is
well-defined from Remark 3.3, set Ay, = fs ' x,d°g, — %(xt + 55)(gr — g5). Then, we deduce
that (x, A) is a solution to (3.1) in the sense of [18, Definition 3.1] from [18, Lemma 3.4 and
Proposition 3.5]. Finally, [18, Corollary 3.7] implies x; = ¢(a;, g;). O

Proposition 3.7. Let x be the solution to (3.1) given by (3.3). For fixed 0 < s < 1, we
have x,,(&,9) = x,(x4(&,9),059) forany 0 <t < 1~ s.

Proof. We first prove a; (x,(¢, 9), 059) = @, := ¢(as(&, 9), gs). From Proposition 3.5, we
see

1
— - fitey) = filg(x, )y —y), L6 y) = flelxy), y —y).
filxy")

Hence, it holds that

d d
Zat = 01¢(asi(, 9), gs)aasﬂ(g’ 9)

1
= @990 S1(asi(€, 9), gsi0) f2(as1i(E, 9)s Gsr)

= [fif2l(d(as(€,9), G5)s Gsit — Gs)
= fop(ar, (659)0).
By the definition of @ and Proposition 3.6, we have dy = ¢(as(&, 9), gs) = x4(€, g). It follows

from the uniquness of a solution that a, (x,(¢, 9), 6,9) = a;.
Combining Proposition 3.5 (2), Proposition 3.6 and this equality, we obtain

Xs41(&,9) = P(ag (&, 9), gsit) = P(P(as14(E, G5)s G5t — Gs)
= Pla(xs(£, 9), 059), (659)0) = x; (x5(£,9),659) ,

which completes the proof. m|

Remark 3.8. We assume the same assumption as in Proposition 3.6 and consider the
solution x to (3.1) given by (3.3). In the proposition, we consider Holder continuous paths.
However it is easy to check that the mapping g — x(g) can be extended to a continuous
mapping on C([0, 1]; R) with the uniform convergence norm || - ||. Further, by Remark 3.3,
for any f € C'*(R%;R) N C!'(R?; R), we have the continuity of the mapping in the uniform
convergence topology :

C(0,1;R)3 g+ fo flas(g), x,(9) d°g, € C([0, 1]; R).
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3.2. The Taylor expansion and its remainder estimates. For notational convenience,
we set g0 =1, g! = g, for 0 <t < 1. Let x be the solution to (3.1) given by (3.3). Assume
that b € C},,(R;R) and o € CZ,(R;R). For 0 < s <t < 1and f € C2,,(R;R), we can
define

1= f Fx) dgl, 1) = f fr) &g

Here, I°(f) is a usual Riemann integral. As for IL(f), the reasoning is as follows. By
using functions ¢ and a given in Proposition 3.6, we have f(x,) = [f o ¢](a,,g,) and f o
¢ € CY2(R%;R) N C'(R?*;R). From Remark 3.3, we see F(x,y) = J(;y f(x,n) dn belongs to
C'3(R?;R) N C'(R?;R) and it holds that

Islz(f) = f[f o ¢](au’ gu) dogu = F(atv gt) - F(aS7 gs) _f alF(am gu) dau-

Hence we see IS'[( f) is well-defined. Further, for any «;,..., @, € {0, 1}, we can define the
iterated integral

!
B = [ agy

inductively in the same way. For f = 1, we set g, ™" = I " (f). Weset Vo = b, V| = o
and define a vector field by V, f = V,f".
From Remark 3.3, we see the following estimate.

Lemma 3.9. Assume that b € Cl,,(R;R) and o € C} (R;R). Let f € C2,,(R;R).

Let ay,...,a, € {0,1} and set r; = #{k = 1,...,n;ar = i}. Then, there exists a constant
C = Cfya,...a, which depends only on f, the Hélder constant of g and a1, . .., a, such that,
forany O <s<t<1,

I ()] < Ct = )+,

We use the above Taylor expansion and the estimate of iterated integrals in the calculation
below. Using Proposition 3.2, we can prove the following by induction on #;

Proposition 3.10. Letn > 0. Assume that b, o € ng(f(R; R). Then, forany0 < s <t <1,
we have

st

Xt — Xg = Z [vm T vozk,l Vm] (xs)galmak

+ Z Ig,az---am (vozl vaz o 'van Vam)-

Ao, W41 €{0, 1}

We calculate each terms in Proposition 3.10. We first note that the p-th iterated integral
g%, is equal to (g¢¥ — ¢g$)?/p!. This can be checked by a direct calculation.

Proposition 3.11. Assume that b, o € ngd(R; R). Then, forany 0 < s <t < 1, we have
1.,
X = Xy = bx)(t = 5) + ()9 = 9,) + 5 [0 (x)(g: — 9,)°

1 1
+ 57 0@V ()9 = 99° + 7 o (@ (@) Y] (x)(g: = 95"
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+ [bo"1(x)(gr = )t = ) + (b’ = bo' 1(x5)gy) + %[b'b](xs)(t - s)

+[b (00’ 1(x)g%" + [0 (bo’) 1(x)g™" + [0 (ab') 1(x)g 110 + 7y,

st
where |rS[| < Cg(l _ S)min{2+/l,l+3/l,5/l}.
Proof. Set
JSI - Z [vflfl e v(l/k-l Vak] (xS)g;ltl Ulk’

ay,....,ax€{0,1}

jft = Z IS(Ytlmak (vfll e v(lk—l Vllk) .

ay,...,ar€{0,1}
Then we see x, — x; = JL + -+ J* + J> and
5y = b(x)g5 + T(x5)gy;s
Jo = 00 )(x)gy + [ob1(x0)gy + 0o’ (x)gy + oo’ [(x)gy
Ty = [0 Y1093 + [0 b’V 1(x)gy" + [boo’Y1(x)g ' + [o(oa’Y 1x)gy + 1y,
T3y = [o(o(oo' )Y gy + 17,
where 70 and '} satisfy [r'] < C,(t — 5> and |7 < C,(t — )"+, respectively. In
addition, we have |J3| < C,(r — 5)>'. Noting [00'](x,)gL) + [bo'1(x:)g% = [bo”](x,)(g; —
gs)(t = 8) + [ob’ — bo'](x,)g'?, we complete the proof. m]

st

3.3. Directional derivatives of solutions. In what follows, we assume that Hypothe-
sis 2.4 is satisfied and find expressions of the solution x = x(g) to (3.1) given by (3.3) and
its directional derivatives. We follow the approach employed in [3] in order to do so.

Forg € %0”([0, 1]; R), we set

(3.4 Ji(g) = exp ( fo b'(xu(g)) du + fo o’ (xu(9)) d°gu).

This is a deterministic version of (2.1). Note that J,(g) is expressed by
a(x1(9)) "[w

(3.5) Ig) = T2 exp ( f H (xu(g)) du).
o (x0(g)) o Lo

Indeed, we see

log o(x/(9)) = log(o o ¢)(ai(9), g:)

/

!
b
:loga(x0)+f g
0

o

](xu(g))dw fo o’ (x.(9) d°gy

from Proposition 3.2. This implies

/

t b !
o (x(g)) = o(xo) exp ( fo [GO_ ](xu(g)) du + fo o’ (xu(9)) d°gu).

Substituting the above to (3.5), we obtain (3.4).

Proposition 3.12. Let b,o € C{)’:{dl(R; R) for n > 1. Assume that Hypothesis 2.4 is

satisfied. Then, the functional g — x,(g) is n-times Fréchet differentiable in CKOA([O, 1]; R).
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In particular, the derivatives satisfy the following;
(1) Foranyh',...,h" € CKOA([O, 1]; R), we have

Vi - Ve @)l < Collr o - -~ 17 |,

where C, is a positive constant depending only on b, o and v.
(2) The first derivative V,x,(g) is expressed as

Vixi(g) = o(x(g)h, + fo J(@)(J(9))” W(xs(g)hy ds.

(3) If his Lipschitz continuous, then V,x,(g) is expressed as

Vixi(g) = fo hso (x9NI Us(9)) ™" ds = o(x(g)) j; eXP( f [g](xu(g))du)hsd&

In order to prove Proposition 3.12, we set

*d - |b
F(X)=f —f, G=F", b=[—]oG, Yo = F(xo).
o 0 o
We consider a solution y to an ODE
!
(3.6) w=w+ [ Buditg,
0

Then we obtain an expression of the solution x; to (3.1) as follows;

Proposition 3.13. Let y be a solution to (3.6). The solution x to (3.1) given by (3.3) is
expressed by x = G(y).

Proof. Due to Proposition 3.6, we see the assertion by showing G(y) € € and it satisfies
(3.1). Note that the solution y is given by y, = &, + g;, where @ is a solution to @, = yo +
fot b(a, + gu) du. Hence G(y) € €. We prove that G(y) satisfies (3.1). From Proposition 3.2,
we see

G(y;) — xo = G(a,; + g;) — G(ap + go)
! !
=fcmﬁmmmﬁfG@+mfw
0 0

The first term is equal to
f o(G(a, + gu))l;(au + gu) du = f o(G(a, + gu)) [g] (G(a, + gu)) du
0 0
=£Mawmu

and the second one is fot o(G(y,)) d°g,. We see that G(y) satisfies (3.1). The proof is com-
pleted. |
We see that the solution y;, to (3.6) with any coefficient b and initial point yj is differentiable.

Proposition 3.14. Assume that b € Cl’jgdl (R;R) for n > 1. The functional g — y,(g) is

n-times Fréchet differentiable in ‘504([0, 1];R).
In particular, the derivatives satisfy the following;
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(1) Foranyh',...,h" € (fo/l([O, 11; R), we have
Vi -+ Vi@ < Cyllh o - -+ 17" ]]oo

where C,, is a positive constant depending only on b and v.
(2) The first derivative V,y,(g) is expressed by

Viy(g) = hy + fo eXp( f 5’(yu(g))du)f?’(ys(g))hsds.

N

For the sake of conciseness, we omit the proof of the above proposition and show Propo-
sition 3.12.

Proof of Proposition 3.12. The differentiability and Assertion (1) follow from Propo-
sitions 3.13 and 3.14. Noting E’(y,(g)) = [w/c](x:(g)), we see that Assertion (2) is true.
Assertion (3) follows from Assertion (2) and the integration by parts formula. ]

3.4. SDEs driven by fBm. We consider the existence and properties of a solution to an
SDE (1.1). Let us start our discussion with the definition of fBm;

DeriniTion 3.15. A one-dimensional centered Gaussian process B = {B;}o<;<w Starting
from zero is called fractional Brownian motion (fBm) with the Hurst 0 < H < 1 if its
covariance is given by

1
(3.7) E[B:B] = R(s.0) = 5 {2+ 21— e = P}

It is well known that fBm B has stationary increments in the sense of E[(B; — B)(B, —
B.)] = E[(Bt+qa — Bs+a)(By+a — Bura)] forany 0 < s <t <u <v < ooand 0 < a < oo and that
it has self-similarity, namely, for any a > 0, {a™" B,;}o<i<c is also fBm with the Hurst H. In
addition, it has a modulus of continuity of trajectories; there exists a measurable subset Qg
of Q such that P(€)y) = 1 and for any O < € < H, there exists a nonnegative random variable
G. such that E[G?] < oo for any p > 1 and

(3.8) |Bi(w) = By(w)| < Gw)lr — 5"~

for any 0 < 5,7 < o0 and w € €.

Assume that 1/3 < H < 1. From Proposition 3.6 and the Holder continuity of fBm (3.8),
we see existence of a unique solution to the SDE (1.1) in the pathwise sense. More precisely,
since B(w) for any w € Qp is (H — €)-Holder continuous, a solution X to (1.1) is give by
(3.3) and it is unique in sense of Proposition 3.6. In the same way as x, we shall also write
X (&), X(B), or X(¢, B) to emphasize dependence on the initial value & and/or the driver B.

Proposition 3.16. Assume that b € Ct]) WRR) and o € Cg 1d(R;R). Then there exists a
unique solution X to (1.1) and the following are satisfied:
(1) X is adapted to the fBm filtration {F;}o<<1, where F; = 0(B,;0 < u < t),
(2) t — X, is (H — €)-Holder continuous a.s. for every 0 < € < H,

(3) for any r > 1, there exists a positive constant C such that
E[IX, - X,J1" < C(t = )"

foranyO0<s<t<1.
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Proof. The first assertion follows from Proposition 3.6. We show the second and third
assertion. We decompose X; — X into {¢(af3 ,B,) — ¢(af ,B)} + {¢(af ,B)) — ¢(af, By)}. From
Propositions 3.5 and 3.6, we have

!
lpal, B,) — p(a?, B,)| < P! f caeBd du,

N

\p(a®, B,) — ¢(a®, By)| < c4|B, — By,

where ¢y, ¢, ¢3, ¢4 are positive constants. The proof is completed. m|

4. Convergence of variation functionals

Let B = {B;}p<;<1 be an fBm with the Hurst 1/3 < H < 1 and X = {X;}o</<1 the solution
to (1.1) given by (3.3). We assume that b, € Cp; (R;R). For these processes, we define
the weighted Hermite variations and the trapezoidal error variations. The purpose of this
section is to present necessary results for asymptotics of the variations.

Let f € Cﬁgly(R;R) forg > 2and g € Cgoly(R; R). Let u be a probability measure on
[0, 1]. For every 0 < s < ¢t < 1 and continuous path x : [0, 1] — R, define

1
Fuo = Fif0 = [0+ (1 = 000 o
0

We define the weighted Hermite variations U ;m)(t) = U;"})ﬂ

(1) by
[271]
(m) _ mH
US" ()= ) Fyp ep(OH, 2" Bey o)
k=1

and the trapezoidal error variations U"(f) = U ;m)(t) by

I_zmlJ 1 T;(n

F7(m) ¢y —

U™ = Z g(Xr':l)(WBrg’lT;y - f Brz’ludu)'

k=1 Th-1

Here, B;; = B, — By for 0 < s <t < 1 and H, is the g-th Hermite polynomial defined by

1yt dt

Hy&) = (-1

The first few Hermite polynomials are H (&) = &, Hx(é) = & — 1, Hy(¢) = & — 3¢, and
Hy(€) = & — 6£2 + 3. We set Hy(¢) = 1 by convention.

The following limit theorems are vital for our proof. These results are proved in Ap-

pendixes B and C.

8_52/2.

Theorem 4.1. Let g > 2 be even. We have
[2"] .
lim 27010 3 Foy o (X)(Bry ) = EIZ) fo f(X)ds
k=1
in probability with respect to the uniform norm. Here Z is a standard Gaussian random
variable.
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Theorem 4.2. Let g > 2 and 1/2g < H < 1 —1/2q. We have

lim (B,27"2U") = (B TgH f f(X)dW)

weakly in the Skorokhod topology, where o,y is a constant defined by (4.1) and W is a
standard Brownian motion independent of B.

Theorem 4.3. Let g > 2 and H = 1/2. We have

lim (B, 272U, 2"0™) = (B V! f F(Xy) dW,, — N f g(X)dW)

weakly in the Skorokhod topology, where W and W are standard Brownian motions and B,
W and W are independent.

Proposition 4.4. If0 < H < 1/2 (resp. 1/2 < H < 1), then the process 2" U™ for
0 <r < 2H (resp. 0 < r < 1) converges to the process 0 in probability with respect to the
uniform norm.

In order to prove Theorems 4.2 and 4.3, we use a simplified version of them. Let g > 2.
We set

[2"1]

V(D) =27 N Hy @™ Bey o)
k=1

and

m

2] v
) - . 1 k
V(m)(t) =272 Z 2nD [2 .m BTL T f BTZ[—I” du)‘

k=1 k-1

Then, we see V;m) =2 ZU;"})# and V0" = mH+1/2) U;m) for f = g = 1 and the following:
Proposition 4.5. Assume g >2 and 0 < H <1 —1/2q. Then we have

lim (B, Vg, V™) = (B, oy W, 51 W)
m—00

weakly in the Skorokhod topology. Here W and W are independent standard Brownian
motions independent of B, and o,y and oy are positive constants given by

(4.1) oy = [1 +2ZpH(1)q]

11
=7 +2ZpH(l)

with
1
pu(D) = E[Bi(Br. = Bl = S (Il + 1P 1= 1P = 20P7),
1 1 1 [+1
pu(l) = E [(531 - f B, du) (E(Bl“ - B) - (By = By) du)] -
0 I

We close this section with making remarks on results above:
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REMARK 4.6. (1) In Appendix B, we show Proposition 4.5 by showing relative com-
pactness (Lemma B.5) and convergence in the sense of finite-dimensional distribu-
tions (Lemma B.6). In the proof of Lemma B.6, we show independence of B, W
and W by using the multidimensional fourth moment theorem by Peccati and Tudor
[20].

(2) In Appendix C, we show Theorems 4.1, 4.2 and 4.3 and Proposition 4.5. In order
to prove Theorems 4.1, 4.2 and 4.3, we use good properties of the solution X: for
example, the continuity of the solution map B +— X, the continuity of the map
t — X; and Malliavin differentiability of X;. In addition, Proposition 4.5 is essential
for Theorems 4.2 and 4.3. Since Proposition 4.5 is a consequence of the fourth
moment theorem, these theorems are also consequences of it.

(3) Theorems 4.1 and 4.2 are slight extensions of [6, Theorem 2.1], [17, Theorem 1]
and [13, Theorem 15]. In these references, the authors showed convergences of
the weighted Hermite variations U, ,(]'") in which F o o (X) are replaced by f (BT;:’—I)
or Frn (B), that is, they considered functionals which are expressed by fBm B
explicitly. On the other hand, we consider functionals of the solution X to (1.1)
in Theorems 4.1 and 4.2. Theorem 4.3 is an exention of Theorem 4.2 in the case
H=1/2.

(4) Since a standard Brownian motion has independent increments, we see pj,2(l) = 0
and pyo(/) = 0 for [ > 1. Hence we have o1/, = @ and oy = I/Vﬁ.

5. The Crank-Nicolson scheme

In this section, we show Theorem 2.7. Below, we fix sufficiently small 0 < € < H and
write H~ = H — €. Form € N, we may write A = 27", ABy = By o (1 < k < 27),
AABY)" = A-(ABY)" (n = 1,2,...) and A(ABy) = A(ABy)'. We use the notation Bf;t
(@ = 10,01,011,101,110) to denotes the iterated integral introduced in Section 3.2. We
denote by O(AP”) the term which is less than or equal to CA?, where C does not depend on
m and &.

5.1. Well-definedness of the Crank-Nicolson scheme. Since the Crank-Nicolson
scheme is an implicit scheme, we need to define the set on which the scheme can be de-
fined. Recall that (Q, F, P) denotes the canonical probability space which defines fBm B(w)
with the Hurst H and

Qy = ﬂ {w € Q; B(w) € 6"([0, 11; R)}.
O<e<H
For every m € N, we define

Bi(w) — Bs(w)|
QN = n{weQ; sup Bi(w) = Byl 1
0 p—si<am (£ = s)H™€

Note that QN ¢ QN+ for any m and lim,,—,. P(QN™) = 1 for the fBm with the
Hurst H. We show that the Crank-Nicolson scheme is defined on QN for large m.
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Proposition 5.1. Suppose

1+1 !
(5.1) m > max {1 + log,(sup b)), - 10&26uPlT D}.
H-e€
Let 0 < s <t < 1 satisfy |t — s| < 27™. Then for any ¢ € R and w € QN there exists a
unique n, satisfying
b b
+ (&) + (nt)(t— 5) + (&) + o)

5 5 (Bi(w) = By(w)).

m=¢&

Proof. Set
1 1
F(o6,Am)=n—|&+ 3 {b(&) + b} + > {o(&) + oI A|.

If |6] < 1/2sup|b’]) and |A| < 1/(2sup|o”’]), then [0F/On](&,0,A;n) = 1 = {(1/2)b'(n)d +
(1/2)d”(n)A} satisfies

oF 1 1 1
. >1—_1p A >
an (£,6,A:m) > 1 2Ib (mllé] 2IO' (MIAl = >

which implies that n = F(¢, 0, A; n) is strictly increasing. Hence there exists a unique value

f(&,0,A) such that F(&,6, A; f(£,6,A)) = 0and f(£,0,0) = £.
Under the assumption on m and s, ¢, it holds that 1 —s < 1/(2 sup |0’|) and |B,(w) — Bs(w)| <
1/2suplo’]) (w € QCNmY Hence 7, is uniquely defined as n, = f(&,1 — s, Bi(w) — By(w)).
|

Remark 5.2. Clearly, the implicit function f(£,0,A) (¢ € R, 0] < 1/Q2sup b)), |A] <
1/(2sup|o’]) is a C* function.

5.2. Proof of Theorem 2.7. The Crank-Nicolson approximation solution X can be de-
fined on QN for m in (5.1). From now on, we assume m satisifes (5.1). For w ¢ QN
we always set X"(¢, B) = &.

To study the error X" — X, we prove that there exists a piecewise linear path 4 such that
Xon(€, B+h) = )_(%'f)(f, B) forall 0 < k < 2™. Let h be a piecewise linear path defined on [0, 1]
with iy = 0 whose partition points are dyadic points {Tf}izo. Then 4 can be identified with
the set of values at the partition points {h(t})};_ . We write k, = h(tj)—h(r}" ) (1 < k < 2™).

Lemma 5.3. Let w € Q. Then there exist unique k; € R (1 < k < 2™) such that

XO)&, B) = Xen&, B+ D), 1<k<2"
k

We denote the above i by 1. Although k; depends on m similarly, we use the same
notation «; for simplicity. 2" (w) is defined for all w € Q. Of course, the definition of X
on Q \ QN jg essentially meaningless and the behavior of 2™ on Qg \ QENO™ hag nothing
to do with the asymptotics of the error. Before proving the existence of A", we give a rough
sketch how to prove Theorem 2.7 by using 2.

REMARK 5.4 (ROUGH SKETCH OF THE PROOF OF THEOREM 2.7). We decompose h"™ as h™ =
h;’;’) + h;m). Here, h;’;’) 1s the main term and we see
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(5.2) lim 2"CH-Dp™ — 7 in law,

m—o0

where U is a random variable. The term hgem) is the remainder term satisfying that for small
0 >0,

(5.3) lim 2"CH=IR) =0 in probability
m—-0oo
By using the derivative of X(¢&, B) with respect to B, we have 2"CH-2{X(m (& B)—X(¢&, B)} =
L+ 1L+ 15, where
Il = V X(f, B)7

I = "X, B) - X(€.B+ W)

3H-1 (m)
@My 2 by

I = (2m)3H-1 {X(g, B+h") - X(¢, B) - V,mX(E, B)} .

By the convergence 2”1(3H‘%)h§:4") — Uinlaw, wehave I, =V X(&,B) — VyX(&,B)

mG3H-1); om)
2 2hy,

in law. Since
m -1 m
I~ 2"CHDX(£ B+ ™) - X(£. B+ W)} V gy X € B),

the middle term converges to O in probability. For the third term, considering the second
derivative, we have

1

I ~ 2"CH-0 V2 X(£, B).

2 hy
Therefore this term also converges to 0 in probability because h;’;’) is of order 27"3H-2) I
the following, hg{,’;) and hg") are piecewise linear paths corresponding to {k;} and {R;(w)} in
Lemma 5.7.

We conclude this remark by making a comment on (5.2) and (5.3). The convergence (5.2)

of the main term is shown by Theorem 4.2 and so on in Lemma 5.10. By using this result,
we see the convergence (5.3) of the remainder in Lemma 5.7. We should mention that the

method used in Lemma 5.7 makes estimate of the remainder simpler drastically than that of
[13].

We now prove the existence of 4. To this end, we need the bijectivity of the map
Kk = X;(&, B + k) which follows from the following lemma. Here ¢, = ¢. This lemma is an
immediate consequence of Proposition 3.12 (3).

Lemma 5.5. There exist positive numbers Cy,C, which are independent of B,&,t such
that

d
Cit < —X(& B+«l) < Cot.
dk
In particular, the mapping R 3 k — X,(&, B + «{) is bijection on R.

We prove Lemma 5.3. We write & = X’gﬁ’)(f, B).

Proof of Lemma 5.3.  We prove this lk)y an induction on k. Let k = 1. It suffices to
prove the existence «; satisfying &1 = Xp-»(&, B + 2"k ). Since k — Xp-n(€, B + 2"k{l) is
a bijective mapping, « is uniquely determined. Suppose the equality holds upto k. Noting



ERROR ANALYSIS FOR APPROXIMATIONS TO SDEs 399

Ery1 = XTZzH(f,B + h) is equivalent to &4 = Xzfm(fk,OTTB + 2"Kki+1€) and by applying
Lemma 5.5, the proof is completed. m|

In the rest of this subsection, we state some key lemmas (Lemmas 5.6, 5.7 and 5.10) for
Theorem 2.7 and show the theorem. The key lemmas is shown in the next subsection. In
these lemmas, we calculate «; and determine the main term of the error. By the definition,
ki (1 < k < 2™) satisfies the equation

(5.4)
Xo-n(&x-1, 0 B+ 2" 140) — Xoon(Eg1, O B) = {€k — &1} — {Xo-n(Ekm1, 0z B) = &k}
We set k; by the left-hand side of the above equality. The quantity &y is the 1-step error of

the Crank-Nicolson scheme. We calculate k; and x; with small remainder terms. By this
calculation and the Holder continuity of B, we see that max;<g<om |X§'Z,1) - X7Jk11| converges to
k

0if H > % (Lemma 5.6). This is a rough estimate. We improve it later by identifying the
main term of the error (Lemma 5.7).
In order to express ki, we introduce

| » 1

fi=5lote” +a@)), fa=glotc” + 507 0" +20(@)), g =w,
1 1

b= [y + |+ 5lbo” + o0l )

®o11 = =b(ad’),  ¢io1 = —o(ba’), @110 = —o(ob’).

Here, we recall w = ob’ — 0’b. We also see that the main term of «; is expressed by the
following functions:

1
f= E[mf” +(0), fi= ﬁa(aa’” +30'0”), g1 = ‘g
1 [b(o)? 1
=7 [ @) +ob” |+ E(ba’" +0'b),
b(o-o-l), N\’ N\’
Qo1 = -————, Qo1 = =(bd’), @110 =—(ob")".

Note that f; = (ﬂ - o"f3)/0' and that h = fz/U for h = f3,91, ¢, do11, d101, P110- By a simple
calculation, we have f; = o f;/2. This identity is a key for the convergence of the main term
of the error similarly to the case where b = 0 ([14, 13]); see Lemma 5.10.

The expression of k; and the convergence of maxi<<om |Xg;)_xfi"| are obtained as follows:

Lemma 5.6. For any w € QN the following hold.
(1) We have

A A A
R = f3E-DBBY* + fa&e)(BBY* + §1E-1) (EABk - Bigl,zf)

+ P(E1)AABL)” + @011(&—1)32::@117;: + @101(&—1)31;9}171; + @110(&-1)3%1301 o
+ O + 0N 1y + oA ).

(2) We have &, = O(A), k, = O(A3F7) and
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max [Xe (&, B) - X0 (& B) = 04" ).
I<k<om K
In particular, the Crank-Nicolson approximation solution converges to the solution
itself at the partition points uniformly if H > %
(3) We have

max |X," (&, B) - X,(¢&, B+ )| = 0(A’"").
0<r<1

The next lemma asserts that &, is the main term of ;. As stated in Remark 5.4, in order
to prove it, we use not only the Holder regularity of B but also the convergence in law of the
main term of A",

Lemma 5.7. For1 <k <2™ let

_ A
R = [3(Xep JABY + faXey NABY" +91(Xey ) (EABk - Biglﬂkn)

+ o(Xap JAAB)® + @011 (Xep )BY n + @101 (X )Bry o + @r10(Xer DBy

1Tk

and set Ry(w) = ki — &. Then there exists 8 > 0 such that limy_e(2™)*7~2%0 max; <o
|Zf=1 R;| = 0 in probability.

REMARK 5.8. Although &, and k; are defined on Q, the definition of x; on Q; \ QN
is essentially meaningless. However, the statement of the convergence of R, makes sense
because lim,,_,c, P(QNM) = 1.

The following processes are candidates of the main term of A™:

L2m IJ

O1(0) = Y {AXeg NABY® + faXer JABY},

k=1

[2"1] A
() = ) g1(Xer,) (EABk - Bi'?,rz’)’
k=1

[2™¢]

(5.5) D3(1) = ;{cp(XT;gl)A(ABk)z + @on1 (Xer )ng}flfg

101 110
+ @101 (X‘r;f_] )Bf",lT;T + ‘PIIO(XTf_l)Bﬂfl]T?},

[2"1]
’ A 10
Dy(r) = - ;[910' 1(Xer )ABy (EABk - Br:kn_lfzkvz) :

RemMark 5.9. The processes @, @, and @5 are arising from the expression of k. In order
to prove Lemma 5.7, it is necessary to consider @, together.

By using Theorem 4.2, Theorem 4.3 and Proposition 4.4, we can show the next lemma,
which gives us asymptotic of @, ©,, ®3 and Dy.

Lemma 5.10. Ler W and W be standard Brownian motions. Assume that B, W and W
are independent. The next assertions hold.
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(1) Let % < H < % Then (B, (2’")3H_%((D1,CD2,(D3,CD4)) converges weakly to

(B.os. [ £5(X)dW;,0,0,0) in D([0, 11:R*) with respect to the Skorokhod topol-
0gy. Here, 03 iy is a constant defined by (4.1).
(2) Let H = % Then (B,2"(®y, Oy, O3, Dy)) converges weakly to

' ' 1 ' ~
B,\/gf Xs‘ dWs‘ 3f Xs OdBv,_f Xs dWw
( 0fa( ) dW, + 0f3( s) N 091( )

. |
f o(Xs)ds + Zf {po11(Xs) + p110(X)} ds, 0)
0 0

in D([0, 1]; R*) with respect to the Skorokhod topology.

We are in a position to show Theorem 2.7. Proofs of Lemmas 5.6, 5.7 and 5.10 are
postponed in Section 5.3.

Proof of Theorem 2.7. We follow the idea in Remark 5.4. Let h;}") and hg") be piecewise
linear paths associated with {&;} and {Ry}, respectively, in Lemma 5.7. By Lemma 5.10, we
have the weak convergence in the Skorokhod topology in D([0, 1]; R?),

(B.@"yH2 (@) + ®; + 03)) — (B,U),

where U is the same process defined in Theorem 2.7. Since h;'l") is a piecewise linear and
@, + ®, + O3 is step function, we have

I = (@) + @3 + D3]l = OA*) e QN

Hence lim,,_,«(2")*" -3 ||h5(,’;) — (@ + Oy + O3)||es = 0 in probability. Consequently, we have
the weak convergence in the uniform convergence topology in C([0, 1]; R?):

(5.6) (B.@">2h7) > (B, U).

As stated in Remark 5.4, we have (2’”)3H‘% (X (&, B) — X(€,B)) = I, + I, + I3, where
1=V gy XEB)
= @72 (X B) - X B+ ),
I = (2™ {X(g, B+ )~ X(6,B) - VX, B)} .

We consider I, and /5 first. By Taylor’s theorem, we have

X, B) ~ Xi(&. B+ hy)| < X", B) = Xu&. B+ h™)|
+IX,(& B+ h™) - X,(&, B+ B

< |X"(&,B) - X,(£, B+ h"™)] +

1
f VX (&, B+ 0h") del :
0 R
By using Lemma 5.6 (3) and the boundedness of the derivative, we have
v(m (m) 3H™ (m)
IX"(&, B) = X(&. B + hy )l < CLA™ + 1hg" |}

Here C is a constant independent of m. Combining this and Lemma 5.7, we have ||15||
converges to 0 in probability. Similarly, we have
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53]l < CQ™Y2RI|2 — 0 in probability.

We next consider the main term ;. Let J,(g) be the continuous path defined by g in (3.4).
By Remark 3.8, the mapping g — J(g) is continuous on C([0, 1]; R). From this, we have the
continuity of the mapping

C([0, 11;R?) 3 (9,2) = o (x(9))z + J(9) f I (gwW(x,(9))z, ds € C([0, 11;R).
0
Combining Proposition 3.12, (5.6) and the above, we complete the proof. |

5.3. Proof of key lemmas. In the rest of this section, we show Lemmas 5.6, 5.7 and 5.10.
Lemma 5.6 follows from the next lemma immediately:

Lemma 5.11. For any w € QN the following hold.
(1) We have

1
& — &1 = D&)A + 0(E-1)ABy + E[a'a]@kfl)(ABk)Z

1
+ 7 |o@) + P @By +

1 444 3 / ’’ 1 /
EO' o+ go'za' o’ + §0'(0' )3] (fk_l)(ABk)4

+ = [0’b+ b | (E1)AABy) + i (b0 + 0?b") + 2(0ba” + oo’ ) | (- 1)AABY?

—_— NI | —

+ =[bV'1(E)A + 0Ny + oA .

[\

(2) We have
X (k1,07 B) = &k
1 1
= b(&-1)A + 0 (&-DAB + 3 [007] (E-1)(AB)? + 31 lo@a)] (E-1)(ABy)?

1
+ 51 [0@(@0)) ] G)ABY* + (b0 )EDADBY + (b = bo'JE-)BY

+ b0’ (- 1)BYy o+ (b0 (G 1)By oo + (0D (E1) By
1 . . .
+ 5[b'b](gk,l)A2 + 0N + 0N + oAF ).

Proof. (1) & is determined by the equation

)+ b(&-1)+ b
0 (x-1) O'(fk)ABk N (x-1) (é:k)A‘
2 2
Since the implicit function is C* as in Remark 5.2, there exist constants a; g, ..., d40, do.1,

(5.7) &k = &1 +

ai, dz) and app such that

4
€= &1 =) aio(ABY +ag A+ a1 AABY) + ar i AGABY) + ap oA’
i=1
+ oA Y o).

Putting this expansion of & into the equation (5.7) and compare the coeflicients of the both
sides of equation, we obtain the desired formula.
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(2) This is a immediate consequence of Proposition 3.11. m|

Proof of Lemma 5.6. (1) The assertion follows from Lemma 5.11 and the definition of
Ry
(2) The estimate &x = O(A**") follows from (1) and the Hélder continuity of B. It follows
that k; = O(A*") from the estimate of &; and Lemma 5.5. By combining «; = O(A**") and
the Lipschitz continuity of the mapping B +— X(B), we obtain the last assertion.
(3) Since Lemma 5.11 for A = 7 — 7" | is still valid, for 7]" | <7 < 7", we have

X" (&, B) = X(&, B+ h™) = {X"(&, B) = &1} — (Xean (o1, 0 (B+ ™)) — &1}
= O(h™ - hi’;j ).

Noting O(hgm) - h(T’,ff) ) = O(ky) = O(AH), we see the assertion. m]
k-1

Next we show Lemma 5.10. To prove this lemma, we use the following results concerning
the Skorokhod topology.

Proposition 5.12. The following hold.

(1) The mapping D([0, 1];R?) 3 (x,-)f:1 - (Zflzl x;) € D([0, 1]; R) is continuous.

(2) The mapping D([0, 1];R?) 3 x - SUPg<,< x| € R is continuous.

(3) We assume random variables in this statement are defined in the same probability
space. Let {X,}7, and {Y,};’, be random variables with values in C([0, 1];R%)
and D([0, 11;R®), respectively. Let {Z,}7, be random variables with values in
D([0,1];R%). Let ¢ C([0, 1;RY) — C([0,1]1;R%) be a continuous mapping.
Suppose that (X,,Y,) € D([0, 1]1; R1*%) converges to (X, Y) in law with respect to
the Skorokhod topology and ||Z,||c — 0 in probability. Then (X, Y,, ¢(X,), Z,) con-
verges in law in the Skorokhod topology to (X, Y, ¢(X),0) € D([0, 1]; R%+d2+dstdsy,

Proof of Lemma 5.10. First, we consider ®@; and ®,. Recalling f; = o f;/2, we have
LX)+ fa(Xen JAB = {f3(Xen ) + f3(Xen)}/2 + O(A*) + O(A). Hence

@ X NABY + fa(Xep NABy))
(X )+ [5(Xen)

=@"'"? Hy (2" ABy)
Xen )+ f3(Xpn
@B D )

2
where R, x(B) = O(ASH —3H+1) 4+ O(A ~3H+3) Note that limy, e Y2 [Rysl = O for any
w € |J,, QN By Proposition 3.4, we have

LZZ:J (X )+ f3(Xen)
2

ABy - f (X)) B,
0

50, we U QENGm),
k=1 m

[ee]

By Remark 3.8, the mapping B — fOA f3(X,)d° By is continuous in the uniform norm. By
Theorem 4.2, Theorem 4.3, Proposition 4.4 and Proposition 5.12 (3),
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(B,@" 3 (@, ®y))
' ' 1 ' -
B.V6 f (X)) dW, +3 f (X)) d° By, —— f <Xs)dWs), H=1),
( ) ) iz ?
(B,U'S,Hf f3(Xs)dWs,0), 1/3<H<1/2
0

-

weakly in the Skorokhod topology. Note that o5 1= V6. (See Remark 4.6.)
Next, we consider ®3. Suppose 1/3 < H < 1/2. By Lemma 3.9, for any w € QN0

2’)1
1 — 1
@72 3" (AABO? + BS ol + 1B L+ 1BLO ) = O 33,
— The-1Tk The—1Tk T-1Tk

Hence ||®3|| converges to O in probability. We consider the case H = % Then we have

t U _o\2
B! = f ( f (r—s)dBr) aB, + 43) :

! U
B = f ( f (Br—Bodr) dB,

t i _ )2
Bl = f ( f (B,—BS)dB,) du+ 4S) ,

where dB, is the It0 integral. By the same reason as for @5, we see that for almost all w
uniformly,

m, 1 f
2] .
) . - wi(Xy)ds, i=011,110,
Jim 27 ) @iy By = 34 Jo
k=1 0, i=101.

By a similar calculation to the above, we have

2"

lim 2™ Z @(Xen YA(ABY)? = f ©(X,)ds a.s. w uniformly.
m—-oo k:l 0

Hence, we see that for almost all w uniformly,

o . L
lim (2"y*7 2, = f e(Xy)ds + é_lf {eo11(Xs) + @110(Xy)} ds.
0 0

m—o0

Finally, we consider the term ®4. Suppose 1/3 < H < 1/2. Then for any w € QN0

om

(58) (2m)3H—%+5 Z

k=1

A
ABy (—ABk - BY )
2 Th—1Tk

— O(AZH‘—3H+%—6) — 0<A%—H—25—6).

Hence, if 6 < % — H - 26, lim,,,_,o ||(27)3H ‘%+5<D4||oo = 0 in probability. We consider the case
where H = % In this case, B, is a standard Brownian motion and we have

2 4
{ABk (EABk - BTZ,”J:)} } =3

Since X;(¢, B) is o({B,, | 0 < u < t})-adapted, by Doob’s inequality, we have

A
E [ABk (—ABk - BY )] =0, E
2 k=1Tk




ERROR ANALYSIS FOR APPROXIMATIONS TO SDEs 405

A_ZE[sup |D4(1)* | < CA.
0<r<l1

This implies that for any ¢ < %,

(5.9) lim A™'7% sup |40 =0  as. w.

m—eo 0<t<1

From the calculation above, Remark 3.8 and Proposition 5.12 (3), we see the conclusion.
O

The next lemma is a corollary of Lemma 5.10 and Proposition 5.12, which is used in the
proof of Lemma 5.7.

Lemma 5.13. Set

_1_
¥,.s = (2™*7270 max
0<t<1

4
D00
i=1

Then, for any 6 > 0, lim,,—,« Wys = 0 in probability.
Proof. From Proposition 5.12 (1) and (2), we see that sup,, |Z,-(2’")3H*%(D,~(t) con-

verges in law. Thus we obtain that lim,,—,c ¥,s = O in probability. O

Next, we show Lemma 5.7. By using Lemmas 5.6 and 5.10, we obtain a representation
of the main term of «; in terms of A, ABy, Bi;’, e and Xop . We divide this calculation into
two steps. In the first step, we have the following. This estimate is a pathwise estimate. We
use just Holder continuity of the path of B.

Lemma 5.14. Let w € QN Fork (1 <k <2™) and x € R, let

Fi(x, B) = 5(0)(AB)’ + fa(0)(ABY* + g1(x) (%ABk - 3;9)
+ P(X)A(ABy)* + 90011()6)3?%71] ot 90101()6)3114?71] ot 90110()6)311%2 s
Gi(x,B) = —[g10”1(x)ABy (%ABk - Bl'?_lfﬂl) )
re = ki — Fi(&k-1, B) — Gi(&k-1, B).
Then it holds that r, = O(A3H +1) + O(AF).
Proof. By the Taylor formula, there exists 0 < p < 1 such that

ki = &k — Xo-m(Ek-1,67 B)
= Xo-n (-1, 00 B+ 2"kil) = Xo-n(€g-1, 0 B)

1
= Vo eXon(é1, 0 B) + EVzm Xon (&1, 00 B+ p2" kL)

ka

Applying the estimate k; = O(A*!") and Proposition 3.12 (1), we see that the second term
of the right-hand side is O(A®"). As for the first term, Proposition 3.12 (3), Lemma 5.6 (2)
and Proposition 3.11 yield



406 S. Apa AND N. NAGANUMA

A A
w K
Vo eXon (&1, 0 B) = U(XA(é"kh@Tg_lB))f exp (f [;] (Xu(§k71,97;y_13)) du) Xk ds
0 K

= 0(Ek-1)Kkk + {(T (XA(fk—h Oz B)) - 0’(§k—1)} ki + O
= {0 (E-1) + 0G0 E-DAB ki + O ) + 0(a* .
Hence we see that k; and «; satisfy
K= 0G0 {1+ 0" E-DAB ke + O ) + 0.
Since |07 (é4-1)ABy| < 1/2 on QN we can solve this equation and using Lemma 5.6 (1),
ki = 0 (G- {1 = 0 E-DABk + 0N + 0(A%)
= Fy(€k-1, B) + G(&k-1, B)

A A
— [0 )(&-1)ABy {kk — E-ABY’ = §1(&-1) (EABk - Big_lfkn)}

+ 0 + o).

Since & — f(E-1)(ABY)? — §1(&-1) (%ABk - B ‘r’”) = O(A* 1Y + O(A*"), we complete
k-1"k
the proof. m|

Now, we are in a position to prove Lemma 5.7.
Proof of Lemma 5.7. Let g, = maXj<t<om |sz7(§, B) - )_(i’,f)(f, B)|. We proved that
k
im0 (2)*H e, = 0 for w € |U,, QN Our first task is to improve this estimate
as lim,,.(2")*#~1/2%¢, = 0 in probability for any & > 0 by using lim,, e ¥,,s = 0 in
probability (recall Lemma 5.13). To this end, let
kit = Fi(Xen |, B) + G(Xen |, B),
Ki2 = Fi(&k-1, B) + Gi(&k-1, B) — (Fk(er_l, B) + Gk(XT;y_I,B)) ;
where F; and Gy are the same functions as in Lemma 5.14. Then xx = ki1 + k2 + 7,
ke = F k(er_l,B) and R, = Gk(XTrkn_ " B) + k2 + 1 hold. Here, ry is defined in Lemma 5.14.
Let hgm) (i = 1,2) be piecewise linear paths which are defined by {«;;}. We define h&’”)
similarly by {r;}. Note that ||h§m)||w = oY 2“5)‘1’,”,5 holds. By the Lipschitz continuity
of F; and Gy with respect to x-variable, we have
2’71
Il < kol < Keyo @ € QN
k=1
where K = O(A3H 1), By Lemma 5.14, we have
2m
(5.10) ™l < D" Il = 0 ) + 0, we QN
k=1

By the Lipschitz continuity of B — X(&, B) in the uniform norm, we have

(5.11) e = max X (£, B) ~ Xep (€. B + R+ 1Y + B
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3
<CY Il = Ken+ R, we QN
i=1

where K = CK = O(A’* ") and K = C(Ilh(lm)lloo + 1h"||l). By applying the inequality
(5.11), n-times and using the rough estimate ¢, = oA 1), we get

n—1
6n < K"ONF 1) + 1%[1 + Z K/]
j=1

From this, we conclude that for o € QN g, = ¥, s(w)ONH1270) + O(A3H) +
O(A" =1 holds for any 6 > 0. We now prove the estimate of the sum of R;. Thanks
for the the improved estimate of ¢,,, we obtain for any 6 > 0

om_]

Z Ikes| = 0(A3H—1/2+3H-—1—5)\1,””6(0)) + 0N 1) £ O(ASH 2y, w € QN

k=0
We already proved the necessary estimates in (5.10), (5.8) and (5.9) for the sum of r; and
Gk(XTZl—l , B). Thus, we complete the proof. ]

6. The Euler scheme and the Milstein scheme

In this section, we show Theorems 2.5 and 2.6, which are concerning with the Euler
scheme and the Milstein scheme, respectively. Since the proofs are similar to one of Theo-
rem 2.7, we omit the detail and give key lemmas. We denote by X" the Euler scheme or
the Milstein scheme and set &, = )_(ff).

Note that Lemma 5.3 holds forkthe Euler scheme and the Milstein scheme. We see
Lemma 5.3 holds for the both of the schemes. We denote by A" the piecewise linear
function which appears in Lemma 5.3 and we write k;, = h(m)(TZl) - h(’”)(Tkm_l) for every
1 <k < 2™. Because analysis of 1-step error & = {& — &1} = {Xa-n(€—1, 0y B) — &1} of
the scheme and the main term k& are essential in the proof, we state assertions on them, that
is, we give counterparts of Lemmas 5.6, 5.7 and 5.10.

6.1. The Euler scheme. In this subsection, we assume 1/2 < H < 1 and show The-
orem 2.5. To state assertions, we set fz = —o0’/2 and f, = —0’/2. Then we see the
following lemmas:

Lemma 6.1. For any w € €y, the following hold:
(1) We have & = f>(&_1)(AB)?* + O(AH 1),
(2) We have & = O(A*), k. = O(A*7) and

) — 2H -1
max Xzp (&, B) = X0 (€, B)l = O(A ).
(3) We have

max |X"(€, B) - X,(£, B+ h™)] = O(A*"),

Lemma 6.2. For 1 <k <2™ let

ke = fr(Xen)(AB)
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and set Ri(w) = kx — k. Then R, = O(A* ~1) + (A" ).

Lemma 6.3. Let
[2"]

O(1) = ) flXer JAB.
k=1

Then, (B, QmH _])(Dl) converges to (B, fd H(X) du) in D([0, 1]; R?) with respect to the Sko-
rokhod topology in probability.
Here we make comments on proof of the lemmas above:

e Lemma 6.1 is seen by the similar way with Lemma 5.6.

e Lemma 6.2 follows from the equality ky = o (&x—1)kx + O(A*") and Lemma 6.1
(note that we do not use Lemma 6.3).

e Lemma 6.3 is a direct consequence of Theorem 4.1.

Combining the lemmas, we obtain Theorem 2.5.

6.2. The Milstein scheme. In this subsection, we assume 1/3 < H < 1/2 and Theo-
rem 2.6. We set

n 1
fztotwa’y, fi= oo,

3! 4!
1 N 1 o 1 o'
f3:_§(gg), f4:_4'[ oo’ = 3(0)], fj:4—! oo + 600’0’ +3(0')].

Note that f; = (£ — o’ f3)/o and fz = fa— o f;/2. We set ¢ = 0 and use functions g1, g1,
@i, ¢;i (i = 011,101, 110) introduced in Section 5.2. We define processes @y, ..., D4 by (5.5)
with the functions above. Then we see the next lemmas:

Lemma 6.4. For any w € Q, the following hold.
(1) We have

ke = EDABY) + fal&-)ABY* + 916 1)( ABy — BIS Tm)

+ <P011(§k—1)372n71727 + ‘PlOl(fk—l)Br'kilf'; + 90110(51(—1)3,;11,:;
+ON Y + 0N 1y + oA ).

(2) We have & = O(A), k. = O(AH ) and

max [Xe(€, B) - XEE B) = 0™ ™),

(3) We have
max |[X" (&, B) - X,(¢&, B + h™)| = 0(A>).

0<r<1

Lemma 6.5. Let

A
ke = fs(Xen JAB) + fs(Xen NABY* + g1 (X ) (E

+ @011 (Xey DBy o + 0101 (Xey DBy o + @110(Xer ) By

AB ~ By )

and set Ry (w) = ki — Kx. Then there exists 6 > 0 such that limm_>oo(2m)4H_1+5 max<g<om
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|Zf:1 Ri| = 0 in probability.
Lemma 6.6. The following hold:
(1) Let % < H< % Then (B, (2’”)4"1_1(@1,(1)2,@3,(134)) converges to (B,3 f(). fI(XS) ds,
0,0, 0) in D([0, 11; R*) with respect to the Skorokhod topology in probability.
(2) Let H = % Then (B,2"(®y, Oy, O3, Dy)) converges weakly to

(B,\/Effxxs)dws+3ff3<xs>ost+3fﬁj<xs>ds,
0 0 0

1 ’ 21 .
ﬁﬁg](XS)de’ZL {o11(Xs) + @110(X5)} dS,O)

in D([0, 11; R*) with respect to the Skorokhod topology.

Note that in proof Lemma 6.6 we used the decomposition

1
[3(Xen ) + fa(Xen VABy = { [Xen )+ 3 f;a(XTT)ABk} + £ (X ABy

_ f3(XT’k”_l) + f%(XT;C")

5 +O(A*7) + O(A) + f] (Xer)ABy

and apply Theorems 4.1, 4.2 and 4.3.

A. Gaussian analysis and Malliavin calculus

We summarize basic results on Gaussian analysis and Malliavin calculus which we use
to estimate some terms of error. For details, see [19].

Let (Q, F, P) be the canonical probability space for a one-dimensional centered contin-
uous Gaussian process X = {X;}o<<1 With the covariance E[X,X;] = R(s, 1), that is, Q is
the Banach space of continuous functions from [0, 1] to R starting at zero with the uniform
norm || - ||, F the o-field generated by the cylindrical subsets of Q, and P a probability
measure on (2 such that the canonical process X(w) = w, w € Q, is the Gaussian process.

We construct an abstract Wiener space (Q, 9, P) and an isonormal Gaussian process
{X(h)}nes. The Hilbert space $ with the norm || - || and the inner product -, *)g is defined
by as follows; set [Z1j0](-) = R(t,-) = E[X,X.] and let $ be the linear span of functions
H10, and H the Hilbert space defined as the closure of £, with respect to the inner product
(X105, Z1104))s = E[X,X;]. We call the Hilbert space $ the Cameron-Martin subspace.
Note the map H9 > Z1j0, — X(Ljoy) € L£%(Q;R) is an isometry. Hence if {4,}, C 9o

n=1
converges to h € §, then {X(h,)}” | converges to some element X(h) € £%(Q;R). Hence we
obtain the isonormal Gaussian process {X(/)}xes.

Next, we define the g-th Wiener integral /, which is a map from the symmetric space $H?
to the g-th Wiener chaos H, for g € N.

In order to define $?, H, and I,, we denote by A the set of sequences A = (4,...) € (NU
{0})* such that all the elements vanish except a finite number of them and set A! = [, A,!
for 4 € A. We take an orthonormal basis {e,}” | of $.

We denote by ® the tensor product and by $® the tensor product space for g > 2. For
g=0,1,weset H%° = Rand $®' = § by convention. We define the symmetrization i € $%4

for h € $®7 as follows: if & has the form of h = h; ® - - - ® h, for h, € H, we set
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1
m®---®hy)" = ] Z ho(y © -+ ® ho(g),

o€eQ,

where S, is the symmetric group on {1, .. ., g}; we also define the symmetrization for general
elements in $®¢ by linearity. For notational simplicity, we set 11 ©---Ohy, = (I ®---®hy)".
An element /1 € $%9 is said to be symmetric if 2 = . We denote by $® the set of symmetric
elements of $%7. The space $® forms a Hilbert space with respect to the scaled norm

\/aH “|lgea. For A € A, set

oAy

1
et = o4 e,

= ﬁel
Then, {e*;|A| = g, A € A} is an orthonormal basis of $.

As we introduced in Section Section 4, H,, denotes the g-th Hermite polynomial. The g-th
Wiener chaos H, is defined as the closed subspace spanned by {H,(X(h));h € 9, |lhllg = 1}
in £2(Q; R). For A € A, set

1 o0
m=ﬁﬂ]mwm»

Then, {H,;|A| = g, A € A} is an orthonormal basis of H,,.

The g-th Wiener integral I, is defined by I,(¢!) = H, and is extend by linearity. The
mapping 1, : 97 — H,, provides a real linear isometry between $°? and H,,.

Finally, we summarize results on Malliavin calculus. Let S be the totality of all smooth
functionals which have the form of F = f(X(hy),...,X(h,)), where hg € $ and f €
C;‘(’)ly(Ra ;R). The Malliavin derivative DF of F € S is an $-valued random variable and

defined by
DF = ——(X(hy), ..., X(he)hg.
BZ::‘ 0ép

By the iteration, one can define n-th derivative D"F, which is an $®"-valued random vari-
able, by

[ a"f
D'F = ———(X(h), ..., X(he))hg, ® -+ ® hg, .
,31,%—1 aé—‘ﬁ] e 6§,3,, 1 B 8

As usual, forn € Nand 1 < p < oo, we define the Sobolev space D"”(Q2; R) by the
completion of S by the norm

1F 1y = O, EIDAFIL, ).
k=0

We set D" (Q; R) = < p<co D"P(Q; R).

Since the derivative operator D is a continuous operator from D'?(Q;R) to £(Q; ),
there exists its adjoint operator ¢, which is called the divergence operator or the Skorokhod
integral. Notice that the duality relationship

E[Fo(u)] = E[{DF,u)g]

holds for any F € D'*(Q;R) and u belonging to the domain of . By the iteration, we see
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that there exists an operator ¢” such that
(A.1) E[F§" ()] = E[{(D"F, uygen]

for any F € D™*(Q; R) and u belonging to the domain of §". Notice that 1 € $* belongs to
the domain of 67 and 69(h) = 1,(h). From the It6-Wiener expansion and the Stroock formula,
we obtain the product formula:

(A2) L) = r!(p )(q)(h, k) Lpsq2r (B © K177
pry rj\r
for every h,k € 9.

In what follows, we assume that fBm B is defined on the canonical probability space
(Q,F, P), that is, B(w) = w for w € Q is fBm under the probability measure P. In this
setting, we can apply Gaussian analysis and Malliavin calculus to fBm. In particular, since
h € $ is given by h; = E[ZB;] for some square-integrable random variable Z, we see
lhy — hy| < E[Z*]'?E[(B; — B,)*1'* = E[Z*]'*(t — )", which implies $ c €([0,1];R) C
%OH ~¢([0, 1]; R). From Proposition 3.12 and the inclusion $ C ‘KOH ([0, 1]; R), the functional
w — X (w) is Fréchet differentiable in $ and the derivative is integrable. Hence we see that
X, is Malliavin differentiable and have (DX;, h)s = V, X, for any h € $. More precisely, we
obtain the following proposition.

Proposition A.1. Let b,0 € ngdl (R;R) for n > 1. Assume that Hypothesis 2.4 is satis-

fied. Then X, € D>~ (Q; R) and
KD" X, h' @+ @ h)gor| < Cyllh oo - =+ 11",

forany h',....h" € Sand 1 < v < n. Here C, is a positive constant depending only on b, o
and v.

In what follows, we set

1 !
Oy = r%1[5,1)7 gsl =% |:§(t - S)l[s,t) - f l[s,v) dl):|
s
for0 < s <t <1.Note

Hq(ZmHBTZiI‘H;’) — Iq((2mH671’(’1|TZ')Oq) = quHIq((sfg_lf; s

BTm
2 . 2m k=1"k m

k=1

1 i
Z“H+”( fn—‘[‘ Bwnud“]==T“H+”lm§ﬂnﬂ0-

The functions ¢, and {y, are bounded functions as follows:

Proposition A.2. Forany 0 < s <t <1, we have

Bl < -, 0<H<1)2,
T VoHE—s), 12<H<],

1
—+
2

2H+1
t— , 0<H<1/2,
Kl < ( 2H+J( Y <H<tl

2H(t - 5)?, 1/2<H<1.
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Proof. Note

-, 0<H<1)/2,

E[(B, - B,)B,]| <
e ) ]|<{2H(t—s), 1/2<H<]1,

forany 0 < s <t < land 0 < u < 1. We can find this estimate in [17, Lemma 5,6].
The first assertion follows from this estimate and the identification 8, (1) = [Z1[5](u) =
E[(B; — By)B,]. We see the second one from the expression

{St(u) = %(t - S)E[(Bl - Bv)Bu] - f E[(Bv - Bs)Bu] dU-

The proof is completed. m|

B. Proof of Proposition 4.5

In this section, we prove Proposition 4.5. The result of convergence of (B, V;m)) can be
found in [17]. Main contribution in this section is proof of convergence of V",
Throughout this section, we use the following notation:

1 k 1 [
ay =E |:(§Bk—1,k - f Bi-1u du) (EBH’I - f Bi_1, dv)] i
k=1 I-1
t 1 !
a,=E [Bk—l,k (531—1,1 - f1—1 Bi_1. du)]

for k,1 > 1. It follows from the stationary increments of fBm that

(B.1) Ag = A1 1-k+15

(B.2) = a4}

for 1 < k < [. For the same reason, we have

(B.3) s = ary = 12
' © 41+H

B.1. Key estimates. Before starting to prove Proposition 4.5, we show the next three
propositions:

Proposition B.1. It holds that

k=174 k-1 >1,
lag| < C
’ 1, k=1 =0

for any k and .
Proposition B.2. It holds that

a1 <C k—IPH3, k-1 =1,
a =
b 1, k-1 =0,

forany k,1 > 1.

Proposition B.3. It holds that a, + a], = 0 for any k,1 > 1.
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The following is a key lemma to prove Propositions B.1 and B.2:

Lemma B.4. It holds that

E[(Byii-1 — Bssk-1)(Byti-1 — Byi-1)]

1 on {(ZH) by(x, s,y,1) (ZH) bi(x, s,y,1)
==lk—1 A AL AR A NEA L A
2 2) k=17 3) (k=13

forany 0 < x,s,y,t < 1andk,l € Nwith |k — 1| > 2. Here

+ Rk —-1;x,s,y, t)}

by(x, s,y,1) = 2(xy — xt — sy + st),
b3(x, s,y 1) = 3(xX°y — xy? — X°t + xt* — 2y + sy* + st — st%)
and R satisfies [R(k — I; x, s, y, )| < Clk — | for some positive constant C.

Proof. From (3.7), we have
E[(Byi-1 = Bssk-1)(Byti-1 — Byi-1)]
1
= 5{—Ix—y+k—l|2H+|x—t+k—l|2H+|s—y+k—l|2H—|s—t+k—l|2H}

"

2H
+

14+ ——
k=l

s—t

k-1

1+U

1 xX—y
= —lk—1*" —‘1 -
2! { " k—1

2H
=i

2H ‘

Applying the binomial theorem, we obtain

E[(Byi-1 = Bssk-1)(Byti-1 — Byi-1)]

3

1 2H X—y x—t s—y s—t

=§|k_l|2H{Z(v)av(k—i’k—l’k—?’k—l)+R(k_l;x’S’y’t)}’
y=0

where a,(z1,22,23,24) = —2] + 25 + 25 — 2, and R is defined by

X — x—t s — s—1
b= {8 (25 2 o)

with the remainder term 3. Note |r3(¢)| < C|é]*. Expanding the polynomials a,, we see

(x—y xX—1t s—y s—t) 0 (x—y xX—t s—y s—t) 0
a b 9 b = b a b 9 b = b
Nkl k=0 k=1"k—-1 Nkl k=I'k-1"k—1

X—Yy x—t s—y s—t) 1
b b b = ‘b b 9 7t’
az(k—l k= k=1) T o oS
X—y x—t s—y s—t) 1
) ’ 9 = b PR ,t.
“3(k—z k= k1) o BesuD
The proof is completed. O

Proof of Proposition B.1.  The assertion for [k — /| = 0,1 follows from the Holder
inequality and (B.3). We prove the assertion for |k — /| > 2. Note

1 k 1 k
=B 1 — f Bi_1,du = E(Bk - Bi-1) — (By — Bi-1)du
k

2 -1 k—1
k k
= f du f pu(dé) (Be = B)
k-1 k-1
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1 1
:f dsf 11(dx) (Byyk-1 — Bysi-1).
0 0

Here we set yx = (0 + 0x—1)/2 by using the Dirac delta function ¢,. From this equality, we

see
1 1 1 1
ak,l:f dsf ,Ul(dx)f dff 1(dy) E[(Bysk-1 — Byii—1)(Bysi—-1 — Bryi-1)].
0 0 0 0

Note that b, and b3 in Lemma B.4 satisfy

1 1 1 1
fwfumqufmwwm@who
0 0 0 0

From Lemma B.4, we have

mmﬂfommJﬁdﬁmwmeMwam

< Clk 2H 4

which implies the conclusion for |k — /| > 2. The proof is completed. O

Proof of Proposition B.2.  The assertion for [k — /| = 0,1 follows from the Holder
inequality and (B.3). We prove the assertion for |k — /| > 2. We have

. 1 !
a,=E [(Bk — Bi-1) (5(31 - Bi1) - fo‘ (Bysi-1 — Bl—l)dy)]

1
5E[(Bk = Bi—1)(B; — Bi-1)] - f E[(Bk = Bi-1)(By+1-1 = Bi-1)]dy.
0

From Lemma B.4, we have

2
(k- 1>

1 2H
E[(B = Bi-1)(B = Bi-y)] = Sk = 1P {( ) ) +R(k—-11,0,1, 0)}

and

1
f E[(Bx — Bi-1)(By+1-1 — Bi-1)]dy
0

_ Lo ogf(2H) 1 fl 2H) I fl P
_2|k Il {( )(k 7z . 2ydy+(3 s 3(y-y)dy
1
+f R(k—l,l,o’!/,o)dy}
0

1 2H\ 1 2H\ 1 1 !
= —|k—1* S S ka—l;l,O, ,0)d
. {(2)&—02+(3)w—032+ , K Y )”}

From these equality, we have

T 2H . .
a,,=—-lk-1 +=Rk-1;1,0,1,0 Rk—-1;1,0,y,0)d

~ _1(2H)|k— l|2H .
B (k -1y

1 1
5|1< — P {ER(k -1;1,0,1,0) - f R(k-1;1,0,y, O)dy}.
0
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Recalling that R satisfies |[R(k — [; x, s,y,1)| < Clk — II™* for some positive constant C, we
obtain the conclusion. O

Proof of Proposition B.3. A direct computation yields

(B.4)
1 "1
o 2y 2H 7 _112H] _ i A _ o2H _ ] _ o2H
ap, = g (W= 1P = 1= 1P foz{lk [+1 =P+ k=1 s} ds
and
(B.5)
1 "1
[ T 2H _ I _112H| _ 7 42H _ _ N\ 2H
aj, = g =k 1P )= k= 1P foz{ = 1=t + k= 1+ (1 =P} dr.
The assertion follows from these two equalities.
We see (B.4) as follows:

po_ 1 :
a., = EE[(Bk = Bi—1)(B = Bi-1)] - f E[(Bx — Bi-1)(Bss-1 — Bi-1)]ds
0
1
= 55 k= 1+ 1P = = 1P — 2k — 1P}
1
1
—f Stk =G+ 1= P + k= (1= DPY
0 2
+lk=1) = (s+ 1= DP = (k= 1) = (1 = D"} ds.

In order to prove (B.5), we exchange k and [ in (B.4) and obtain
o1 "1
i 2H 2H 2H 2H
a, =—{-l-k+ 1" +|l-k-1] —f——ll—k+1—sl + |l —k—s|"} ds.
Lo -4 |

From the integration by substitution ¢ = 1 — s, we see that the integral is equal to

ﬁ % {—|1—k+ P -k —(1 - t)|2H} (-1)dt

1

1

1

:f E{—|k—1—t|2h’+|k—1+(1—t)|2H} dt.
0

These two equalities imply (B.5). |

B.2. Relative compactness and convergence in fdds. We are ready to prove Proposi-
tion 4.5. We show relative compactness and convergence in the sense of finite-dimensional
distributions (fdds).

Lemma B.5. Under the assumption of Proposition 4.5, the sequence {(B, v, ‘7(’”))};1":1
is relative compact in the Skorokhod topology.

Lemma B.6. Under the assumption of Proposition 4.5, the sequence {(B, V;m), \7(’"))}‘;”":1

converges in the sense of fdds. More precisely, we have, for 0 < s; <t; <--- < s <t; <1,

lim (By, — By, V™ (01) = Vg™ (s0), VO 01) = Vs, .

m— oo S0 tq

By, — By, V" (tg) = V" (5a), V" (ta) = V" (s50))
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= (B[I - le, O-H(Wll - WS])’ &H(th - Wsl)v ey
Bld - BS({’O-H(WICJ - Wsd)a &H(W[d - Wvd))

weakly in (R, where W and W are standard Brownian motions and B, W and W are
independent.

Before beginning our discussion, we note that, forany 0 < s << land0<u<v <1,

L2:n IJ Lzm UJ

~ ~ - ~ 1
B6)  EUV"@O - VOV 0 -V = 5 Y Y aw

k=(2"s]+1 =| 2" +1

Applying (B.1) to (B.6), we see
(B.7) E[IV™(@1) - V™(5))]

[2m¢] — | 2™s] [2"t]-[2"s]-1 ) 27t ]—[2"s]-1 .

j=1 j=1

Proof of Lemma B.5. The assertion follows from
[21) - 12"s])*
2m ’
121) - 1275\’
2m

E[{V{" (1) = Vi (s)}*] < c(

E[{V"(t) - V()] < C(

forany 0 < s <t < 1 and some constant C. The first estimate is proved in [17]. Combining
(B.7) and Proposition B.1, we see

E[{V(m)(t) _ V(m)(s)}2] <C |.2mtJ - I_ZmSJ .

2

Since V"(f) — V™ (s) is a Gaussian random variable, we have the second estimate. o
Proof of Lemma B.6. We show

(B.8) lim E[{Vy"(0) = V" ()}] = 307 (1 = 5%,

(B.9) Tim E[{Vy" (1) = V" ()] = oyt = 9),

(B.10) Tim E[{V™ (1) = V()] = a7t = 9),

(B.11) lim E[{B, - BHVy" (1) = V" ()}] =0,

(B.12) lim E[{V{" (1) = V" (OHV™ (1) = VO ()} = 0,

(B.13) lim E[{B, - BHV™ () - V™ ()] = 0

forO<s<t<1and

(B.14) Tim E[{V{" (1) = V{" (HVE" (0) = V" )}] = 0,

(B.15) Tim E[{V™ (1) = V™ ()HV™ () = V™ )}] = 0,

(B.16) lim E[{B; - BV, () = V" (w)}] = 0,

m—o0
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(B.17) lim E[{Vy" (1) = V" (OHV™ () = V™)l = 0,
(B.18) lim E[{B, — B.H{V™ @) = V™ wu)}] = 0

forO0<s<tr<landO <u <v<1with (s, )N («,0) = 0. From these convergence and the
fourth moment theorem in [20], we see the assertion.

The convergence (B.8), (B.9) and (B.14) are proved in [17].

We consider (B.10) and (B.15). Both convergence follows from (B.7) and Proposi-
tion B.1. In particular, (B.10) is a direct consequence from them. We show (B.15) for
s <t <u<v From (B.6) and (B.1), we have

|ELV™ (1) = VP (s)HV™ () — V™ )|
[2™¢] [2"v] [12"v]—2"s|-1 om

! . 12
= om Z Z el < om Z Jlayjl < Sm Z]|a1,j+1|.
k=[2"s]+1 [=[2"u]+1 j=12mu)+1-12mt) =

Combining this estimate and Proposition B.1, we obtain (B.15).

We study the equalities (B.11), (B.12), (B.16) and (B.17). Since B, — By, Vo™ (1) — V" (s)
and V(1) — V() belongs to first, g-th, first Wiener chaos, the expectations in (B.11) and
(B.12) are equal to 0. The same reason yields (B.16) and (B.17).

We prove (B.13) and (B.18). Set B§’”) = Bomjom = Z,Ezzn;” B 1. We decompose E[{B; —
BHV™ () — VO (w)}] into IO + E[{B™ — B/ V" (v) — VO™ (u)}] + J™, where

1" = E[{B, - B}V () = V"™ w)}],

J™ = E[{B{" ~ BHV™(0) = V" (w)].
We can show convergence of /™ and J™ easily. In fact, we see
™) < E[{B; = Bionyn 1 PE[{V ™ () = V)]

2\ [ 12mu) - 1270)\!?
(- (et

The same inequality holds for /™. Hence we see the convergences.
We consider convergence of E [{Bgm) — BV () — Ve (1)}]. Note

[2"¢] [2"0]

E[B" - B}V ™) - V™)) = 27020 N K gl
k=[2"s]+1 [=[2"u]+1

In the case that s = u and t = v, we see

E[{B" = B{"{ V" (5) = V" (s)]]
[2"1]
= ~m(1/2+H) Z az’k 4 27 mA/2+H) Z (a;l + aZk) =0.
[27s]+1 (2 ]+1<k<I<[271]
In the last line, we used Proposition B.3. From this, we see (B.13).
In the case that 0 < s <t < u < v < 1, by noting (B.2), we have
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|E[{B"™ — B™ V"™ (u) — V™ ()]

27 [27) 1270)—|27s]~1
—m(1/2+H) T —m(1/2+H) )
<2 Z Z lay gl <2 Z Jlay ;-
k=275 )+1 (=270 )+1 J=l2mul—[2me)+1

From Proposition B.2, we see

217!
EUB™ = BYHV ™ ) = VO (@))]] < €270 3 i,
=1
In the case that 0 < u < v < s <t < 1, we obtain the same inequality. We complete the
proof of (B.18). |

C. Proof of convergence of variation functionals

C.1. Estimate on U,,. In this subsection, we prove Theorem 4.3. At the beginning, we
give an estimate of E[|U" (t) — U™ (s)*].

Proposition C.1. There exists a positive constant C independent of m such that

Bl B e 0 2o )] < C 2MEHD) 0 < H < 1/2,
g\ As)g( A )12\ Erm 7 T = 2—4m’ 1/2§H<1

k=1"k =11

foranyO < s,t<land1 <k, <2

Proof. From the duality relationship (A.1), we have

E[g(Xs)g(Xt)IZ(grjf_lTk’" © g‘r',’il‘rl”' I1=E [<D2 {g(Xs)g(Xt)}, éu‘z"kf’_l‘rf © éu‘rfilﬂ“>55@2]

and the Leibniz rule implies
D* {g(X)g(X)} = g (X)g(X)D*X; + g (X)g(X,)(DX,)**
+2¢/(X,)g' (X)DX, © DX, + g(Xs)g” (X)(DX)®* + g(X,)g' (X,)D*X,.

From the Holder inequality and Proposition A.1, we have

E [g/(&)g(xt) (DX, Lp 0 © e o) ]s Ellg' X )gXep W1V - Clien e llollZen enlloo

g)OZ

1 1V

— + 2~mEHFDY 0 < H < 1/2,
<C- (2 2H+1)( ) /

(2H)?(272m)?, 1/2<H<1.

In the last line, we used Proposition A.2 and the constant C and C” are independent of m.

Since the other terms in the above also admit similar estimates, we see the assertion. O

Proposition C.2. There exists a positive constant C independent of m such that

mye| _ | Hm —4mH
E[|U('")(t) _ U(m)(s)lz] <C- [2"2] — [2™s] '{2 , O0<H<1/2,

om 272m 1)2<H<1

forany 0 < s,t < 1.
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Proof. From the product formula (A.2), we have

L2mlJ
O™ (1) — U™(s)]> = Z 9(Xen NgXen My (Len o)1 (Len ) = S + T,
kl=12"s]+1
where
2]
5= Z g(XTZL‘ )g(XTlnil XgT}illen’ 4271177053’
k=[2ms]|+1
I_szJ
T = Z g(Xen Vg(Xem V(Lo om © G o).
kl=(27s]+1
We estimate the expectations E[S ] and E[T].
The expectation |E[S ]| is estimated by

Lzm [J

D, Elg(a )gXep Weog, e Lop s

kI=[2"s]|+1

|E[S]I =

[2"1]
2
s(sup Ellg(X,)| ]) D Kl s L sl
O=i=l kl=[27s]+1

Combining the self-similarity of fBm and Proposition B.1, we have

|E[S]] < (sup Eng(Xt)F]) LQTMCHRD L C(1 2] - 12" s])

0<t<1

[27] = 12"s] -+

=C ( sup E[lg(Xz)|2]) om

0<r<1

We evaluate the expectation E[T]. From Proposition C.1, we obtain

2—2m(4H+2), 0< H < 1/2’

E[T]| < (12"t] - [2"s])* - C
|E[T]] < (12"t] - [2™5)) {2—4m’ 12<H<1,

<C|_2’"tj—|_2’”sj 274mH 0 < H < 1/2,
B 2m 272 1/2<H<I.

The proof is completed. |
Proof of Proposition 4.4. From Proposition C.2, we have
E[2"T™ (1) - 2" T™(s)P] = 22 E[0™(1) - U™ (5)]
cplr-12ns) {2-2'"<2H—r>, 0<H<1/2,
a m 272m=n_ 12 <H<1.

This inequality implies convergence of in the sense of fdds and relative compactness. For
relative compactness, see [2, Cororally 2.2]. The proof is completed. |

Proof of Theorem 4.3. The assertion follows from convergence of in the sense of fdds and
relative compactness of {(B, 272U, f]m), 20}, that is, we obtain Theorem 4.3 from the
following Lemmas C.3 and C.4. |
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Lemma C.3. Let 0 <t <--- <ty < 1. Under the assumption of Theorem 4.3, we have

(€. lim (Bi. 27"2US(0), 2" T (1), ... B, 272U (1), 2" 0™ (14))
1 1 81 5
= B 9 q' f f(XS‘) dWS7 gy f g(XS‘) dWS7 )
( ! 0 V12 Jo

14 1 tq 5
B, \q! ) f(Xs)dWs,E fo g(XadWs,)

weakly in (RY)3, where W and W are standard Brownian motions and B, W and W are
independent.

Lemma C.4. Under the assumption of Theorem 4.3, {(B,27"/?U ((Im), 2Oy is rela-
tive compact in the Skorokhod topology.

Proof of Lemma C.3. We decompose U;’")(t) and U"(z) into Uém’")(t) + R (¢) and
U (t) + R™(t) for m > n, respectively, where

[2"1]

Uy = Z Sy VH (2" Ben o),
=1
[2"1]

RO(0) = 3 {Far r(X) = fXpp )} Hy( 2" Bry ),
=1
[2"1]

0"(r) = Z g (X e D1 (L 7o),
=1
[2"1]

R (1) = 3" g ) = 9K DI G o).
=1

Here 1" (¢) = sup{TZ;TZ <tk=0,...,2" - 1}. We prove
(1) The sequence {{(B;,, 2"/ Uf]’"’")(t(,), 2mgmm (g,))¢_1%°_ 1®  converges to the right-

a=1 n=1
hand side of (C.1) as m — oo and n — .

(2) lim limsup E[)27"?R""(t,)*] =0 fora = 1,...,d,

(3) lim limsup E[2"R™"(t,)*] =0 fora =1,...,d.
n—=0  n 500

Assertion (1) is a direct consequence of Proposition 4.5. To show Assertion (2), we use
the product formula (A.2) and estimate the expectations. For detail, see [13, Lemmas 22 and
23].

In the rest of this proof we show Assertion (3) by using independent increments of
the standard Brownian motion B. Set Y,Em’”) = {gXe ) = 9Xipr W1 (o on) and Fr =
0(B,;0 < u < 1). Then, for k < [, random variables Y,Em’") and g(Xen ) = g(Xip o)) are Fon -
measurable. In addition, /; (§T?'1 177’) is independent of FT?“_l' This implies E[I; (g’,;g ,T;")|FT,”11] =
E[, ({T?’llf}")] = 0 a.s. Hence, we have

E[7"" 7"\ Fer 1 = V" {g(Xen ) = 9Xopr WEL (e o)l Fer 1= 0

a.s. for k < I. From this, we obtain E[Y ,Em’”) Y l(m’")] = 0 for k # [. In addition, we have
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E[I7""P] < El{g(Xer ) — 9Xyp e W1 PELL (o o)1 < €272

for some constant C. From these, we obtain
[2"1]
E[lsz(m,n)(t)|2] — 72m Z E[lylgm,n)ll] < 22m  om  cp=ny=3m _ c2",
k=1
which implies the third assertion.
The proof is completed. O

Proof of Lemma C.4. We can prove the assertion in the same way as [13, Proposition 18].
In the proof, we shall show that the processes satisfy some kind of moment condition for
relative compactness. O

C.2. Weighted Hermite and power variations. In this subsection, we prove
Theorems 4.1 and 4.2.
At the beginning, we give an estimate of E[|U, My~ U (m)(s)lz]

Proposition C.5. Let u and v be probability measure on [0,1] and f,g € Cpoly(R; R).
Then there exists a constant C such that
274ma=nH 0 < H<1/2
E[l ra@q’ea@‘,”mF XFg;fX]s ’ '
]2y SPPOREOO) S
forany0<s<t<1,0<u<v<landl<k1<2"
Proof. From the duality relationship (A.1) and the Leibniz rule, we see
E[Izq (6% 0 8 LIF L COFS; (X)]
=F [<6Sf’] rm © 6(35’] rm’ D {F{fﬂu (X) FZZ}V(X)}>55®2q—2r:|
2g —2r)!
- Gq-2n g <(5®3 L @0 L, D' FY, “(X)onFZ;,V(X)> .
a!b! le ngZq—Zr

a+b=2q-2r

From Proposition A.2, we see that

Q~2maH 0<H<1)2,

E[|<D“F{”‘(X),hl OO hYged 1" < Cllh oo - - 11| < C
ot 0 QH)Y2m 1/2<H<1,

forh',...,h% e {674; m 6Tm Tm} Combining them, the proof is completed. O

Proposition C.6. Let g > 2. There exists a positive constant C such that

pm(1-2qH) 0<H<1/2q,

1, 1/2g<H<1-1/2q,
m, H=1-1/2q,
mil=2q(=} 1 _1/2g < H < 1,

E[UM (1) - UM ()] < C(12") - [2"s))

forany0<s<t<1.
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Proof. We can prove this proposition in the same way as [13, Proposition 21] by using
Proposition C.5 instead of [13, Proposition 19]. In more detail, we use (A.2) to rewrite
|U ,(Jm)(t) -U, ,(]m)(s)l2 by the It6-Wiener integrals. Then we see that it is expressed by the sum-
mation of the integrand in Proposition C.5. From Proposition C.5, we see the conclusion.

O

We prove Theorems 4.1 and 4.2.
Proof of Theorem 4.1. Recall the identity &7 = ?:o (Z)E[Zq—r]H,(g) for any € € R,
where Z is a standard Gaussian random variable. Applying this identity, we see

Lzm.J L2n1.J
2D N B a(X)(Bag o) = 27" " Fon o (X)(2" By o
k=1 k=1

2"

q
=2 I - mH
=2 Zo(r)E[zq 1) Feor wOH,Q2" Bey )

k=1
2" q q
_ —-m —r —m g 7(m)
= E[Zq] -2 k_E] F"'leT;cn(X) + _Ez (I’)E[Zq ]- 2 Ur .

We prove convergence of the first and second term in the following.
We consider the first term. Note

L2m IJ

f
27 ) Far on(X) - fo f(X,)ds
k=1

2"1] e 2% e ,
0 [ Femeods= Y [ rods- [ s
k=1 YT =1 YT [2m1]

[27t] !

=> f P X = fXds— [ f(X,)ds.

k=1 YT [2m1]

Since X is (H — €)-Holder continuous, we see that the absolute value of the above has an

upper bound
[2"1] 127t]
D f Fop (X) = fX)lds < ) f Cx27H=0) g5 = Cya "H-o),
k=1 Y74 k=1 Y7l
where Cy is a random variable. Hence
|_2m'J .
lim 27" Fon (X)) = f f(Xy)ds
M—00 k=1"k 0
k=1

almost surely with respect to the uniform norm.
We prove convergence of the process 27" Uﬁm) to the process O for r = 2, ..., g. It follows
from Proposition C.6 that
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2-2rmH 0<H<1/2r,
[2m] — | 2™s] |27, 1/2r<H<1-1/2r,
2m m27™™, H=1-1/2r
272m(=H) 1 _1/2r < H <1,

E[R7"U™ (1) - 27U (s)P] < C

27%m 0 <H<1/2r,
- C(Lzmu - L2msJ)l+K 2~ 1/2r<H<1-1/2r
B 2m m2™m  H=1-1/2r,

27m 1 —1/2r<H<1,

where
rH, 0<H<1/2r,
1/2, 1/2r<H<1-1/2r,
i H=1-1/2r

r(1-H), 1-1/2r<H<1.

This inequality implies convergence of 27" U, {(]m) to the zero process.
The proof is completed. |

Proof of Theorem 4.2. The assertion is proved in the same way as [13, Theorem 15] by
using Proposition C.5 instead of [13, Proposition 19]. In this proof, we use Proposition 4.5.

O
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