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Abstract

We introduce a family of quasidistances in R?, such that some of them are equivalent to natural
distances on Carnot groups. We find the sufficient conditions for the balls w.r.t. a quasidistance
from our family to be comparable to ellipsoids. Using comparability to ellipsoids we find
asymptotics of surface measure of intersections of small balls with linear submanifolds and
the conditions for finiteness of the integral w.r.t. the surface measure of negative power of the
distance. We provide several examples of Carnot groups, where comparability to ellipsoids can
be shown for natural distances, and therefore we can study the asymptotics and finitness of the
integrals explicitly. We also show an example of a Carnot group, where the comparability to
ellipsoids does not hold.

1. Introduction

In this paper we study the bounds on the surface measure on linear manifolds of small
balls in R? with a specific distance, which is a generalization of a natural distance in Carnot
groups (for the latter see [1]). The motivation to consider such question comes from a pos-
sibility to use these bounds for the investigation of the properties of paths of hypoelliptic
diffusions (diffusions with hypoelliptic, but not necessarily elliptic generator, see [8]). In
particular we want to study the existence of local times on manifolds for hypoelliptic dif-
fusions as well as intersection and self-intersection local times (one result of this kind was
already proven in [9]). The main connection between the topic of this paper and hypoelliptic
diffusions can be seen if we recall some known bounds for the density of hypoelliptic diffu-
sion such as Theorem 1V.4.2 of [11], or Theorem 4.13 from [3]. These bounds involve the
distances that correspond to a set of vector fields, related to the process (detailed treatment
of such distances can be found in [7]), which are exactly the kind of distances we want to
investigate.

Since our goal is to prove some very specific results about the finiteness of some integrals,
we want to give a few more details about how they appear in the study of local times. One
approach to the existence of local times is from the point of view of additive functionals,
since local time can be viewed as an additive functional which corresponds to a measure (in
our case we should take a finite measure, absolutely continuous w.r.t. given surface mea-
sure). There are several known sufficient conditions for existence of such functionals, with
the simplest being the finiteness of supremum of L; norm of the functional over all possi-
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426 A. RUDENKO

ble starting points of the process (such supremum was considered in [2], in the theory of
W-functionals). Unfortunately this does not always work in our situation (see examples be-
low), and also is not applicable for intersection and self-intersection local times. So instead,
we want to use a sufficient condition for L, convergence of a sequence of approximating
random variables (as it was done, for example, in [9] or [10]). Such a condition usually
involves the finitness of an integral, representing L, norm of the local time. Both L, and L,
norms of local time can be described as integrals of the density of the process, and afore-
mentioned density bounds produce integrals of the negative power of the distance w.r.t. the
surface measure. Unfortunately finding general conditions when such integrals are finite
seems to be problematic, even if our submanifold is linear. However it would be possible
to find such condition if we have the bounds for the surface measure of the small balls in
Carnot group, taking into account the dependence on the center of the ball. This finally
leads us to the topic of this paper, which is to give some useful sufficient conditions under
which we can find bounds for the surface measure of small balls, and use them to study the
corresponding integrals. To our knowledge only some partial results about asymptotics of
the surface measure of small balls in Carnot group are known (see [6, 5, 4] and also [7], for
investigations most similar to ours).
Given a matrix function A(8, x) for § > 0 and x € R? we define a function

pA(x,y) = inf(5]3p € AC([0, 11,R), Ja € By([0, 11,RY) : ¢(0) = x,¢(1) = y,

d
Etp(t) = A6, p())a(),la(t)| < 1, ae. t € [0, 1]}.

We prove that under some conditions on A, the functions p, is a quasidistance (it is finite,
non-zero for different points, and satisfies a weaker form of triangle inequality: pa(x,z) <
C(oa(x,2) + pa(x,2))). We assume a relation between this quasidistance and Euclidean
structure of R?, in a form of uniform bound for || — A~ (x, )A(y, 6)|| (here and below || - || is
a standard operator norm for matrices), so that we are able to prove (under some additional
conditions) that balls w.r.t. p are comparable to Euclidean ellipsoids of specific form. By
Euclidean ellipsoids or just ellipsoids we mean sets of the form {x € R? : |Ax| < 1}, where
| - | is a standard Euclidean norm on R¢, and A is an arbitrary n X n matrix. We choose
a specific form of ellipsoids for comparison by setting A to be a multiple of A~!(8, x) for
a ball of radius ¢ with the center at point x. The reason for considering ellipsoids and
not boxes, for example, is that the intersections of ellipsoids with linear manifolds are also
ellipsoids (in the natural euclidean coordinate system on the linear manifold), and so we can
easily obtain upper and lower bounds for surface measure of intersection of balls with linear
manifolds. Under the assumption that balls are comparable to ellipsoids, we obtain results
about asymptotics of surface measures on linear submanifolds of small balls w.r.t. ps. We
also find the conditions for finiteness of integrals of the form

fH(pA(x, y + Bu)du
K

and

fff(v)H(pA(x + Bu,y + Bu)) dudv,
K K
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where B is a constant 7 X k matrix and K is a compact in R¥.

To be able to study examples we specify several sufficient conditions for comparability
to ellipsoids. We show that for images of 2-step Carnot group under any twice continuously
differentiable automorphism of R¢, our assumptions hold and comparison to ellipsoids uni-
formly over any compact is always possible. Therefore we are able to apply our results
for specific examples of 2-step Carnot groups, and different choices of submanifolds (not
necessarily linear), finding explicitly the asymptotics for surface measure of balls and the
condition for the integrals on submanifolds to be finite. We also prove that if Carnot group
addition is of the form x + L(x)y (where L(x) is some matrix function, which is set to coin-
cide with L from the definition of A, when we want to obtain a natural distance on Carnot
group), then balls are always comparable to ellipsoids uniformly over whole space. Using
this we provide an example of a specific n-step Carnot group, where ball asymptotics and
finitiness of integrals on linear submanifolds can also be studied explicitly. Unfortunately
there are a lot of submanifolds on Carnot groups for which our approach does not work, due
to the non-trivial structure of balls in general Carnot groups. To illustrate the difficulties we
provide an example where we can find a sequence of arbitrarily small balls, such that the
intersection of each ball with the given linear manifold can be divided into two disconnected
subsets. Moreover we show that in this example it is impossible for all small balls with
center at specific point to be comparable to ellipsoids.

In section 2 we provide all definitions and notations and formulate main results of the
paper. In section 3 we prove our main result about comparison of balls and ellipsoids. In
section 4 we prove results that give more practical sufficient conditions for comparability to
ellipsoids. In section 5 we show a number of consequences of comparability to ellipsoids.
In section 6 we propose a number of examples, where the results of sections 4 and 5 can be
applied, and in section 7 we study a particular example where they can not be applied.

2. Definitions and main results

In this section we gather all necessary definitions and formulate main results of the paper.
Most of the proofs are given in other sections.
Let A be a real-valued d X d matrix function on (0, +00) x R¢. We suppose that
(1) A(8, x) = L(x)T(5), where L(x) is a real-valued d x d matrix function on R? and T'(6)
is a real-valued d X d matrix function on (0, +c0).
(2) T(6);; =01if i # jand T(5); = 6" for some constants p; > 0,i=1,...,d.
(3) L(x) is Lipshitz on any compact set and everywhere invertible.
Denote as AC([0, 1],R%) a space of absolutely continuous functions from [0, 1] to R? and
as B,([0, 1], RY) a space of bounded measurable functions from [0, 1] to RY. We say that p
is a quasidistance if it satisfies all properties of the distance, but the triangle inequality is
replaced with: p(x, y) < C(o(x, 2) + p(z, y)).

DermniTion 1. The quasidistance p = py related to A(6, x) is the following function:
pa(x,y) = inf{s > 03¢ € AC([0, 11,RY), Ja € B,([0, 11,RY) : ¢(0) = x, (1) =,

d
E"D(t) = A3, p(t))a(t),la(®)| < 1, ae. t € [0, 1]}.



428 A. RUDENKO

The definition of p, follows the ideas of similar definitions in [7] (see also Proposition 1
below and the corresponding definition of I'), with some notational adjustments needed for
our investigation. It is interesting, that the distance p, is the same for two different A,
whenever the matrix function (A~!(x,8))" A~'(x, 6) is the same (in such case for any ¢(?)
the corresponding a(f) may be different, but the norm of a(f) = A~ (x, 6)%90(0 is the same),
however we will not use this fact directly. The correctness of this definition is provided by
the following Lemma.

Lemma 1. For all A satisfying our assumptions the function py is a quasidistance on R¢.
Ifpi>1foralli=1,...,dthenitis a distance on R?.

To explain the connection of p, to Carnot groups we need to reproduce a definition of
Carnot group and related objects (see [1]).

DerNTION 2. Lie group G = (R?, e) is called a Carnot group (homogeneous Carnot
group) if
(1) G as a Euclidean space can be split into a direct product of /4 Euclidean spaces G; of
fixed dimensions, say ni, n, ..., n, (assuming Zf.l:l n; = d), such that

Baw1,v2,. .. v) = (Avy, Pva, ..., Aoy, v € G

is a group automorphism of G for all positive A.
(2) Let g be a Lie algebra of left-invariant vector fields on G. Fix a euclidean coordinate

system x = (x1,...,%x;) € G such that Xl ygts s Xyl define a vector in G;.
Denote as Vi, ..., V; such left-invariant vector fields on G, i.e. elements of g, that
Vile=0 = %Ixzo. Then the smallest Lie subalgebra of g containing Vi,...,V,, is g.

There exists a number d;, called a homogeneous degree of V; (the same vector field as
above), such that 8,(Vi(x)) = A%V(B(x)) (for example d; = 1 for i = 1,...,n;). The
d h
number Q = ) d; = ), jn; is called a homogeneous dimension of G. The number 4 is
i=1 =1
the number of “steps” and so such Carnot group is called h-step Carnot group (assuming
ny > 0)
There is a natural distance on Carnot group G (see [7]):

(1) T(x,y) = inf{6 > 03¢ € AC([0, 1],RY), Ja € B,([0, 11,RY) : ¢(0) = x, o(1) = y,
d
%‘P(I) = ; Vilp(t))ai(®), lai(t)] < 6%, ae. t € [0,1]},

which is related to p, in the following way. Note that there are other natural distances (and
quasidistances) on Carnot groups, which are locally equivalent to I' (again, see [7]). All
our results on behaviour of small balls are also true for all such distances, due to this local
equivalence.

Proposition 1. Suppose that we have a Carnot group G = (R%,e), and Vy,...,Vy are
left-invariant vector fields on G used in the definition of Carnot group. If we define A(6, x) =
L(x)T (6), taking Vi(x), ..., Va(x) as columns of L(x) and setting T(6);j = 0 if i # j, T(6)ii =
8% where d; > 0 are the corresponding homogeneous degrees of Vi, then such A satisfy our
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assumptions and the corresponding distance py is equivalent to the distance I" on G.

Proof. Due to the properties of Vi(x),..., V (x) (shown, for example, in Theorem 2.1.43
of [1]) the matrix L(x) is infinitely differentiable and invertible, which is enough to satisfy
our assumptions. After we insert a;(1)6% instead of ¢;(¢) in the definition of I" we obtain the
definition of p,, except that Euclidean norm is replaced by the maximum of coordinates.
But since these norms are equivalent, the corresponding distances are also equivalent. m|

This Proposition allows us to apply our results to the case of Carnot groups. In the
following in the context of Carnot groups we always assume that the relation between A
and specific Carnot group is the same as in this Proposition.

The main idea of this paper is that balls in distance p, can sometimes be compared to
Euclidean ellipsoids, which are defined as Ex(y,&) = {y + Az : |z] < &} for any y € R,
€ > 0 and invertible d X d matrix A. Such comparison, if it is possible, allows us to study
intersections of balls with linear submanifolds. Therefore our main results can be divided in
two groups: those that give sufficient conditions for comparison with ellipsoids, and those
that give specific properties of intersections of balls with linear submanifolds given that such
comparison is possible. We start with the most general sufficient condition and then provide
some more practical, applicable conditions for specific Carnot groups.

We need to specify two assumptions for A, which are better described as subclasses of
matrix functions. We denote the open balls corresponding to pa as follows: Ba(x, &) = {y :
pa(x,y) < &}

DerintTion 3. If for some x € R4, § > 0, vy € (0,1), r > 0 and some matrix function A
(satisfying our assumptions) we have for all y € Ex(s.(x, r) that ||] — A6, A6, ) <,
then we say that A belongs to LU (x, 3,7, r).

For each u € R, x € RY consider the following differential equation for continuously
differentiable function f from [0, 1] to R¢: % f(@®) = A5, f(¢))u with initial condition f(0) =
x. We denote as @(0, x, u) its solution at t = 1, i.e. f(1). According to Picard theorem it
is well-defined for each x if u or ¢ is small enough. We call the set {O(d, x,u) : |u| < r} an
exponential ball, since @ can be seen as an exponential map of the vector field A(6, -)u.

DeriNtTION 4. If for some x € RY, § > 0 and some matrix function A we have that the
function ®(6, x, u) is well-defined and continuous on |u| < 1, and the set {D(6, x, u) : |u| < 1}
is open, then we say that A belongs to Ll;(x, 6).

We also need to state precisely what it means in our context for balls to be comparable to
ellipsoids.

DeriniTion 5. We say that balls By (x, 0) are comparable to ellipsoids at point x, if there
exists 69 > 0, r; > 0 and r, > 0 such that for all 6 € (0, d):

EnG0(x,71) C Ba(x,0) C Epx(x, 12).

We say that balls B (x, ¢) are comparable to ellipsoids uniformly over x € K, if there exists
0o > 0, r; > 0and r, > 0 such that for all § € (0,6y) and x € K:
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EnG0(x,11) C Ba(x,0) C Epn(x, 12).

Note that we use ellipsoids based on A(6, x) rather than arbitrary ellipsoids, in other words
the notion of comparability itself also depends on A. This is because in our approach the
specific form of ellipsoids play an important role and can not be avoided. In rough terms,
if we want to approximate balls with ellipsoids, then the shape of ellipsoids has to change
as balls are shrinking, to accomodate to the changes in the shape of the balls. Our notion of
comparability means that this change of shape is also described in terms of A. Unfortunately
it seems to be no way to make the comparison precise, meaning that we do not know how
to make r, — r in the comparison small if ¢ is small. Our estimates are too rough to allow
that, but it is also unclear if such comparison is possible at all, even in the examples.

The most general sufficient condition for comparability to ellipsoids is as follows:

Theorem 1. If for fixed x e R%, y € (0, 1), r > 0 and 6y > 0
Ae n (L NLI
€ 56(0,50>( Ua(x,6,7,r) N Lly(x, ),

then balls Bx(x, 8) are comparable to ellipsoids at point x.
If for fixed compact K, y € (0,1), r > 0 and 6o > 0

Aen( n (L NLI
€ 0.0 (LUx.6.7.1) 0 LIi(x.6).

then balls Bx(x, 8) are comparable to ellipsoids uniformly over x € K.

The conditions LI;(x, 6) hold in the setting of Carnot groups (if A as in Proposition 1) for
any x and ¢, since the exponential map on Carnot group is globally well-defined and also
globally invertible (see, for example, Theorem 2.2.18 in [1]), and therefore exponential balls
{D(6, x,u) : |u| < r}are always open.

Below we present two Propositions with sufficient conditions for A to belong to LU,,.

Proposition 2. Suppose that A\ satisfies our assumptions and
(1) forall x e R? and y € RY: L(x)L(y) = L(x + L(x)y),
(2) there exists 69 > 0, r > 0 and y € (0, 1) such that for all 6 € (0,06¢) and |u| < r:
I =T O LT (&wT )| < y.

ThenAe N N LUyx,0,v,r).
xeR4 6€(0,60)

The first condition of this Proposition and our assumptions on L (invertibility in particu-
lar) can be used to show that operation (x,y) — x + L(x)y is a group operation on R¢. For
the case of Carnot group, that is, if columns of L are the basis of a Lie algebra of Carnot
group on RY (as in Proposition 1), the condition implies that the group action is linear on
the second argument (meaning it is an action of linear operator L(x) plus x). Also it can be
checked, that the condition is always true if we assume such linearity. We chose to use such
form of the condition in the statement, because in order to check it we do not need to find the
group addition explicitly from L beforehand, or even to show that there is a Carnot group.

Also note that for Carnot groups, if p; are the corresponding homogeneous degrees (again
as in Proposition 1), we also have T-1(0)L(T(6)u)T(6) = L(u), so the second condition
holds trivially. Since in 2-step Carnot groups the group action is always linear in both
arguments (in the same sense as above, for explanation see Theorem 1.3.15 on p.39 of [1])
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the assumption of the Proposition above is true for this case. So the balls w.r.t. distance on
any 2-step Carnot group are comparable to ellipsoids uniformly on the whole group.

The following Proposition provides a simple and therefore very useful sufficient condition
for A to belong to LU,. It always holds for A-step Carnot groups with 2 = 2 and never holds
if h > 3.

Proposition 3. Suppose that A satisfies our assumptions and for alli = 1,...,d we have
pi € [p, p + ql for some 0 < q < p. Then for any compact K C R? there existy € (0,1) and

> hthatAe N N L .
r > 0 such that D sy Uy(x,06,y,1)

It may seem, given the discussion after the Proposition 2, that for Carnot groups the
Proposition above does not give us more than we already know. However, it allows us to say
a little bit more for 2-step Carnot groups, if we notice that we can also use this Proposition
for images of any twice continuously differentiable isomorphic map of 2-step Carnot group.

To this end suppose that we have a differentiable function f : R — R¢. We seek to define
a map f* on matrix functions A, such that p, is preserved under f and f*, i.e. pa(x,y) =
prn(f(x), f(y). This can be achieved if the equation %go(t) = A(9, ¢(1))a(t) is equivalent
to % flp(®) = (A, f(e(t))a(t) (it means that all the curves ¢(7) that may appear in the
definition of p, are preserved by f, i.e. the action of f gives a one-to-one correspondence
between them). We see that it is true if f*(A)(0, f(x)) = Jr(x)A(S, x), where J; is a matrix
of first-order derivatives of f:

0
(Jr(x))ij = E(f(x))i;i: L....d,j=1,....d
j

and all J(¢(1)) are invertible. As a result we may define the transformation of A under f as
follows.

DerinTion 6. The transformation of A under an injection f is a matrix function f*(A)
defined for each y = f(x) by the equality f*(A)(5,y) = Jr(x)A(9, x).

If f is one-to-one on any open subset U of R and J ' is non-degenerate on U then, using
the arguments outlined above, we obtain that px(x,y) = pra)(f(x), f(y)), as long as near-
optimal curves from the definition of p, are all inside U, which is true for a fixed x for all
small enough pa (x, y) (by obvious upper bounds for A). Therefore for any compact K c U,
we can choose g, such that the balls Bx(x,0) for 6 < dp and x € K are all preserved under
such transformation (i.e. Bx(x,d) = f~! (Brn)(f(x),0))). Making an additional assumption
that f is twice continuously differentiable we can also guarantee that f*(A) satisfies our
assumptions if A does (only local Lipshitz condition is of any concern, which is preserved
if J; is continuously differentiable). This allows us to work with f*(A) if we want to obtain
bounds for surface measure of Bx(x, d).

It is not hard to see that such transformations preserve classes Ll;, since they are de-
scribed by the same type of curves, as used in the definition of p,. But the condition from
the definition of LU, generally speaking is not preserved by such transformations, in other
words it is tied to a given euclidean structure of the space. An example, which proves this,
can be found if we consider 3-step Carnot groups, as in the last section of the paper (this fact
is not used in the following, so we leave the details to the reader).

Now we can state more general comparison theorem for 2-step Carnot groups.
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Theorem 2. Suppose that we have a 2-step Carnot group G = (R%, ®), A is defined as in
Proposition 1 and f : R? — R? is twice continuously differentiable. Then for any compact
K c RY such that f is one-to-one on some neighbourhood of K and Jy is non-degenerate on
K, the balls By-(n)(x, 6) are comparable to ellipsoids uniformly over x € K, with A replaced
by f*(A) in the comparison.

This Theorem can be used to apply our results also to nonlinear manifolds on 2-step
Carnot groups by transforming them into linear submanifolds (we give one such example
below).

Now we formulate three theorems that show properties of intersections of balls with linear
manifolds, given that the comparability to ellipsoids is true. Note that in this paper the
surface measures, that we use, are not related to Carnot group structure, and in fact are
always defined as corresponding Lebesgue measure on linear submanifold. The first theorem
shows the asymptotics of a surface measure of the ball. The second and the third give
sufficient conditions for finiteness of specific integrals w.r.t. surface measure that involve
distance pp (for single and double integrals correspondingly).

Suppose that we have an orthogonal matrix E of size d X d and define B;; = E;j, i =
1,....d, j=1,...,k, (so that B is d X k matrix). Then we can describe any k-dimensional
linear subpace N of R? (with a choice of E or B) as follows:

N:{xeRd:x:Bu,ueRk}.

Denote as Hy 4 the set of all multiindices I = (iy,...,i) € {1,2,.. ., d}* with i, < iy for
p <gq.Forall I € H,yand z € R? we can define:

G(z) = ((det L(z)) " det L™ (2))?,

where Lf(z) is a matrix obtained from E”L(z) by removing rows 1,...,k and columns
U
Also define
k
mp(x) = max{m |31 € Hyy : Z pi, = m, G(x) % 0},
=1

k
HE /(0 = {1 € Hial ) pi, = mp(x),Gi(x) # 0},
J=1

G(x) = Z G(x).

IeH? (x)
The number mp(x) is also known as pointwise degree of the manifold, see for example [5].

Theorem 3. Suppose that balls Bx(x, d) are comparable to ellipsoids at point x, and the
constants in the comparison are ry > 0 and r, > 0. Then we have

{u : x+ Bu € Bp(x,0)}
)

A
S (G(x))* < lim
0—0+

— A {u: x + Bu € Bo(x,0)}

<
< Jim 550

du < Si5(G(x))12,
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where S, is a volume of a unit ball in R¥, and Ay is a Lebesgue measure on R~

Results of this kind for Carnot groups are known (see for example [5]), but our situation
is more general. This Theorem shows that the asymptotic behaviour of the surface measure
of balls is tied to mp(x), and so may be different for different x. In fact one of the motivations
behind this whole investigation is that in the framework developed in [7] it is unclear how
to deal with points, where mg(x) may be less then maximal possible for given submanifold.

Suppose that we have a measurable function A(f), which is non-negative, bounded on
+00

t € (s,+o0) for all s > 0 and equal to zero for r > 1. We denote H(¢) = f h(s)ds.
t

Theorem 4. Let K be a compact in R? and x € R?. Suppose that the set UK Ba(y, 1) is
ye

bounded, and the balls Bx(y, 6) are comparable to ellipsoids uniformly over y € K. Then
the condition

yeK

(2) sup f H(p(y, x + Bu)) du < +oco
Rk

holds if and only if for ally € K N (x + N) we have
1
3) fh(s)smg(”)ds < +00.
0
The finiteness of the supremum in the Theorem is a sufficient condition for a measure
(in our case the restriction of surface measure to a compact set) to produce an additive
functional, in the theory of additive functionals of Markov processes (as was shown in [2]),
if H(p(y, x + Bu)) describes the corresponding potential. The latter is true for Brownian
motions on Carnot group, if H(t) = >~ (for details see for example [1]). Therefore this
theorem has direct applications to the construction of additive functionals for Brownian
motions on Carnot group. Unfortunately, as it is seen from examples, the condition often
fails and therefore it is interesting to look at weaker conditions, with the same goal in mind.
This is precisely what motivates us to formulate the following Theorem.

Theorem 5. Let f be a non-negative locally integrable function, K is a compact on R*
and x € RY. Suppose that the set UK Ba(x + Bu, 1) is bounded and the balls Bx(y, ) are
ve

comparable to ellipsoids uniformly over y € x + BK. Then

ff(v)H(p(x + Buv, x + Bu)) dudv < +o0
K2

holds if and only if

1 k
f f F)h(s) [ggp((c;,(x + Bv))_l/zsg‘ pij)dsdv < +oo0.

K 0

Here if Gi(x + Bv) = 0 then we assume that (G;(x + Bv))™"/? = +c0.

In the setting of Carnot groups, the condition is often weak enough to hold with f = 1
and H(f) = 1*~2, as it is seen from examples. Therefore it can be used to show the existence
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of local times on the surface for Brownian motions on Carnot group.

3. Quasidistance and comparability of balls with ellipsoids

In this section we prove Lemma 1 about correctness of the definition of p, and Theorem 1
that provides a general condition for the balls w.r.t. ps to be comparable to ellipsoids.

Proof of Lemma 1. First we show that p, is well-defined. Every two points x, y can
be connected by a continuously differentiable curve, yielding ¢ as in the definition of p4,
but possibly without the condition |A~!(5, go(t))%go(t)l < 1 being true for all . However, by
continuity, we know that sup |A~'(6, (p(l‘))%tp(lﬂ = M < +oo. It means that

O<r<1

d
IA™(Bs, (D)= (D) < 1A~ (85, (1) A, ()M = IT(B) " |M

and S can be chosen large enough, so that [|T(8)™!|[M < 1, showing that p, is well-defined.

Now we show that px (x, y) for two distinct points x and y can not be zero (it is obviously
zero for x = y). Suppose we have a sequence of numbers 6, — 0+, n — +oo0 and corre-
sponding curves ¢, (¢) joining x, y and satisfying |A~'(5,, gpn(t))%gon(t)l <1,0<t< 1. Take
some bounded neighbourhood U of x that does not contain y. By the continuity of L we
may assume that sup_;; L(z) = My < +o0. According to our assumptions 7, = inf{z € (0, 1] :
©n(t) ¢ U} is well-defined and positive, since ¢,(0) = x € U and ¢,(1) = y ¢ U. Then we
have

d
I‘pn(tn) - Xl < sup |_§0n(s)| < sup ”A(6n7 (,Dn(S))” < Ml”T(én)H

0<s<t, d O<s<t,

It follows that for large # it is impossible that ¢, (#,,) ¢ U, which is a contradiction.
To prove a weak form of the triangle inequality take three points x, y, z in R? and as-
sume that ¢, and Y, are some functions satisfying: 1(0) = x, y1(1) = z, %wl(t) =

ALY (E)b1(), 161D < 1 4(0) = 2, Ya(1) = y, S¥a(D) = AS2Y2())br(1), [b2()] < 1
with some ¢6; > 0, d, > 0. We take a € (0, 1) and define ¢ as:
Yi(z),  tel0,a)
(1) = M
v {m({:—z L rela)

Then for § > 0 we can write %(p(t) = A(8, p(t))a(t) where

_ {éA*(&m(é»A(al,wmg»bl(g), te0,a)
a(t) =

T AT G (FEAGL U (F2)by(F2), 1€ [a,1]

iITEOHb(L), te[0.a)
S TEb(), e a1

In order for a(f) < 1 to hold it is enough to have ||T(%‘)|| < a and ||T(%2)|| < 1 — a, which
can be achieved for example by choosing @ = % and 6 = C(6; + 0»), where C is such that
IT(CHl < % It follows that for a sequence of ¢0; and 9§, converging to p(x, z) and p(z, y)
correspondingly we have p(x, y) < C(d; + 62).

Note, that the condition || (35l + 1T (%)l < 1 is sufficient for the triangle inequality
to hold (we may take a = ||T(5l5—‘)||). Then ||T(B)|| < B, for B < 1 is, in turn, sufficient for

+52
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this condition to hold, meaning p; > 1 is sufficient for p, to be a distance on R¢, |

Proof of Theorem 1. We fix some x € R? and § > 0 and prove the following statements.
(1) Suppose that there exists y € (0, 1) and » > 0 such that A € LU,(x,9,y,r). Then
BA(x,¢10) C Exex(x, 1), where ¢ = ci(r,y) is any positive number that satisfies
IT D)l < 5.
(2) Suppose that there exists y € (0,1) and r > 0 such that A € LU,(x, cl‘]d, v,r). If
also A € Lly(x,6), then E-15.9(x, (1 = IT(; DI € Ba(x, 6).
(3) Forany > 0, r > 0 we have Ep (X, 7) C Engso(X, AITB~HI).
To prove the first statement let y € Ba(x, c10) then, by the definition of p,, there exists
¢ € AC([0, 1], R?) such that ¢(0) = x, ¢(1) = y and %(p(r) = A(c16, e(1))a(t) with |a(?)] < 1.
We obtain that %cp(t) = A6, p(1)b(1) with b(t) = A™(5, o(£))A(c16, o(1))a(t) and, using the
properties of A, we get |b(?)| < [|T(cy)ll. Suppose that ¢([0, 1]) C Exs,x(x, r) does not hold,
then we may denote s = inf{r € [0, 1] : ¢(¢) ¢ Exs.0(x, 7)}. We can see that

N

f AN8, X)AS, p(1))b(1) dt

0

IA™' (6, 0)((5) = p(0)] = SA+ITenll <r

but it means that ¢(s) € Ex(s.(x, r) and, since ¢ is continuous and Es (X, r) is open, this
is a contradiction, meaning that ¢([0, 1]) C Ex,x(x, ) is in fact always true.

To prove the second statement we note that exponential balls are always smaller then
the corresponding balls w.r.t. distance pn, meaning that, for example, {D(5, x,u) : |u| <
1} € Ba(x,0). So we only need to show a relation between ellipsoids and exponential balls:
Epe 15,00 (I=PITEHIT) €@, x,0)  ul < 1}, Take y € Ey et o (x. (1=PIT(; D).
Suppose that y € {D(J, x, u) : |u| < 1} does not hold, then we may denote s = inf{¢ € [0, 1] :
ty + (1 —x ¢ {6, x,u) : |ul < 1}}.

It is clear that s > 0. Lets, < s, 5, — s, n — +oo. For each s, we can find u,
with |u,| < 1 such that s,y + (1 — 5,)x = D0, x,u,). Then there exists u with |u| < 1,
such that some subsequence of u, converges to u. By continuity of ®(d, x, -) we obtain that
sy + (1 —s)x = O, x,u). If lu| < 1 then we have a contradiction with the definition of s and
assumption A € Ll;(x,0) (since {O(6, x,u) : |u| < 1} is supposed to be open). Therefore we
may assume that |u| = 1.

By the definition of @ there is a function f satisfying f(0) = x, f(1) = sy + (1 — s)x,
% f() = A, f(t))u. We can use the bound on I — A‘l(cflé, x)A(cI'(S, f(?)) from the as-
sumption A € LU,(x, cl‘ld, v, 1), since, by the first statement, under the same assumption
A € LU4(x,¢7'6,y,r) we have

() e {D, x,u) : lul < 1} € BA(x,0) C EA(Cl-ldx)(x, r).

Therefore we obtain for v = T'(c;)u that % f( = A(c[lé, f(®H)v and

1
lo— A~ (e;'6, ) (f(1) = f(0))] = f (I = A7 (ey'8, VA6, fF(O)vdt | < ylul.
0

Consequently
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ol < IA™H(er '8, (1) = FO)] + ylol

and, using that y € Epc-14.(x, (1 = PIT(cHI), we obtain that |u] < [|T(cHlIlvl < s < 1,
which is a contradiction, meaning that y € {®(0, x, u) : |u| < 1} is in fact true.
The last statement is a consequence of the following inequality

IATH(BS, x)(y = 0| < 1A (B8, YA, DIIAT! (6, )y = 0| = ITBE DA G, 1)y = 2.
To complete the proof of Theorem we use all three statements to conclude that if

Ae 0 (L NLI
c 5e(0,50)( Ua(x,6,7,r) 1(x,0))

then

En.0(6 (1 = PIT(c7HIT) € BA(X,6) € Enn(x, rlIT(c7HID

forall 6 < 69 = min(cy, 1), where ¢; = ¢(r, y) is any positive number that satisfies ||7(cy)|| <

Ty This proves the Theorem, since no constants depend on x and 9. m|

REmARK 1. It seem to be possible to prove the results of this section, when the first two
conditions on A(d, x) are replaced by another, more general condition, relating values of
A(6, x) for different ¢ in the form of bounds for ||A~'(88, x)A(6, x)||. However such general-
ization is not entirely straightforward (some extra care should be taken for the lower bound
in Theorem 1). Since such generality is not needed for our applications, it is omitted.

4. Sufficient conditions for balls to be comparable to ellipsoids

Here we provide proofs to several sufficient conditions for the balls w.r.t. p5 to be com-
parable to ellipsoids. As we already noted, for exponential maps on Carnot groups the
existence of the global inverse is known (see, for example, Theorem 2.2.18 in [1], in which
the exponential map is used as an isomorphism between abstract stratified Lie groups and
Carnot groups). Therefore, in the case described in Proposition 1, we can immediately con-
clude that A belongs to L1;(x, o) for all x and 6. That is why, for discussing examples related
to Carnot groups, it is enough to provide some sufficient conditions for the assumptions of
class LU, to hold uniformly over x and ¢. Below we provide proofs for two such results.

Proof of Proposition 2. From the first condition we can easily see that L(0) = [ (just
input x = y = 0 and use invertibility of L), and that for any x € R¢ and z(x) = —L~'(x)x we
have L(x)L(z(x)) = I,i.e. L™'(x) = L(z(x)).

Fix x € RY, 6 € (0, 6y) and Yy € Enp)(x,r). Theny = x + A(x, 6)u, where |u| < r, and

A6, A6, y) = T (OL™ () LY)T(S) = T~ (6)L(z(x)Ly)T(5)
= TN (O)L(z(x) + LECNYT () = T () L(z(x) + L™ (x)(x + L(x)T(6)u))T(6)
=T YOLT )T (5).

So, under the first condition, A~!(8, x)A(6, y) can be estimated as needed using the second
condition. |
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Proof of Proposition 3.  Since the square of matrix norm is equivalent to the sum of
the squares of its elements and each element of I — A~!(6, x)A(6, y) is proportional to the
corresponding element of 7 — L' (x)L(y) by a factor 6”"P, where p;—p i € [—q, ql, according
to our assumption, we can estimate for all x, y and ¢ € (0, 1):

11— A™N6, XA, )l < CSNIT - L7 (x)L(y)||

where C is some constant. Then, using the Lipschitz condition for L, assuming x € K,
y € K, we can obtain

I = L' LI < IL”' @IHILx) = L)l < CLIL™ ()l x = yl.
For y € Enys)(x, r) we have that y = x + A(x, 6)u with |u| < r and therefore:
lx =yl = |A(x, O)ul < ré”|IL(x)]I.
Consequently
11 = A6, )AG, y)Il < CrAIL™ IHIL).
Choosing small enough r completes the proof (we may let 69 = 1). |

Proof of Theorem 2. This theorem follows immediately from Theorem 1, Proposition 1
and Proposition 3 (and the fact that the exponential map on Carnot group always exists and
globally invertible, as already were noted above). O

5. Balls asymptotics and surface integrals

In this section we find estimates for surface measure of the balls w.r.t. pa on linear
submanifolds, and use them to prove several theorems regarding its properties, assuming
that balls w.r.t. p, are comparable to ellipsoids. We start with few lemmas that include
some calculations used in the following theorems.

The first lemma finds the surface measure of the intersection of ellipsoid with linear man-
ifold.

Lemma 2. For all d X d real-valued invertible matrices A we have
Afu  y + Bu € Eq(x, 1)} = Si(det €)™ *(max(1 — (DA™ (y — x), A™'(y — x)),0))"/*,

where C = BT(A")YTA™'B, D =1 - A"'BC'B"(A™") and Sy is a volume of a unit ball in
R,

Proof. The condition y+Bu € E4(x, 1) is equivalent to the value of the following quadratic
function of u being less than 1:

ANy — x+ Buw)|* = |A™'Bul® + 2(A"'(y — x), A”'Bu) + |A™ (y — x)]?
= |A™'B(u— up)* + 147" (y — 0 = |A™' Buo[*,

where u is a vector in R¥ that satisfies (A~'(y — x), A™'Bu) = —(A~'Buy, A~' Bu) for all u.
Such vector can be found uniquely since rank of C = BT (A™1)TA~!B is k (because rank of
A~'B s also k) so we can invert C and obtain
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up = C'BTAHTA  (x - y).
Then

A7 Bugl* = (A7 BCT BT (A AT (y = ), A7 (y - )
and (note that C is symmetric and positive definite)
A7 B(u — uo)l” = (B"(A™) A7 Bu = ug), u — ug) = |C""(u = up)P*,
so we get
A7y = x+ Bu) = C2(u — u)* + (DA™ (y = ), A™'(y = 1))
where D = I — A”'BC'BT(A™1)T. Now taking v = CY?(u — ug) as a new variable of
integration we obtain
Au iy + Bu € Ep(x, 1)} = f1|c1/2(u—uo)|2+(DA1(y—x),A1(y—x))<1du
R

= (det C')_l/2 f 1|U|2<1—(DA’](y—x),A’](y—x))dv
Rk
= S(det C)"*(max(1 — (DA™ (y — x), A" (y — x)), 0)"/.

O
The following lemma is an easy consequence of the previous, but it contains our main
estimate for the surface measure of the ball.

Lemma 3. Suppose that balls Bx(x, ) are comparable to ellipsoids at point x, with cor-
responding constants 6o > 0, ri > 0 and ry > 0. Then we have for all 6 € (0, dp)

S (det C(6, %)™ * < Ai{u : x + Bu € BA(x, )} < Siri(det C(6, x)) 7'/,
where C(s, x) = BT (A~ (s, x))T A~ (s, x)B.
Proof. The straightforward application of Lemma 2 gives us:
X{u s x + Bu € Engan(x,b)} = S (det Ca, x))™'?b*
and using comparability to ellipsoids we obtain the statement of the Lemma. O
In order to link our definition of G/ to the value of det C(9, x) from the estimate above we
need the following formula.

Lemma 4. For all § > 0 and x € R? we have

k

25 i
detCE,x) = Y. Gi(x)6 =348

IeH, kd

Proof. It is convenient to denote Q(i, x) = BT (L' (x))TJ(i,i)L~'(x)B, where J(i,i) is a
d x d matrix with all elements equal to zero, except for J;(i, i) which is equal to 1. Then
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d
C6,x) = BT (A 60 A 0,08 = ) 06, )57,
i=1

d

since (T~'(6)'T~1(6) = 3 J(i,i)02". Calculating the determinant of the sum of rank 1
i=1

matrices we obtain

k

d r ) )
de 0.0 = ey 06057 = Y de 0ons

i=1 IEHk,d j:l

Note that, by the well-known property of inverse matrix:
|(det L(z))~" det L'E(z)| = | det L,‘};(Z)I,

where L,‘}E(z) is the matrix obtained from L~'(z)E by keeping rows iy, ..., i; and columns

I,...,k and removing all others (it is the same if keep rows iy, ..., and remove the rest
k

from L' (z)B). But it is not hard to see that >, Q(i;, z) = (L,_}E(Z))TLI_};(Z) and the statement
& , ,

j=
of the Lemma follows. |

Recall that we have a measurable function /(#), which is non-negative and bounded on
+00
t € (s,+00) for all s > 0 and equal to zero for ¢ > 1, and H(¢) = f h(s)ds. The following
t
lemma provides an estimate for the integral of H(p(x, y + Bu)).

Lemma 5. Suppose that balls Bx(x,0) are comparable to ellipsoids at point x, with cor-
responding constants 6o > 0, ri > 0 and ry > 0. Then we have

% k/2
St f h(s)(detas,x))‘”z(l - %@] Ligsrer s < f H(p(x,y + Bu))du
0 Rk

1
60

k2
_ (s)
< SkrlzC fh(s)(det C(s,x)) 1/2 (1 — g7 l{g(s)<r§}ds +suph(s) | lyoey+Buy<1du,

S>(5()
0 2 RK

where C(s,x) = BT(A™!(s, x))T A~ (s, x)B and
g(s) = (I = A" (5,x)BC™ (5, ) B" (A" (5, x)))A™ (5, 0)(y — %), A" (5, )y — x)).
is a non-negative function.

Proof. The integral can be written in terms of measures of balls:

1
fH(p(x,y+Bu))du: ffh(s)lp(x,wgu)qduds.
Rk

RK O
Then we can estimate it above and below in terms of ellipsoids:

o

ff h($)1 4 BueE o (e dsdu < fH(p(x,y + Bu))du <
Rk

RK O
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o
< ff h(s)1y+BueEA(M)(x,r2) dsdu + sup h(S) 1p(x,y+Bu)<1du'
2 S>(50 Rk
Finally, calculating the measure of ellipsoids using Lemma 2 (note that g(s) is now equal to
the (DA~!(y—x), A~!(y — x)) from Lemma 2, which is non-negative since D is an orthogonal
projection) we obtain in the upper estimate:

1

% k/2
) (s)
f f By B eyt < S 7 f h(s)(det C(s, ) ”2(1 - gr—z] -

RE 0 0 2

The lower estimate is obtained analogously. m|

Below we also need that for all x € R? the ellipsoids Ea(s.x)(x, r) are always shrinking to
a point as 6 — 0+ uniformly over x on any compact.

Lemma 6. Suppose that A satisfies our assumptions. Then for any r > 0, any compact
set K and closed set K|, with K N K| = 0, there is 69 > 0 such that for all 6 € (0, 6y) and
x € K we have K| N Exs.0(x,7) = 0.

Proof. Fix x € K and y € K;. We have
ly = xl <A@ Il - A6, 0y = 0 < AL DI - ITGI - 1A, )y — %)
and so
AT @6, 0@ = 0> CUTED ™,

where C > 0 does not depend on ¢, x and y. Since ||T(0)|| converges to 0, as 6 — O+, the
statement follows. O

Now we are ready to prove our theorems about properties of intersections of balls with
linear manifolds.
Proof of Theorem 3. Using Lemma 3 and Lemma 4 we obtain for small ¢:

k

23 pi.
Adu s x+ Bu € Bo(x,0)} < Skrlzc( Z Gi(x)6 j:lpj)-l/z _
IeHyq

k
2(mp(x)—- X pi;)
= Suke™O( Y Giws AT,

I€H 4

k
2(mp(x)= 3 pi:)
where ). Gi(x)0 AT converges to G(x) as 6 — 0+ by the definition of mg(X) and
I€H 4

G(x). The upper bound easily follows and the lower bound can be shown in a similar way.
O

Proof of Theorem 4. Using Lemma 5 we can bound the supremum in (2) above with
(omitting some multiplicative and additive constants)
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6o

sup f h(s)(det C(s, y))~%ds

yek

or alternatively with

S0
ff ]’L(S) 1y+BuEEA(A.,X)(x,r2) dsdu

RF O
and below with
)

sup f h(s)(det C(s,y)) %ds
yeKN(x+N) 0

using that g(s) = O for all s, when points that we consider belong to x + N. Applying the
formula for the determinant from Lemma 4 and also bounding the sum with maximum of
its members (below with constant 1 and above with the constant equal to the number of the
members in the sum), we can replace (det C(s, ¥))""/? in both bounds with (multiplied by a
constant in the lower bound)

k

. B 2 pi;
min ((G(y))""?s7 7).
IeH; 4

Note that if the integral under supremum in (2) is finite for all y € K N (x + N) then
the condition (3) is also fulfilled for all y € K N (x + N). Indeed if we take multiindex
k
I'=(i,...,1) satisfying Gy (y) # 0, with the largest }, p; (which is equal to mp(y)) then
=t
1 &

Z pr.
fh(s)sf“ ‘ds < +c0
0

must hold, because otherwise the integral can not be finite (multiple multiindices with the
k
same 3, p;; = mp(y) and G;(y) # 0 do not change anything since G;(y) > 0).
j=1

On the other hand if the condition (3) is fulfilled for each y € K N (x + N), then for all

y € K N (x+ N) we can choose a multiindex I” = (7, ...,i,) with Gy (y) # 0, such that
k
mp(y) = 2, pis meaning that the integral is finite, and moreover its supremum is finite over
j=1
some neighbourhood U of y, since

do k o
2 Di;
sup f h(s) min (G257 ") ds < sup(Gy(2)) ™12 f h(s)s™Ods
€U IeHq U )

and G/(z) is continuous.

To finish the proof we note that it is possible to find a finite number of open sets such
that together they cover K N (x + N), and on each of them there is a constant multiindex
I' =(i,...,1), such that
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1 I3

Z pr.
f‘h(s)sf-1 ‘ds < +00

0

and G (y) is separated from zero. Then we fix compact K, defined as K without the union
of these open sets, and using Lemma 6, we can choose sy > 0 and r > 0, such that for all
y € K and all s < sy we have E Ay, 1) N (x + N) = 0, which means that the part of the

integral
60
ff h’(s) 1y+Bu€EA(s.x)(x,r2) duds

RF O

for s < 59 is zero. Then our upper bound is finite on all of K and the statement follows. O

Proof of Theorem 5. We use Lemma 5 on the integral w.r.t. u, and use that g(s) = 0 for
all s, when points that we consider belong to x+ N. Since, by the conditions of the Theorem,
a set of points within a distance p, smaller than 1 to x + BK is bounded, we can see that

f 1p(x+Box+Buy<1du is uniformly bounded over v € K. Therefore the integral is finite if and
Rk
only if

1

f f F)h(s)(det C(s, x + Bv))™?dsdv < +co,

K 0

where upper limit in the integral by ds can be set to 1, because det C(t, y) is separated from
zero on (t,y) € [g, 1] X (x + BK) for all ¢ > 0O (since it is continuous and non-zero, and
X + BK is compact). Now we use formula from Lemma 4 which gives us the statement of
the Theorem. m|

6. Applications and examples

In this section we present several examples, where we can find asymptotics of surface
measure of small balls (some of these asymptotic results are already known, see [6, 5]), and
determine if the integrals of the negative power of the distance w.r.t. the surface measure and
their supremum are finite. We use sufficient conditions to verify that balls are comparable
to ellipsoids and then apply Theorems 3, 4, 5. We find mp(x), G;(x), G(x), and, assuming
h(s) = s¢, derive the exact integrability conditions. All results obtained are summarized in
the corresponding Theorems, in terms of I, a natural distance on Carnot group introduced
earlier.

ExampLE 1. Take a 3-dimensional Heisenberg group, i.e. Carnot group (R3, ) with group
action x e y = (x| + y1, X2 + Yo, X3 + Y3 + y1 X2 — x1y2). Using Proposition 1 we get (with

1 0 O o 0 0
d=3 k=2 Lx)=1|0 1 Ofland T(®) = |0 & O] In this case Theorem 2
X —x 1 0 0 ¢

tells us that balls are uniformly comparable to ellipsoids, so Theorems 3, 4, 5 are applicable
(in Theorems 4, 5 the additional condition of boundedness of the union of balls is trivially
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1 0
satisfied, since all closed balls are bounded). Take k = 2 and B = |0 1. In this case it is
0 0
easy to find that: G11(z) = 1, G13(2) = z%, Gy3(2) = z%. Therefore functions G(z) and mpg(z)
defining asymptotics of surface measure of balls in Theorem 3 can be found as follows:
mp(z) = 2if z; = 20 = 0 and mp(z) = 3 otherwise, G(z) = 1 if z1 =2, = 0and G(z) = 22 + 23

otherwise.
1

The main condition in Theorem 4 is satisfied if and only if f h(s)s*ds < +co in case the
0

1
compact K N{z|z3 = x3} contains points z where z; = zp = 0 and if and only if f h(s)s’ds <
0
+00 in case the compact K N {z]|z3 = x3} does not contain points where z; = 2o = 0. In

particular for A(s) = s%, @ € (-4, —3] the unboundedness appear at the neighbourhood of
points on the plane {z|zz = x3} such that z; = z; = 0.
The condition of Theorem 5 is fulfilled if and only if

1
fff(vl — x1,02 — x2)h(s) min(1, sjo|™")s? dsdv < +oo.
K 0

It can be further simplified as
[v] 1
ff(vl —x1,02 — x2)(Jo] ! fh(s)s3ds + fh(s)szds) dv < +o0
K 0 [0l
andincase f =1 and K = {v : |[v| < 1} it is equivalent to
1
fh(s)s3ds < o0,
0

If A(s) = s* then the condition is equivalent to @ > —4.
Below we write f(0) < g(0) as 6 — 0+ if there exists positive constants Cy, C, such that

tim L9 < fim {©

lim =—— < C,.

C, < <
: 50+ 9(0) -0+ g(0)

Theorem 6. Suppose that G = (R>,e) is a Carnot group with group action x e y =
(X1 + Y1, X2 + Y2, X3 + Y3 + Y1 X2 — X1Y2) and the corresponding distance is I (as in 1). Then
the following statements hold

(1) Denote Y(x,0) = f LT,y g ey )y <oy @urdun. If x1 = xo = 0 then y(x, 0) =< 8% as
R2
0 — 0+, otherwise (ifx% + x% #0) Y(x,0) <8 as 6 — 0+
(2) We have for all x € R?

[T((x1 + 01, %2 + 02, X3), (X1 + Uy, Xz + g, x3)) Pdudv < +oco
lul<1,lv<1

if and only if B > 3.



444 A. RUDENKO

(3) We have for all a € R and compacts K, such that (0,0, a) € K,

sup f[r((yl,y2,y3),(ul,uz,a))]ﬁ du < +co

yek
Jul<1

if and only if B > —2. In the case (0,0,a) ¢ K the supremum is finite if and only if

B> -3
ExampLE 2. Let G = (R3, @) be a Carnot group with group action x e y = (x| + yi, X2 +
1 00
Y2, X3 + y3 + 2y1x). Then we have as in Proposition 1: L(x) =| 0 1 0O]and 7(5) =
2x, 0 1
6 0 0
0 o O @t is interesting to note that function f(x) = (xy, xp,x3 + x1x2), which is an
00 ¢
isomorphism from Carnot group in the previous example to our Carnot group G, produces
1 0
the same A when applied to A from previous example). Again take k =2 and B =0 1|
0 0

In this case we obtain G12(z) = 1, G 3(z) =0, G23(2) = 4z% and the following Theorem can
be proved, in the same way as in the previous example.

Theorem 7. Suppose that G = (R>,e) is a Carnot group with group action x e y =
(x1 + y1, X2 + Yo, X3 + y3 + 2y1X2) and the corresponding distance is I'. Then the following
statements hold

(1) Denote Y(x,0) = f1{1“<x,(x]+u1,x2+u2,x3))<6} durduy. If x, = 0 then y(x,6) = 6 as
R2
8 — 0+, otherwise (if xo # 0) y(x,8) < & as § — O+.
(2) We have for all x € R?

f [T((x1 + v1, X2 + 02, X3), (X1 + Uy, X2 + tt, x3))1P dudv < +00
lul<1,Jv]<1

if and only if B > 3.
(3) We have for all a € R and compacts K, such that (b,0,a) € K for some b € R,

sup f[r((yl,l/z,!h), (u1, uz, @) Pdu < +o0

yekK
Jul<1

if and only if B > —2. In the case (b,0,a) ¢ K for all b € R the supremum is finite if
and only if 8 > 3.

ExampLE 3. Once again take G = (R?, @) is a Carnot group with group action xey = (x; +
Y1, X2 + Y2, X3+ Y3 +Y1X2 — X1Y2), but consider k = 1 and a curve N = {(,1,1) : t € R}. Then,
applying a map f(x) = (x; —x%, X»—X3, X3) We arrive to a situation, where Theorems 3, 4, 5 are

0
all applicable (according to Theorem 2). In this case, taking B = |0 | in new coordinates, we
1
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calculate that G(x) = 4x§, G>(x) = 1 and G3(x) = (1 + x; — 2x,x3)% in original coordinates,
but for transformed A. Note that G3 = (1 — #*)? on the curve, so its zero only at f = x3 = 1
ort = x3 = —1. Consequently we have mg(x) = 1 at (1,1, 1) and (1, -1, —1), and mp(x) =
for the rest of the points on the curve.

The condition of Theorem 5 is fulfilled if and only if

f f(@ — x3)h(s) min(1, s|1 — V| Nsdsdv < +0,
K 0
which is true for f = 1 and any compact K if

1

f h(s)s*|In s|ds < +o0
0

in particular @ > -3 for h(s) = s is sufficient. On the other hand for @ = —3 the conditions
fails for any K of non-zero Lebesgue measure. Therefore we obtain the following Theorem.

Theorem 8. Suppose that G = (R>,e) is a Carnot group with group action x e y =
(X1 + Y1, %2 + y2, X3 + Y3 + Y1X2 — X1y2) and the corresponding distance is I. Then the
following statements hold

(1) Denote ¥(v,0) = f1{r((u2,u,v),(uZ,u,u))<5}du~ If v =1o0rv = -1 then Y(x,6) < 6 as
R

§ — 0+, otherwise Y(x,68) < 6> as § — 0+.
(2) We have for all a € R

[T((W%, v, v), 2, u, )}’ dudv < +c0
|lu—al<1,v—al<1

if and only if B > 2.
(3) We have for any compact K, such that (1,1,1) € K or (1,—-1,-1) € K,

Sup f[F(y, W, u,u)P du < +0

|u\<2

ifand only if 8 > —1. For any compact K, such that (1,1,1) ¢ Kand (1,-1,-1) ¢ K,
the condition is 8 > —2.

ExampLE 4. Let us take d > 3 and define L(x) as follows: L;(x) = 1 fori = 1,...,d,

L;; =G ’jj), for j = d,i=j+1,...,dand L;j(x) = O for all other pairs of indices i, j.
We also define 7'(9) by setting p; = p, = land p; =i—1fori = 3,...,d. The corresponding
group, with action x e y = x + L(x)y is a Carnot group and p; are the homogeneous degrees
of the columns of L. Therefore by Proposition 2 we have comparability to ellipsoids and
Theorems 3, 5, 4 are all applicable.

We take k = d — 1 and linear manifold N = {x : x; = 0} (and choose E to be identity

matrix as before). Denote as [; = {1,...,d}\{/}, a multiindex containing all possible different
xd*l

indices between 1 and d except /. Then we can calculate: Gy, (x) = 0, G (x) = ((d‘—l)!)2 for

[=2,...,d. Therefore mg(x) = d(d D if x1 # 0 and mp(x) = w +1ifx; = 0.
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Let us check the main condition of Theorem 5. It is equivalent to

1
f f F)h(s) min(1, s2|x; + vy |7 942) s DE224 gy < oo,
K 0

which is true for f = 1if
1

d(d-1)
fh(s)sTds < 400

0

and for h(s) = s* we see that o > — 1 is sufficient. On the other hand for @ =

_d@d-1y _
2

_dd-1)
2
1 the conditions fails for any K of non-zero Lebesgue measure.

Theorem 9. Suppose that G = (R¢, ) is a Carnot group with group action xey = x+L(x)y
with L(x) defined as follows: Lij(x) = 1 fori = 1,...,d, L;; = %forj =2,...,d,
i=j+1,...,dand Lijj(x) = 0 for all other pairs of indices i, j. Denote the corresponding
distance as I'. Then the following statements hold

(1) Denote y(x,0) = f Lirexrwop<ardu. If x1 = 0 then y(x,0) = SA=DE=2)/2+1 g

Rd—l
8 — 0+, otherwise (if x; # 0) Yy(x,6) < 6%4=D/2 g5 5 — 0+.

(2) We have for all x € R?

f [C((X1 + 01y - e e Xagot + Va1, Xa), (X1 + U1,y Xao1 + g1, X)) dudv < +c0

lul<1,Jv|<1

if and only if B > —@.
(3) We have for all a € R and compacts K < RY, such that (0,b,a) € K for some

b e R¥2

sup f[F(y, (W, ... ug1,a)P du < +o0

yekK
lul<1

if and only if B > —““4E2 — 1. In the case (0,b,a) ¢ K for all b € R*™ the

supremum is finite if and only if § > ——d(dz_l)-

7. Distortion of balls in Carnot groups

In this section we consider an example of 3-step Carnot group for which we can prove that
balls are not comparable to ellipsoids. Additionally we provide another interesting property,
explaining this: we show that, in this example, intersection of balls with linear manifolds
have at least two connected components. Intuitively, in this case, we may suggest that small
balls have “parabolic” shape, meaning that they are distorted along some quadratic function
on one of the coordinates (here we do not make the corresponding precise statement, but our
arguments below shed some light on the situation).

Let us consider the following situation: d = 4,
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1 0 0 6 0 0 O
0 0 0 06 0 O
Lo=1 o T@lo 0 & of
0 xix2 x 1 00 0 ¢
The corresponding distance p, is equivalent to the distance I on a Carnot group G = (R*, e)

with its group operation defined by:

1
P
xeoy=(x;+yi, X2+ Y2, X3+ Y3+ X1Y2, X4 + Y4 + Y2X1 X2 + y3X2 + 5x1y2)

and its dilations acting as (xy, x2, X3, x4) — (Axy, Axy, A2x3, B3x4). This equivalence is the
consequence of the relation L;;(x) = %j((x ® ))ly=0 which shows that the columns of L are
left-invariant basis for Lie algebra of G with homogeneous degrees 1, 1,2, 3 — the same as
the powers of ¢ in T, so we can apply Proposition 1. Such group is isomorphic to an abstract
Engel group, and the asymptotic of the surface measure of intersections of small balls with
submanifolds for Engel group was studied in [4]. This particular instance of Engel group has
some interesting properties of intersections of small balls with linear submanifolds, related

to the comparison with ellipsoids, which we are about to present.

Theorem 10. There exists sy > 0, such that for any real s # 0 with |s| < so there is a
constant 6y > 0, such that for all 5 € (0,06p), t € R and x = (1, 56,1,0) the intersection of
the ball Bx(x, o) with the linear manifold H = {z € G|z4 = 0} has at least two connected
components.

1

Proof. Define for all x € G a transformation f,(y) = x' @ y on G, where x~! is an inverse

of x in G. It is easy to find its formula:

1
Se(y) = (1 —x1,y2 — x2,y3 — X3 — x1(Y2 — X2), Ya — X4 — X2(y3 — X3) — oL (Y2 — x2)%).

Note that due to the left-invariance of the columns of L it is preserved under such transfor-
mations and so is the distance pa, which gives us that f,(Ba(x, 0)) = Ba(0, ). On the other
hand if we sety; = x; +aj, y» = xp +az, y3 = x3 + az + x1az, y4 = 0, then for all a € R3 we
obtain every y € H and therefore:

1
f(H) = {(a1, az, a3, —X4 — X203 — X1 X207 — §x1a§)l(a1,az,a3) eR’).

The ellipsoids Exs0)(0, 7) are bounded above and below with boxes Q,(6) = {z € G :
lz1] < g6,122] < g6, 1z3] < 6%, 1zal < g&°}. For small enough ¢ > 0 and for all 6 > 0 and
z € Q4(6) we have

0
0
671z
0 6%z1z2 67'22 0

Applying Theorem 1 we can find g; > 0, g > 0 such that Q,, (6) C BA(0,6) € Q,,(6) for all
0>0

But it is easy to see, for any ¢ and any fixed small s, that for x = (1, s9,¢,0) we have
0 € Qu0) N fi(H) and (0,-256,0,0) € Q,(6) N fi(H), and for all z such that z, = —s6

S O O

0 0
0 0
I—A"! A =
Il (0, 9)Az, Il 0 0

N —
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we have z ¢ Q,(6) N f(H) for small ¢, since for all such z the conditions to belong to
Q,(8) N fi(H) imply a; = —s6, |as| < g6 and

1 2 1 22 3
Xoa3 + X1 X4y + — X145 = |sodz — < S < ,
| + + 5 5l =156 > 07l < qo

which is a contradiction for all small enough 6. Therefore each Q,(6) N f(H) has at least

two connected components for small 6 and moreover, since the separating set z, = —s6 and
the points 0 and (0, —2s9, 0, 0), that it separates, does not depend on ¢, Bx (0, 0) N f.(H) also
has at least two connected components for small 6. |

This interesting fact however is not in direct contradiction with the uniform comparability
to ellipsoids. More precisely if the balls are comparable to ellipsoids uniformly over x in
some neighbourhood of (1,0, 7, 0), then we can not conclude immediately that the intersec-
tions of balls with the manifold H can not be disconnected, since, in theory, it is possible
for an extra disconnected part of the ball to be always inside outer ellipsoid but outside
inner ellipsoid. It may be possible to exclude this possibility with the further clarification
of the actual geometric shape of the balls, but this requires some additional calculations.
Fortunately we can arrive to the same conclusion, if we find the asymptotic behaviour of
the surface measure of the balls in this case and compare it to the behaviour predicted by
Theorem 3. If there is a difference in asymptotics for some fixed point x then the balls with
a center at point x can not be comparable to ellipsoids. But such asymptotics are easy to find
in our case, as the following theorem shows.

It is interesting to note, that, as the proof of Theorem 10 suggests, for any x in Carnot
group we can always find such C? automorphism (for example in the form f,(y) = x™' e y),
which transforms balls, such that they become comparable to ellipsoids at point x. But
then, of course, the submanifold we consider is no longer linear, and it seems to be hard
to describe in a reasonably general way a two-way estimate for the surface measure of the
intersection of an ellipsoid with arbitrary submanifold in Euclidean space. Nevertheless this
idea can be used to find the asymptotics in examples. In fact it is exactly what we do below.

Theorem 11. Denote y(x,6) = [ 1i¢, e00eBrrondzidzodzs. If x = 0, then y(x, ) < 6*.

RS
If x0 =0, x4 = 0and x; # 0, then Y(x,0) < 1/961‘159. If x1 =0, x4 =0and x, # 0, then
Y(x,0) < x;lés. Ifx4 =0, x; # 0and x, # 0, then y(x,5) = (x1x2)”'6°. The constants in all

asymptotics do not depend on x.

Proof. Using again f,(y) = x~' e y we obtain, with the change of variables:

1r//(X, 6) = f 1{(£l| ,az,ag,—x4—x2a3—x1xzaz—%ma%)EB,\(O,(S)}daldazda3
R3

and recalling that the ball BA(0,6) can be covered with the box Q,(6) = {z € G : || <
g6, 1z2| < q6,1z3] < g6, |z4| < g8} we estimate:

"l’(x’ 6) < Cf1”“1|<115}1{|a2<115’1[|‘l3|<q52}1{|x4+x2a3+x1x2u2+%x1a§|<qé3}da1da2da3'
R3

The estimate from below is exactly the same with different constants, so it is enough to
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investigate the last integral. Note that the variable a; can be integrated immediately and the
asymptotics of the rest of the integral, denoted as

J(x,6) = f Lia21<q0) Ltast<q6) Uiy a3 +x1 maa+ Ly a2l <o) 4023
RZ
depend significantly on x.

If x = 0, then J(x,5) ~ C&> (the symbol ~ means that the left hand side divided by
the right hand side converges to 1, as 6 — 0+). If x, = 0, x4 = 0, but x; # 0, then
J(x,8) ~ Cx;'2672 If x; = 0, x4 = 0, but x» # 0, then J(x,6) ~ Cx;'6* If x4 = 0, but
x1 # 0 and x, # 0, then we can find the upper bound for small ¢ as follows (the lower bound
can be found similarly):

_ <5
](X, 6) =0 f 1{|52u|<q}1{|vl<q} 1{Ixzu+x1xz6u+%x164u2\<q6}dudv
R2

5
<0 f1{|U|<lI}1{—q(53—xzv¢54+%x1x§66<%x1(u+x263)2<q63—x2u64+%x1x§66}dudv
R2
<C —165
< C(xyxp)™ 67,

where we make changes of variables a, = us’, a3 = v6° and C is some positive constant that
depends only on g. |

The most interesting case in this theorem is, of course, the one where the fractional ex-
ponent of ¢ appears in the asymptotics (in fact it is easy to check that all other cases agree
with the statement of Theorem 3). As we can see it is a major difference in comparison to
the case when balls can be approximated with ellipsoids: the exponent of ¢ is always integer
in Theorem 3 if all p; are integer. It means that the comparison of balls with ellipsoids with
center of the ball at such point x, that x, = 0, x4 = 0 but x; # 0, is not possible.
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