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Abstract

Given a rational fibered surface f : X — P! of genus g we prove the inequality (Z’: 15 - 9”2*'912 <
Ay, provided that the genus ¢ is sufficiently high with respect to the gonality 2n+3 of the general
fibre.

1. Introduction

We work over the complex field C. Let f : X — B be a surjective morphism between
a projective nonsingular surface X and a projective, nonsingular curve B, with connected
fibres. We say that f is a fibration and X a fibered surface. In what follows we assume that
the fibration is relatively minimal (i.e. the fibers do not contain (—1)—curves) and the genus
of the general fiber F'is g > 2.

We denote by K the canonical divisor of X and for a surface 7" we write K7 only if it is
necessary to distinguish what surface we are referring to. The basic numerical invariants
associated with a fibration are: if Ky := K — f*Kp is the relative canonical divisor, define:

Xy :=deg f.Ky = x(Ox) — (g — 1)(b — 1), with b = the genus of B,

the slope:

and the relative Euler characteristic:
er=e(X)—4(g— Db -1).
These numbers are related to the relative Noether formula:
12y = KJ% +ey

(for these relationships see, for instance, [12]). The numbers K2, Xy and Ay are positive
if and only if f is non-isotrivial ([2], [10], [12]). Thus, the problem of the “geography’of
fibered surfaces naturally arises.

The most important result in this direction is the slope inequality obtained by Xiao ([13]):
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The search of sharper inequalities is a natural issue when imposing conditions on the
fibration. According to [9]: “Ashikaga conjectured that the lower bound of the slope of
“general’fibrations of genus ¢ is given as a function in g that approaches 6 from below as g
grows . Probably the most general result in this direction is the inequality:

6(g—1)
g+1

<4y,

if the general fiber is of maximal Clifford index ([9]). See also [3] and the references therein.

Consider, for instance, one of the simplest examples of a fibration: let X be the (rational)
surface obtained after blowing up the base locus of a pencil of nonsingular plane curves of
degree d transversely intersecting. Remember that if X is rational, then B is necessarily ra-
tional and y s = g, meaning in particular that if g > O the fibration is not isotrivial. Therefore,
in our particular case:

3d(d - 3) = 6(g — 1) and K? = 3d*> — 12d + 9.

Thus, we obtain:

3d-1)

9

The general fibre is far from being of maximal Clifford index, nevertheless the slope is
not much less than 6 (d being of the order of 4/g). Note also that the number d is just the
gonality of the general fibre F plus one (see [7]).

The main goal of this paper is to prove that a similar bound can be obtained for any
fibration of sufficiently high genus defined on a rational surface:

6

As.

Theorem 1.1. Let f : X — P! be a relatively minimal fibration of genus g on the rational
surface X, and let n € N be a given natural number. Assume (3n> +20n%>+39n—-2) < 6(g—1)
and the gonality gon(F) of the general fibre F is at least 2n + 3. Then,

6n+5 On + 12

- < K>
nt 1?9772 =N
In particular,
6n+5 9n+12
- < Ay

n+1 2g

The proof of Theorem 1.1 splits out into two parts. For any effective divisor D we denote
by D, its positive or nef part (see the following section). First, we obtain the bound for K}%
assuming that |(/K + F), + K| defines a birational map forall 1 </ < n:

Proposition 1.2. Ifforall 1 <1< n—1, the linear systems |(IK + F), + K| are nonempty
and |((n — 1)K + F), + K| defines a birational map, then

on-1 n+3
n g 2

Next, we give sufficient conditions for |(/K + F), + K| defining a birational map:

2
<K;.

Proposition 1.3. If (31 + 201> + 39n — 2) < 6(g — 1) and the gonality gon(F) of the
general fibre F is at least 2n + 3, then for 1 <[ < n, |(IK + F)y + K| # 0 and |(nK + F); + K|
defines a birational map.
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Theorem 1.1 follows at once from these two propositions and the fact that y s = g. Theo-
rem 1.1 generalizes the main results of [1], that in some sense can be considered as the first
step of an inductive procedure.

In Section 2 we present some preliminaries and fix the notation. Section 3 is devoted to
the proof of Proposition 1.2 and section 4 to the proof of Proposition 1.3.

2. Preliminaries

Let f : X — P! be a relatively minimal fibration, with X a rational surface. We assume
that the genus g of the general fibre F is at least 2.

Remember that in general, if f : X — B is a fibered surface, the relative canonical divisor
of f, denoted by Ky is Ky := K — f*Kp. In our case K; = K + 2F and we have:

K? =K +8(g-1).

We will use systematically the Zariski decomposition of an effective divisor D ([5], [14]).
Recall that given an effective divisor D (or more generally a pseudo-effective divisor) there
are effective Q—divisors D, and D_ such that:

.D=D,+D_,

. D, is nef,

. for all irreducible components I of D_, D,.I' = 0,

. the matrix of intersection of the irreducible components of D_ is negative definite.

This is the Zariski (or Zariski-Fujita) decomposition of the divisor D. It is unique as a
sum of Néron-Severi classes.

In what follows when writing D = D, + D_ without any further reference to D, we are
implicity assuming that D is effective.

Remark 2.1. If D is effective, then for all n € N we have ([5], Lemma 14.17):
H°(X,nD) = H(X, n(D,)).

Now, we follow the exposition in [6]. Let C be a nef divisor on the rational surface X.
Assume C + nK is effective and A is a curve such that A.(C + nK) < 0. Then A®> < 0 and
A.K < 0. Therefore A is a (—1)—curve. This procedure can be repeated, after contracting
A, in order to obtain the Zariski decomposition of nK + C. The description of (C + nK)_
is given in terms of the so called (—1)—cycles, we say that an effective divisor ® in X is a
(=1)—cycle if a birational morphism exists:

n:X—->T,

such that 7" is nonsingular, a point p € T exists such that ® = 7n*(Z,) ((1,) denoting the ideal
sheaf of p) and 7 : X — ® — T — {p} is an isomorphism. In this way a (—1)—cycle is a non
necessarily irreducible generalization of a (—1)—curve.

The structure of (—1)—cycles have been investigated in [4], [8], and [14]. One of its most
important properties, generalizing those of (—1)—curves, is that ®* = ©.K = —1.

The result on the Zariski decomposition of C + nK is:
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Proposition 2.2 ([6, Proposition 4.2]). Let C be a nef divisor on a rational surface X. Let
n be a positive integer and assume that |C + nKx| # 0. Then:

n—1 h,‘

(C+nKyx)- =Y > (n=0;;,

i=0 j=1
where ©; ; are the (—=1)—cycles on X satisfying:
(1) ©:;.0nk = 0if (h, k) # (i, j) and
(2) C-®i,j =1

REmARk 2.3. If n = 1 we have:
(C+K)- =) 0 with©;C =0, ©;0;=0
and from this it follows that:
K(C+K)_ =(C+K)>.

The other main ingredient in the proof of Theorem 1.1 is Reider’s method ([11]), in
particular its following consequence:

Lemma 2.4. Let C be a nef divisor in X.
(1) If C?> > 5 and |C + K| = 0, then X admits a base point free pencil |E| with E.C = 1.
(2) If C? > 10 and |C + K| does not define a birational map, then X admits a base point
free pencil E with E.C =1 or 2.

3. Proof of Proposition 1.2

Before proceeding with the proof of Proposition 1.2 we need the following Lemma and
its consequences, which are on the base of all our computations. Its provides a recursive
method for computing Zariski’s decomposition of the n—adjoint linear system |nK + F|.

Lemma 3.1. Let f : X — P! be a relatively minimal fibration on the rational surface X.
If(n— 1K+ Fand ((n— 1)K + F), + K are effective, then:

(1) nK + F is effective,
2) MK+ F)y,=((n—-1DK+F), +K), and
mK+F)_=((n-DK+F)_+({((n-DK+F), +K)_,

B) (m-DK+F)_.((n—-1DK+F), +K)_=((n-1DK+F)_K.

Proof. 1) The effectiveness of nK + F follows from the effectiveness of (n—1)K+F), +K
and (n— DK + F)_.
2) Write:
nK+F=((n-1DK+F);,+K), +(n-DK+F);, +K)_+(n—1DK+F)_.

We want to prove that this is the Zariski decomposition of nK + F. By the uniqueness

of such a decomposition and taking into account that (((n — 1)K + F), + K). is nef, it is
sufficient to prove the following claims:



ON THE SLOPE OF RATIONAL FIBERED SURFACES 497

a) (n=-DK+F);+K)y(n—-DK+F)_=0.
b) The intersection matrix of the irreducible components of

Supp ((n = DK + F)4+ + K)- + (n— DK + F)-)

is negative definite.
From Proposition 2.2 applied to (n — 1)K + F we have:
n=2 I
(n=DK+F)_=> > (n-1-i)0y,
i=1 j=1
where ©;; are (—1)—cycles.
Using that ©;;.((n— 1)K + F), = 0 and applying Remark 2.3 we see that Supp(((n— 1)K +
F)_) < Supp((((n — DK + F), + K)_) and from this a) follows. Moreover, it also follows
that:

Supp ((n = DK + F), + K)_ + ((n = DK + F)_) = Supp((n = DK + F), + K)_),

therefore b) is true, and we conclude (2).
Finally, writing:

((n=-DK+F);+K)_-=-((n-DK+F);+K);+((n-1)K+F); + K,

we see that (3) is a direct consequence of claim a). ]

Corollary 3.2. Let f : X — P! be a relatively minimal fibration on a rational surface X.
Ifforall1 <l<n-1, (IK+F); + K is effective, then:
n—1

(1) (nK + F)_ = Z((ZK +F), +K)_.
=1
n—1

(2) K + F)_.K = Z((IK +F), + K)%
=1

n—1
(3) (nK + F)* = Z(Z(n D= 1)K+ F), + K)*.
=1

n—1
4) po((nK+F)_)—-1= Z(n = D(pa(((IK + F), + K)_) = 1).
=1
! (—2(n )

_n L )
(5) 7 2Pa((nK+F)-—1) (nK+F)__Z —

+ 1) (Pa((IK+F), +K)_)—-1).
n+1 —

Proof. First of all, observe that from Lemma 3.1 (1) we have that nK + F is also effective.
So, it makes sense to speak about its positive and negative parts.
1) The proof is by induction on n. If n = 2, considering that K + F is nef, we can write
2K + F = (K + F), + K and we obtain the statement in this case. If n > 2, assume that:
n-2
(n— DK + F)_ = Z((IK +F), +K)_.
=1

From Lemma 3.1 (2) we have:
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mK+F)_=(n-DK+F)_+({((n-1DK+F); +K)_,

substituting in the previous expression we obtain part (1). of the Corollary.
2) follows from part (1) and Remark 2.3.
3) We use induction on n, the case n = 2, being clear from part (1). Assume n > 2 and :

n-2
(n— DK + F)? = Z(2(n ~D)=3)UK + F), + K.
=1

From parts (2) and (3) of Lemma 3.1 we obtain:
K +F)?=((n-DK+F? +2(n-1DK+F)_K+({((n-=DK + F), + K)?

Thus, substituting and using the previous part (2), we have:

n-2
(nK + F)? = Z(Z(n “D=DK+F)s +K)?+{((n-= DK + F), + K)*
=1

n—1

- Z(Z(n —) = (UK + F); + K).

=1
4) This follows at once from (2) and (3)
5) Follows from (3) and (4). m]

Now, we can proceed with the proof of Proposition 1.2.
Proof of Proposition 1.2. First, we need the following:

Lemma 3.3. Let f : X — P! be a relatively minimal fibration on the rational surface X.
If|((n — 1)K + F), + K| defines a birational map, then (nK + F), is big and

0<h((nK + F), +K) = %n(n + DK7 = (@4n* +2n = 1)(g— 1) = (pa((nK + F)-) = 1) + 1.

Proof. Since ((n — 1)K + F), + K is effective, from Lemma 3.1 parts (1) and (2) we know
that nK + F is effective and:

(1) (nK + F), = (0 — DK + F); + K),.
Now, from
H(((n - DK + F)y + K) = H(n — DK + F); + K);)

(Remark 2.1), we deduce that |((n — 1)K + F), + K).| defines a birational map and in conse-
quence is big. It follows that (nK + F'), is big. Thus, (nK + F), is big and nef, and applying
Mumford’s Vanishing Theorem:

1
0<h((nK + F), + K) = E(nK +F),(nK +F), +K) + 1.
Substituting (nK + F), = nK + F — (nK + F)_ we get:
0<h((nK + F), + K) = %(nK +F-mK+F).).mK+F—-mK+F)_+K)+1

= %(nK +F).((n+ DK + F)
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+ %(nK +F)_.(nK+F)_-2nmK+ F)—-K) + 1.
Moreover, from (nK + F).(nK + F)_ = K + F)*:
0<h((nK + F), +K) = %(nl(+ F).[(n+ DK+ F] - %(nK+ F)_-.(nK+F)_+K)+1.
The last inequality follows from K? = KJ% -8(g—-1):
(nK + F).((n+ DK + F) =n(n + DK> + 2n + DK.F
=n(n+ 1)(K]% -8(g—-1))+2Q2n+1)g-1)
= n(n+ DK; = 2(4n” +2n = 1)(g - 1).
O
Now, note that being ((/K + F), + K)_ a sum of (—1)—cycles we can contract its support

obtaining a non-singular surface 7 with K = 7°K7 + ((IK + F); + K)_, where 7 : X —» T is
the aforementioned contraction. Thus,

K* = ("K7)* + (K + F), + K)_)* = (K1) + po(((IK + F), + K)_) - 1.
Substituting K7 = K*+8(g— 1), and observing that, since 7 is rational, K7. < 9 we obtain:
(2) K7 = pa((UK + F); + K) )+ 1 <8(g— 1) +9.

Thus, combining Corollary 3.2 (4), Lemma 3.3 and (2) we have:
nn-1)
2
n—1

= (O (n=D)K} —8(g— 1) = 9) + (4n’ + 2n = 1)(g - 1)
=1

(K2 =8(g—1)=9) +@n> +2n - )(g-1)

n—1
1
< 3 (1= DIpalK + F). — 1]+ (@4n? +2n - (g - 1) < n(n + )K} +1.
=1
From this the Proposition follows. |

4. Proof of Proposition 1.3

The proof is based on Reider’s method applied to the linear system (nK + F); + K. The
next Lemma will be useful for giving an estimate of the self-intersection of (nK + F),:

Lemma 4.1. If |(IK + F); + K| # 0 forall 1 <[ < n—land |(n — 1)K + F| defines a
birational map, then:
(1) 2Cn+1)(g-1)-9nn+1)-2+ 227;12(71 —D(p((UIK+F); +K)_))-1)
<(=Dm+2)(p((n—DK+ F),y + K)-) = 1).

(2) If, moreover, |(IK + F), + K| defines a birational map for 1 <1 <n -1, then

(n-1)

p— 2 p—
nnK + F)_.K — (nK + F)~ > 1+ 2)

(201 +3)(g - 1) + 3n* + 121+ 20).
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Proof. 1) By Lemma 3.3 and Corollary 3.2 (4) we have:

n—1
(K +F),+K) = %n(n+1)KJ%—(4n2+2n—1)(g—1)—Z(n—l)(pa((lK+F)++K)_)—1)+1.
=1

Using equation (2), we can write:

0< %n(n +DBg=1D+9) = @n’+2n-1(g-1)

n-2

- Z(n —D(Pa(UK + F)y + K)-) = 1)
=1

+ (%n(n +1) - 1) Pa((n-DK+F), +K)_)-1)+1.

The inequality follows after regrouping.
2) The proof is by induction on n. If n = 2, using that K + F' is nef we can, using Lemma
3.1 (2), write:
20K+ F)_K-QK+F)? =2(K+F); +K)_K-(K+F), +K)*
= pa((K+ F)s +K)-) - L.
Moreover, since [(K + F), + K| defines a birational map it follows from the previous part
that part 2) is true for n = 2.

Assume that n > 2. Since ((n — 1)K + F); + K is effective it follows from Lemma 3.1 (1)
that nK + F is effective and from Lemma 3.1 (2):

nnK +F)_. K -nK +F)? =n[((n- DK+ F)_+((n—- DK+ F); +K)_1.K
~((n=DK+F)_+((n- DK + F), + K)_T*
=n-1DH((n-1DHDK+F)_K—-((n- 1K + F)%
—((m-DK+F)_K+m-1D({((n-DK +F); +K)*
=(n-D((n-DK+F)_K-(n-1K+F)>

n—-2
= D (PalUK + F). + K) )= 1)
=1

+(n—D(p(((n— DK+ F). +K)-)— 1)
(by Corollary 3.2 (2) applied to (n — 1)K + F)_)
>(m—-1D((n-DK+F)_K-(n-1)K+F)>

1
+ m(—2(2n +1)g-1)-9n(n+1)-2)

1 n-2
t— ;(—2(1 + 1)+ m(pu(UK + F); + K)2) = 1)

(by part (1) applied to (n — DK + F), + K)

> (1 - L)((n— D((n=DK+F)_K—-((n-1DK + F)?)
n+2
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- ;(2(2;1 +1(g-1)+9n+1)+2)
n+?2
(by Corollary 3.2 (5) applied to (n — 1)K + F)_).

Finally, using induction, we obtain:
-2
n(nkK + F)_.K — (nK + F)> > —%(2(,@ +2)(g—1D+3(m—172+12(n—-1)+20)
n
1
- ——QC2n+D(@-D+%n+1)+2)
n+?2

1
= —m(sl(g— D+S5)

with S| =2m?> -4)+2Q2n+Dand S, = (n-2)Bm - 1>+ 12(n— 1) +20) +9n(n+ 1) + 2,
from this the Lemma follows. O

Now, we reassume the proof of Proposition 1.3. The proof is by induction on n. If n = 1,
we know from [1, Theorem 3.3 ii)] that (K + F), + K is effective and from the proof of the
Theorem it follows that this linear system defines a birational map.

Assume Proposition 1.3 is true for all 1 </ < n—1 and that é(3n3 +20n%+39n-2) < g-1
and gon F > 2n + 3. Since é(?sn3 +20n? +39n — 2) and 2n + 3 are increasing functions in 7,
we see, using induction, that [([K + F); + K| defines a birational map forall 1 </ <n - 1.
From Lemma 3.1 (1) it follows that nK + F is effective. For what remains of this proof, we
write

nK+F=P+N,

for the Zariski decomposition (i.e., P = (nK + F), and N = (nK + F)_).
Our first goal is to prove that P> > 9. From Lemma 3.3 we know that P is big and

2 ) 2
3) — |@r? + 20— (g~ 1) + (pu) ~ 1) — 1] < nK?.
Since P* = (nK + F)> = N? and K = Ky — 2F we obtain from (3):
2 1
P> ﬁ [(4;12 +2n=Dlg =)+ NN+ K) - 1] —dn2n—1)(g—1) - N2

After regrouping we obtain:

2n
n+1

P> ((4n*+2n—1-2Cn- D+ 1)g-D-1)+ (%N.(N +K)— Nz).
n
Using Lemma 4.1 (2) we get:

2n 2n—-1)

n+1((9—1)—1)—m((”+3)(9—1)+

(Pi(g—1)— Pr),

P? >

3n% + 12n + 20)
2

~ 2
T (n+ D +2)
with P; = n(n +2) — (n — )(n +3) = 3 and

1 1
P, =n(n+2)+ E(n - 1)(3n® + 12n + 20) = E(3n3 + 11n% + 12n - 20).
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Thus, since 1(3n* + 200> +39n -2) < g — I:

4) P> I DETD (é(3n3 +20n* + 391 - 2)

1
i+ D(n+2)
=9,

(3n® + 11n% + 12n - 20)

In other words, the inequality (3n* + 20n? + 39n — 2) < g — 1 implies that P* > 9. Now
we use the hypothesis on the gonality of F in order to deduce that |P + K| defines a birational
map.

First of all, we note that P+ K is effective. Indeed, if |P+ K| = 0, then by Reider’s method
(Lemma 2.4 (1)) a base point free pencil |E| exists on X such that E.P = 1. If E is not
rational, then the map defined by |P| must contract E. Now, from Lemma 3.1 (2) we have
that P = ((n—1)K+F), +K), and since H(n—-1)K+F),.+K),) = H((n-1DK+F),+K)
(Remark 2.1), we conclude that E is contracted by |((n — 1)K + F), + K|, which contradicts
the induction hypothesis.

Therefore, E must be rational and in consequence E.K = —2. Now, we claim that the
support of N is |E|-vertical. Indeed, since P is big and nef and we are assuming that |P+ K| =
0, we obtain:

1
O:hO(P+K):§P.(P+K)+1,

P(P+K)=-2.

From this and P> > 9 it is easy to deduce that 2P + K is effective. On the other hand
E.(2P + K) = 0, therefore

2P+K=ZE,-,

where E; are |E|-vertical. It follows that (2P + K), is the sum of a finite number of curves
linearly equivalent to E and (2P + K)_ is formed by a sum of |E|-vertical curves properly
contained in fibres of |E|. Using the description of the negative part of 2P+K as the collection
of (=1)—cycles O satisfying P.O® = 2P.0 = 0 (Proposition 2.2) it follows at once that N is
|E|-vertical. Thus:

1=PE=mK+F-N)E=-2n+E.F,

which contradicts the hypothesis on the gonality of . We conclude that |P + K] is effective.
The proof of the birationality of the map defined by |P + K| follows the same lines. First,
note that actually we have P? > 10. Indeed, since |P + K| is effective, the inequality in (3) is
strict and thus P? > 10.
Now assume that P + K does not defines a birational map. Then, by Lemma 2.4 (2) a base
point free pencil |E| exists such that

EP=1 or 2.

Assume first that E.P = 1. If E is rational, then E.(P + K) = —1, which contradicts the
effectiveness of P + K. If E is not rational we argue just as before in order to conclude that
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E is contracted by |((n — DK + F); + K|.

Now, if E.P = 2 and E is not rational, then the system |P| defines on E a hyperelliptic

involution. Thus, |P| does not separate points and by a similar argument as the used above
we see that this implies that |(n — 1)K + F), + K| does not define a birational map.

Finally, if E.P = 2 and E is rational, once again it can be proved that N is |E|-vertical, in

this case using that P + K is effective, E.(P + K) = 0 and thus P + K is a sum of effective
|E|-vertical divisors. We finally obtain:

2=EP=EmK+F-N)=-2n+E.F.

This conclude the proof of the Proposition 1.3 O
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