
Title Depth カメラによる外界認識とNDT マッチングによる
自己位置推定

Author(s) 平尾, 和睦

Citation 令和元（2019）年度学部学生による自主研究奨励事業
研究成果報告書. 2020

Version Type VoR

URL https://hdl.handle.net/11094/75991

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

様式６
申請先学部 工 学部 採択番号 No.５

２０１９年度大阪大学未来基金【住野勇財団】学部学生による自主研究奨励事業研究成果報告書
ふ り が な

氏 名
ひらお かずよし

平尾 和睦
学部
学科

工学部
応用理工学科

学年 ３年

ふりがな

共 同
研究者氏名

かわかみ きょうへい

川上 恭平
学部
学科

工学部
応用理工学科

学年

３年

いずぶち れお

泉渕 礼於
工学部
電子情報工学科

３年

 年

アドバイザー教員
氏名

大須賀 公一

所属
工学研究科
機械工学専攻

研究課題名 Depth カメラによる外界認識と NDT マッチングによる自己位置推定

研究成果の概要
研究目的、研究計画、研究方法、研究経過、研究成果等について記述すること。必要に応じて用紙を

追加してもよい。（先行する研究を引用する場合は、「阪大生のためのアカデミックライティング入

門」に従い、盗作剽窃にならないように引用部分を明示し文末に参考文献リストをつけること。）

本研究の目的
 近年のロボット工学の発達は目まぐるしく、今まで人にしかできないと思われてきたことが次々と

可能になってきている。特に注目を集めているものの一つとして車の自動運転があげられる。近い将

来実用化されるであろうが、この技術はなにも車に限った話ではないはずである。より小さく小回り

の利くロボットに搭載できれば建物内での物資運搬など様々なことに活用できると考えられる。しか

しこれには大きな課題がある。自動運転車は高価なセンサーと大規模な計算機を用いて稼働している

ためそれをそのまま利用することはできない。では、安価なセンサーと小型の計算機ではどれほどの

ことができるのであろうか。それを検証するべく、自動運転に不可欠な技術である深度センサーによ

る自己位置推定を行う。

実験装置
 Intel 社製「BOXNUC8I5BEH」

この製品はストレージとメモリを別途購入す

ることで計算機として利用できる。またストレ

ージは SSD128GB、メモリは 16GB を採用し

た。
大きさは幅 117mm 、奥行き 112mm 、高さ

51(H)mm でこのサイズでは最高レベルの計算

能力を持つ。19V を背面のジャックに印加する

ことで駆動するため、市販の 22.2V の Li-Po バ

ッテリーを降圧することで駆動すると考えら

れる。（実際は電源のことを失念していたため

付属の AC アダプターを利用した。）

図１ Intel NUC「BOXNUC8I5BEH」

ふ

氏

様式6

巾請先学部工学部採択番号 No.5

2 0 1 9年度大阪大学未来基金［住野勇財団】学棉学生による自主研究奨易事業研究成果報告書

り がな ひらおかずよし 学部 工学部
学年

名 平尾和睦 学科 応用理工学科
3年

かわかみ きょうへい 工学部
I I

川上恭平 応用理工学科
3年

ふりがな
いずぶちれお 学部 工学部

共同 3年

研究者氏名
泉渕礼於 学科 電子情報工学科 I学年 I

アドバイザー教員

氏名

研究課題名

大須賀公一
所属

工学研究科

機械工学専攻

I I

Depthカメラによる外界認識と NDTマッチングによる自己位置推定

年

研究成果の概要

研究目的、研究計画、研究方法、研究経過、研究成果等について記述すること。必要に応じて用紙を

追加してもよい。（先行する研究を引用する場合は、「阪大生のためのアカデミックライティング入

門」に従い、盗作剛窃にならないように引用部分を明示し文末に参考文献リストをつけること。）

本研究の目的

近年のロボット工学の発達は目まぐるしく、今まで人にしかできないと思われてきたことが次々と

可能になってきている。特に注目を集めているものの一つとして車の自動運転があげられる。近い将

来実用化されるであろうが、この技術はなにも車に限った話ではないはずである。より小さく小回り

の利くロボットに搭載できれば建物内での物資運搬など様々なことに活用できると考えられる。しか

しこれには大きな課題がある。自動運転車は高価なセンサーと大規模な計算機を用いて稼働している

ためそれをそのまま利用することはできない。では、安価なセンサーと小型の計算機ではどれほどの

ことができるのであろうか。それを検証するべく、自動運転に不可欠な技術である深度センサーによ

る自己位置推定を行う。

実験装置

• Intel社製「BOXNUC8l5BEH」

この製品はストレージとメモリを別途購入す

ることで計算機として利用できる。またストレ

ージは SSD128GB、メモリは 16GBを採用し

た。

大きさは幅 117mm、奥行き 112mm、高さ

51(H)mmでこのサイズでは最高レベルの計算

能力を持つ。 19Vを背面のジャックに印加する

ことで駆動するため、市販の 22.2VのLi-Poバ

ッテリーを降圧することで駆動すると考えら

--図1 Intel NUC「BOXNUC8l5BEH」れる。（実際は電源のことを失念していたため

付属のACアダプターを利用した。）

様式６
申請先学部 工 学部 採択番号 No.５

 Intel 社製「RealSense D435i」
距離が測定できる特殊なカメラであり、本研究におけ

るセンサーである。通常の自動運転の深度センサーはレ

ーザーセンサーである LiDAR を用いるが、本製品は赤外

線を利用するため値段が安い分精度が悪い。また赤外線

は太陽光によって乱されるため屋外は苦手と言われる。

本製品は内部に IMU も搭載しており、加速度、角速度を

検知することができる
 実験フィールド

今回は実験のために以下のようなフィールドを作成した。この中に RealSense を置き、STL
データから点群を生成することでマッチングする。

 図３フィールド図面 図４フィールド
手法

自己位置推定はNDTマッチングと呼ばれる方法を

用いて行う。この手法では地図データをボクセル（立

方体に）分割し、ボクセルごとの点の集合を正規分布

で近似する。スキャンデータ周辺のデータのみを扱う

ので計算量はスキャンデータの大きさによって決定

される。今回は PointCloudLibrary（以下 PCL）に実

装されている機能を利用するためこれ以上詳しく解

説しない。PCL の NDT の項目の参考資料である

Magnusson Martin 氏の論文を参考資料に含めてい

るので、詳しくはそちらを参照していただきたい。

手順

マッチングの流れであるが、初めに RealSense から情報を取得する。RealSense の深度計測の解像

度は 1280×720 であり、90 万個ほどの点が得られる。先述の通り、スキャンデータが少なければ少

ないほど処理時間を短縮できるので PCL の VoxelGrid filter と呼ばれる機能で点群量を大幅に削減

する。
次に初期変換を定義する。スキャンデータをあらかじめ地図データに近い地点に設定することでマ

ッチングを高速に行えるようにする。具体的には NDT マッチングで推定した位置を保存しておき、

前回位置をあらかじめ読み込んでおくことで、一周期分の変位を推定すればよい。また IMU などを

用いて加速度、角速度の積分をもって一周期分の変位を推定しておくことでより NDT によって推定

図５ NDT マッチングサンプル実行結果

図 2 RealSense D435i

様式6

巾請先学部工学部採択番号 No.5

• Intel社製「RealSenseD435i」

距離が測定できる特殊なカメラであり、本研究におけ

るセンサーである。通常の自動運転の深度センサーはレ

ーザーセンサーである LiDARを用いるが、本製品は赤外

線を利用するため値段が安い分精度が悪い。また赤外線

は太陽光によって乱されるため屋外は苦手と言われる。

本製品は内部に IMUも搭載しており、加速度、角速度を

検知することができる

・ 実験フィールド
今回は実験のために以下のようなフィールドを作成した。この中に RealSenseを置き、 STL

データから点群を生成することでマッチングする。

固2 RealSense D435i

1800

0
0
6

68

38 ，

翠I

↓
↑

I I

）

圏3フィールド図面

手法

自己位置推定はNDTマッチングと呼ばれる方法を

用いて行う。この手法では地図データをボクセル（立

方体に）分割し、ボクセルごとの点の集合を正規分布

で近似する。スキャンデータ周辺のデータのみを扱う

ので計算量はスキャンデータの大きさによって決定

される。今回はPointCloudLibrary(以下PCL)に実

装されている機能を利用するためこれ以上詳しく解

説しない。 PCLの NDTの項目の参考資料である

Magnusson Martin氏の論文を参考資料に含めてい

るので、詳しくはそちらを参照していただきたい。

図4フィールド

図5 NDTマッチングサンプル実行結果

手順

マッチングの流れであるが、初めに RealSenseから情報を取得する。 RealSenseの深度計測の解像

度は 1280X720であり、 90万個ほどの点が得られる。先述の通り、スキャンデータが少なければ少

ないほど処理時間を短縮できるので PCLのVoxelGridfilterと呼ばれる機能で点群量を大幅に削減

する。

次に初期変換を定義する。スキャンデータをあらかじめ地図データに近い地点に設定することでマ

ッチングを高速に行えるようにする。具体的には NDTマッチングで推定した位懺を保存しておき、

前回位置をあらかじめ読み込んでおくことで、一周期分の変位を推定すればよい。また IMUなどを

用いて加速度、角速度の積分をもって一周期分の変位を推定しておくことでより NDTによって推定

様式６
申請先学部 工 学部 採択番号 No.５

する量を減らすことができる。しかし今回は IMU による推定は研究期間の都合で実装はされていな

い。
最後に NDT マッチングを行う。NDT マッチングは複数回の反復を行うことで精度を高めること

ができ、評価値がしきい値を下回ると終了するようになっている。ここで推定された位置が自己位置

となり、この値は次の位置推定に利用される。

結果
以下の図はマッチングの結果を表した図である。小さい点は RealSense がスキャンした点を表して

おり、大きな点が NDT によって座標変換されたあとのスキャンデータの位置である。また、きれい

に整列している点はフィールドの枠である。RealSense はフィールドの角、写真では一番左側の角に

おいてある。図からわかるように、地図データである木枠の沿って大きな点が分布しており、適切に

マッチングされたことがわかる。また写真では伝えられないことが残念だが、RealSense を移動させ

てもマッチングし続けることも確認された。

図６ マッチングの様子(ななめ視点)

図７ マッチングの様子（真上視点） 図８ マッチングの様子（真横視点）

しかし、問題点も多数ある。私の実装が不十分であるため処理が間に合っていない。というのも複

数コアを用いたマルチスレッド処理にすることができなかったからだ。スキャンデータを 300 点ほ

ど、反復回数を 1 回にしても、マッチング周期が 2Hz ほどしか出ていない。IMU による推定も行っ

様式6

巾請先学部工学部採択番号 No.5

する量を減らすことができる。しかし今回は IMUによる推定は研究期間の都合で実装はされていな

し‘。

最後に NDTマッチングを行う。 NDTマッチングは複数回の反復を行うことで精度を高めること

ができ、評価値がしきい値を下回ると終了するようになっている。ここで推定された位置が自己位置

となり、この値は次の位置推定に和用される。

結果

以下の固はマッチングの結呆を表した図である。小さい点はRealSenseがスキャンした点を表して

おり、大きな点が NDTによって座標変換されたあとのスキャンデータの位置である。また、きれい

に整列している点はフィールドの枠である。 RealSenseはフィールドの角、写真では一番左側の角に

おいてある。図からわかるように、地図データである木枠の沿って大きな点が分布しており、適切に

マッチングされたことがわかる。また写真では伝えられないことが残念だが、 RealSenseを移動させ

てもマッチングし続けることも確認された。

図6 マッチングの様子（ななめ視点）

図7 マッチングの様子（真上視点） 図8 マッチングの様子（真横視点）

しかし、間題点も多数ある。私の実装が不十分であるため処理が間に合っていない。というのも複

数コアを用いたマルチスレッド処理にすることができなかったからだ。スキャンデータを 300点ほ

ど、反復回数を 1回にしても、マッチング周期が 2Hzほどしか出ていない。 IMUによる推定も行っ

様式６
申請先学部 工 学部 採択番号 No.５

ていないので、RealSense の移動速度が秒速 50 ㎜程度でなら利用できるがそれ以上では難しいとい

う結果だった。しかし、裏を返せば IMU での推定のずれが秒速 50 ㎜以上の速さで広がらなければ可

能であると思われるので、IMU による推定の実装が求められる。また、今回実験したのは単純な木枠

内であるため、さらに複雑なフィールドで適応できるか検証する必要がある。

課題

本研究では期間内に行うことのできなかった内容がいくつか存在している。
1. マルチスレッド処理による高速マッチング。

近年の計算機はシングルスレッドの速度の伸びは緩やかになってきており、その代わり多く

のコア、スレッドを用いて計算することで性能を伸ばしている。本研究で使用した計算機も 4
コア 8 スレッドの製品であり、シングルスレッドよりマルチスレッドの方が 4 倍以上は速いと

いうことになる。挑戦はしたものの短期間で実現することはかなわなかった。
2. IMU を用いたマッチング補助

NDT マッチングはマッチング対象との差が大きいほどマッチングに時間がかかる。IMU を

用いることで検出される加速度角速度から現在位置を推定し、マッチング対象との差を減らす

ことでマッチング時間を短縮することができる。しかし、それには高周期で IMU の値を読み、

積分をする必要性があるが、シングルスレッドだとマッチング速度が遅いため精度が出ないこ

とが予想された。そのため実装には別スレッドを用意する必要があるが、NDT マッチングの

マルチスレッド処理の開発を優先させたため挑戦すらできなかった。
3. 点群量減少プログラムの動作の理解

RealSense の点群を減少させるために利用した PCL の機

能が説明とは違うように感じられた。VoxelGrid filter と呼ば

れるものを利用しているが、PCL の Documentation には

「Then, in each voxel (i.e., 3D box), all the points present
will be approximated (i.e., downsampled) with their
centroid.」とあり、空間を区切り、その各々の中の点が一つの

重心点に近似されると読める。しかし、実際は図９のような

筋のようなものが入ってしまった。この原因は最後まで分か

らず、点群数が増加してしまい、処理を遅くしてしまった。
4. 全方位移動台車

予算不足で作成を断念した。ただ現状だと高速動作ができないため作成していても使われな

かったであろう。
これらについては今後開発していければよいと考えている。

参考文献

[1] Point Cloud Library Documentation (閲覧日：2019/12/11)
http://pointclouds.org/documentation/

[2] Magnusson, Martin. (2009). The Three-Dimensional Normal-Distributions Transform --- an
Efficient Representation for Registration, Surface Analysis, and Loop Detection.

[3] GitHub rs-pcl.cpp (閲覧日：2019/12/11)
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl/rs-pcl.cpp

図９ 縦筋が入った点群

様式6

巾請先学部工学部採択番号 No.5

ていないので、 RealSenseの移動速度が秒速 50mm程度でなら利用できるがそれ以上では難しいとい

う結果だった。しかし、裏を返せばIMUでの推定のずれが秒速 50mm以上の速さで広がらなければ可

能であると思われるので、 IMUによる推定の実装が求められる。また、今回実験したのは単純な木枠

内であるため、さらに複雑なフィールドで適応できるか検証する必要がある。

課題

本研究では期間内に行うことのできなかった内容がいくつか存在している。

1. マルチスレッド処理による高速マッチング。

近年の計算機はシングルスレッドの速度の伸びは緩やかになってきており、その代わり多く

のコア、スレッドを用いて計算することで性能を伸ばしている。本研究で使用した計算機も 4

コア 8スレッドの製品であり、シングルスレッドよりマルチスレッドの方が 4倍以上は速いと

いうことになる。挑戦はしたものの短期間で実現することはかなわなかった。

2. IMUを用いたマッチング補助

NDTマッチングはマッチング対象との差が大きいほどマッチングに時間がかかる。 IMUを

用いることで検出される加速度角速度から現在位置を推定し、マッチング対象との差を減らす

ことでマッチング時間を短縮することができる。しかし、それには高周期でIMUの値を読み、

積分をする必要性があるが、シングルスレッドだとマッチング速度が遅いため精度が出ないこ

とが予想された。そのため実装には別スレッドを用意する必要があるが、 NDTマッチングの

マルチスレッド処理の開発を優先させたため挑戦すらできなかった。

3. 点群量減少プログラムの動作の理解

Real Senseの点群を減少させるために利用した PCLの機

能が説明とは違うように感じられた。 VoxelGridfilterと呼ば

れるものを利用しているが、 PCLの Documentationには

「Then,in each voxel (i.e., 3D box), all the points present

will be approximated (i.e., downsampled) with their

centroid.」とあり、空間を区切り、その各々の中の点が一つの

重心点に近似されると読める。しかし、実際は図 9のような

筋のようなものが入ってしまった。この原因は最後まで分か

らず、点群数が増加してしまい、処理を遅くしてしまった。

4. 全方位移動台車

図9 縦筋が入った点群

予算不足で作成を断念した。ただ現状だと高速動作ができないため作成していても使われな

かったであろう。

これらについては今後開発していければよいと考えている。

参考文献

[1] Point Cloud Library Documentation (閲覧日： 2019/12/11)

http:/ /pointclouds.org/documentation/

[2] Magnusson, Martin. (2009). The Three-Dimensional Normal-Distributions Transform ---an

Efficient Representation for Registration, Surface Analysis, and Loop Detection.

[3] GitHub rs-pcl.cpp (閲覧日： 2019/12/11)

https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl/rs-pcl.cpp

http://pointclouds.org/documentation/
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl/rs-pcl.cpp

