

Title	Vector bundle valued harmonic forms and immersions of Riemannian manifolds
Author(s)	Matsushima, Yozo
Citation	Osaka Journal of Mathematics. 1971, 8(1), p. 1-13
Version Type	VoR
URL	https://doi.org/10.18910/7603
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

VECTOR BUNDLE VALUED HARMONIC FORMS AND IMMERSIONS OF RIEMANNIAN MANIFOLDS

Yozo MATSUSHIMA

(Received June 1, 1970)

The purpose of this paper is to discuss an application of the theory of vector bundle valued harmonic forms on a Riemannian manifold to the study of immersions.

Let M be a Riemannian manifold and E a Riemannian vector bundle over M. Then we can define in a natural way the Laplacian \square operating on E-valued differential forms and we can express the scalar product $\langle \square \theta, \theta \rangle$, where θ is an E-valued p-form, in terms of curvature and covariant differentials. Moreover, if M is compact, we obtain, by integrating over M, a formula analogous to Bochner's for ordinary (i.e. real valued) differential forms.

Let f be an immersion of M into a Riemannian manifold M'. We may regard the second fundamental form α of (M, f) as a Hom (T(M), N(M))-valued 1-form. Assuming that M' is of constant sectional curvature, we shall prove that the second fundamental form α is harmonic, i.e. $\square \alpha = 0$, if the mean curvature normal of (M, f) is parallel. In particular, if the immersion f is a minimal immersion, then α is harmonic. Conversely, if M is compact and if α is harmonic, then the mean curvature normal is parallel. We obtain from this result together with the formula of Bochner type the results of Simons [5], Chern [1], Nomizu-Smyth [4] and Erbacher [2] proved by them in different ways. In a future paper we shall discuss the case where M is a Kähler manifold.

1. Let M be an n-dimensional Riemannian manifold and E a vector bundle over M with a metric along the fibers and a covariant differentiation D_X satisfying

$$X\langle arphi, \psi
angle = \langle D_X, arphi
angle + \langle arphi, D_X \psi
angle$$

for any vector field X and any sections φ and ψ of E. A vector bundle E with these properties will be called a *Riemannian vector bundle*.

We shall denote $C^{p}\left(E\right)$ the real vector space of all E-valued differential p-forms on M. We define an operator

$$\partial: C^{p}(E) \rightarrow C^{p+1}(E), (p = 0, 1, \cdots)$$

by the formula

$$\begin{split} (\partial \theta)(X_{\scriptscriptstyle 1}, \cdots, X_{p+1}) &= \sum_{i=1}^{p+1} (-1)^{i+1} D_{X_i}(\theta(X_{\scriptscriptstyle 1}, \cdots, \hat{X}_{\scriptscriptstyle i}, \cdots, X_{p+1})) \\ &+ \sum_{i < j} (-1)^{i+j} \theta([X_i, X_j], X_1, \cdots, \hat{X}_i, \cdots, \hat{X}_j, \cdots, X_{p+1}), \end{split}$$

where X_i 's denote vector fields on M. The covariant derivative $D_X\theta$ of $\theta \in C^p(E)$ is an E-valued p-form such that

$$(D_X\theta)(X_1,\cdots,X_p)=D_X(\theta(X_1,\cdots,X_p))-\sum_{i=1}^p\theta(X_1,\cdots,\nabla_XX_i,\cdots,X_p),$$

where $\nabla_X X_i$ denotes the covariant derivative of the vector field X_i in the Riemannian manifold M.

For an E-valued 1-form θ we have the formula

$$(\partial \theta)(X, Y) = (D_X \theta)(Y) - (D_Y \theta)(X)$$

The covariant differential $D\theta$ of θ is an E-valued (p+1)-tensor defined by

$$(D\theta)(X_1,\cdots,X_p,X)=(D_X\theta)(X_1,\cdots,X_p).$$

We define an operator

$$\partial^*: C^p(E) \rightarrow C^{p-1}(E) \qquad (p>0)$$

as follows. Let $x \in M$ and let $\{e_1, \dots, e_n\}$ be an orthonormal basis of the tangent space $T_x(M)$ of M at x. For any p-1 tangent vectors u_1, \dots, u_{p-1} at x, put

$$(\partial^* \eta)_x (u_1, \dots, u_{p-1}) = -\sum_{k=1}^n (D_{e_k} \eta)_x (e_k, u_1, \dots, u_{p-1}),$$

where $(D_{e_k}\eta)_x$ denotes the value of $D_X\eta$ at x for any vector field X such that $X_x=e_k$. Then $(\partial^*\eta)_x$ is an alternating (p-1)-linear map of $T_x(M)$ into E_x , the fiber of E over x, and the assignment $x \to (\partial^*\eta)_x$ defines an E-valued (p-1)-form $\partial^*\theta$. For any E-valued 0-form θ , we define $\partial^*\theta=0$.

The Laplacian \square for E-valued differential forms is defined as

$$\Box = \partial \partial^* + \partial^* \partial$$
.

The curvature \tilde{R} of the covariant differentiation D in E is a Hom (E, E)-valued 2-forms given by

$$\tilde{R}(X, Y)\varphi = D_X(D_Y\varphi) - D_Y(D_X\varphi) - D_{[X,Y]}\varphi$$

for any section φ of E and for any vector fields X and Y in M. We shall denote by $\langle \theta, \eta \rangle$ the scalar product of two E-valued p-forms, that is, $\langle \theta, \eta \rangle$ is the smooth function on M given by

$$\langle \theta, \eta \rangle (x) = \sum_{i_1, \dots, i_p=1}^n \langle \theta(e_{i_1}, \dots, e_{i_p}), \eta(e_{i_1}, \dots, e_{i_p}) \rangle,$$

where $\{e_1, \dots, e_n\}$ denotes an orthonormal basis of $T_x(M)$.

Now we prove the following

Theorem 1. Let θ be an E-valued 1-form. Then

$$\langle \Box \theta, \theta \rangle = \frac{1}{2} \Delta \langle \theta, \theta \rangle + \langle D \theta, D \theta \rangle + A$$

where Δ denotes the Laplacian of the Riemannian manifold M and A denotes a smooth function in M defined as follows:

$$A(x) = \sum_{i,j} \langle (\tilde{R}(e_j, e_i)\theta(e_j), \theta(e_i) \rangle + \sum_i \langle \theta(S(e_i)), \theta(e_i) \rangle,$$

where $\{e_1, \dots, e_n\}$ is an orthonormal basis of $T_x(M)$ and S denotes the endomorphism of $T_x(M)$ defined by the Ricci tensor S of M, i.e. $S(e_i) = \sum_k S_{ki} e_k$.

Proof. Fix a point $x \in M$ and let $\{e_1, \dots, e_n\}$ be an orthonormal basis of $T_x(M)$. We can choose n vector fields E_1, \dots, E_n in M such that $E_i(x) = e_i$ and $(\nabla_{E_k} E_i)_x = 0$ for $i, k = 1, \dots, n$. Then, because $\nabla_{e_s} E_i$ are zero for $i, s = 1, \dots, n$, we have

$$\begin{split} (\partial^*\partial\theta)(e_i) &= -\sum_s (D_{e_s}\partial\theta)(e_s,e_i) = -\sum_s D_{e_s}((\partial\theta)(E_s,E_i)) \\ &= -\sum_s D_{e_s}((D_{E_s}\theta)(E_i) - (D_{E_i}\theta)(E_s)) \\ &= \sum_s (D_{E_s}D_{E_i}\theta)(e_i) - \sum_s (D_{E_s}D_{E_s}\theta)(e_i). \end{split}$$

On the other hand, $\partial^*\theta = -\sum_{s,t} g^{st}(D_{E_t}\theta)(E_s)$ where (g^{st}) is the inverse matrix of the matrix $(g(E_s, E_t))$, we have

$$\begin{split} (\partial \partial^* \theta)(e_i) &= D_{e_i}(\partial^* \theta) = -\sum_{s,t} (e_i g^{st})(D_{e_t} \theta)(e_s) - \sum_{s,t} \delta^{st} e_i((D_{E_t} \theta)(E_s)) \\ &= -\sum_s e_i((D_{E_s} \theta)(E_s)) = -\sum_s (D_{E_i} D_{E_s} \theta)(e_s), \end{split}$$

because $\nabla_{e_i} E_{k} = 0$ at x.

Therefore we obtain

$$(\Box \theta)(e_i) = \sum_i ((D_{Es}D_{Ei} - D_{Ei}D_{Es})\theta)(e_s) - \sum_i (D_{Es}D_{Es}\theta)(e_i).$$

Since $[E_s, E_i] = 0$ at x, we have

$$\begin{aligned} ((D_{E_s}D_{E_i} - D_{E_i}D_{E_s})\theta)(e_s) &= (([D_{E_s}, D_{E_i}] - D_{[E_s, E_i]})\theta) (e_s) \\ &= \tilde{R}(e_s, e_i)(\theta(e_s)) - \theta(R(e_s, e_i)e_s). \end{aligned}$$

Therefore

$$\begin{split} \langle \Box \theta, \theta \rangle &= \sum_{i} \langle (\Box \theta) \theta(e_{i}), (e_{i}) \rangle \\ &= \sum_{s,i} \langle \tilde{R}(e_{s}, e_{i}) \theta(e_{s}), \theta(e_{i}) \rangle + \sum_{i} \theta(S(e_{i}), \theta(e_{i})) \\ &- \sum_{s,i} \langle (D_{E_{s}} D_{E_{s}} \theta)(e_{i}), \theta(e_{i}) \rangle. \end{split}$$

Now by a local computation we see that

$$-\sum_{s,i}\langle (D_{E_s}D_{E_s}\theta)(e_i),\theta(e_i)\rangle$$

$$=\langle D\theta,D\theta\rangle(x)+\frac{1}{2}(\Delta\langle\theta,\theta\rangle)(x).$$

Thus we have proved that

$$\langle \Box \theta, \theta \rangle = \frac{1}{2} \Delta \langle \theta, \theta \rangle + \langle D\theta, D\theta \rangle + A.$$

Corollary 1. Let θ be an E-valued 1-form. Assume that $\Box \theta = 0$ and $\Delta \langle \theta, \theta \rangle = 0$. Then we have $A \leq 0$ everywhere on M.

Assume now that M is compact and oriented. Then we can define the inner product (θ, η) of two E-valued p-forms by

$$(\theta, \eta) = \int_{M} \langle \theta, \eta \rangle *1.$$

Then we obtain from Theorem 1 the following corollary.

Corollary 2. Let θ be an E-valued 1-form such that $\square \theta = 0$. Then we have

$$(D\theta, D\theta) + \int_{M} A*1 = 0.$$

If $A \ge 0$ everywhere on M, then we have $A \equiv 0$ and $D\theta = 0$.

We remark that the operator ∂^* is the adjoint operator of ∂ , i.e.

$$(\partial \theta, \eta) = (\theta, \partial^* \eta)$$

for any $\theta \in C^p(E)$ and $\eta \in C^{p+1}(E)$ and hence we have

$$(\Box \theta, \theta) = (\partial \theta, \partial \theta) + (\partial^* \theta, \partial^* \theta).$$

Therefore, if M is compact, $\Box \theta = 0$ if and only if $\partial \theta = 0$ and $\partial^* \theta = 0$.

2. Let M be an n-dimensional Riemannian manifold isometrically immersed in a Riemannian manifold M' of dimension n + p. We shall denote by N(M) and α the normal bundle and the second fundamental form of M [3]. The second fundamental form α is an N(M)-valued symmetric 2-form on M.

In the following we put

$$E = \operatorname{Hom} (T(M), N(M)) = T^*(M) \otimes N(M)$$

and we interprete α as an E-valued 1-form β as follows: For any vector field X in M, $\beta(X)$ is a section of E such that

$$\beta(X) \cdot Y = \alpha(X, Y)$$

for all vector field Y in M. Then we have

$$\beta(X) \cdot Y = \beta(Y) \cdot X$$
.

We call also β the second fundamental form of M.

A metric along the fibres of E is defined naturally by the Riemann metrics of M and M' and a covariant derivation D_X in E is also naturally defined by the covariant differentiation ∇_X in M and D_X^{\perp} in N(M), where for any normal vector ξ of M, $D_X^{\perp}\xi$ is defined as the normal component of $\nabla_X'\xi$, where ∇_X' denote the covariant differentiation in the Riemannian manifold M' (See [3]).

Let φ be a section of E. We may regard φ as an N(M)-valued 1-form on M and we have

$$(D_X \varphi)(Y) = D_X^{\perp}(\varphi(Y)) - \varphi(\nabla_X Y),$$

 $\langle D_X \varphi, \psi \rangle + \langle \varphi, D_X \psi \rangle = X \langle \varphi, \psi \rangle$

for any sections φ and ψ of E.

The following Proposition 1 may be considered as an interpretation of the equation of Codazzi in our formalism.

Proposition 1. Assume that M' is a Riemannian manifold of constant sectional curvature. Then the second fundamental form β of M satisfies the equation $\partial \beta = 0$.

Proof. By a straightforward computation we see that

$$\begin{aligned} (\partial \beta(X,\,Y))(Z) &= \{ D_X^\perp(\alpha(Y,Z)) - \alpha(\nabla_X Y,\,Z) - \alpha(Y,\,\nabla_X Z) \} \\ &- \{ D_Y^\perp(\alpha(X,Z)) - \alpha({}_Y X,\,Z) - \alpha(X,\,\nabla_Y Z) \} \end{aligned}$$

and the right hand side is 0 by [3, Vol. II, P. 25, Cor. 4.4].

For each normal vector $\nu \in N_X(M)$ we define an endomorphism A_{ν} of $T_x(M)$ by the formula

$$\langle A_{\nu}(u), v \rangle = \langle \beta(u)v, v \rangle$$

for any tangent vectors $u, v \in T_x(M)$. The mean curvature normal η of M is a

normal vector field in M such that

$$\frac{1}{n} \operatorname{Tr} A_{\nu} = \langle \nu, \eta(x) \rangle$$

for any $\nu \in N_x(M)$ and $x \in M$.

M is said to be *minimal* in M' if the mean curvature normal vanishes at each point, that is, if Tr $A_{\nu} = 0$ for any $\nu \in N_{x}(M)$ and $x \in M$.

We say that M has a constant mean curvature if the mean curvature normal η is parallel, that is, $D_X^{\perp} \eta = 0$ for any vector field X in M.

Let ν be a normal vector field. Then we have $\operatorname{Tr} A_{\nu} = n \langle \nu, \eta \rangle$ and hence $X \cdot \operatorname{Tr} A_{\nu} = n \langle D_{X}^{\perp} \nu, \eta \rangle + \langle \nu, D_{X}^{\perp} \eta \rangle$. Therefore M has a constant mean curvature, if and only if

$$X \cdot \operatorname{Tr} A_{\nu} = \operatorname{Tr} A_{D_{\mathbf{r}}^{\perp} \nu}$$

for any normal vector field ν and any vector field X in M.

Proposition 2. Let M' be a Riemmanian manifold of constant sectional curvature. Then the second fundamental form β of M satisfies the equation $\partial^*\beta = 0$ if and only if M has a constant mean curvature.

Proof. Let x be a point in M and let $\{e_1, \dots, e_n\}$ be an orthonormal basis of $T_x(M)$. Let E_1, \dots, E_n be vector fields in a neighborhood of x such that $(E_i)_x = e_i$ and $\nabla_{E_i} E_k = 0$ at x for $i, k = 1, \dots, n$. Let (g^{st}) the inverse matrix of the matrix $(\langle E_s, E_t \rangle)$. Then $\partial^* \beta = -g^{st}(D_{E_t}\beta)(E_s)^{1/2}$ and $(\partial^* \beta) \cdot E_k = -g^{st}(D_{E_t}\beta)(E_s) \cdot E_k$. Since $(D_{E_t}\beta)(E_s)E_k = D_{E_t}^{\perp}(\alpha(E_s, E_k)) - \alpha(\nabla_{E_t}E_s, E_k) - \alpha(E_s, \nabla_{E_t}E_k)$ and since α is symmetric, we get $(D_{E_t}\beta)(E_s)E_k = (D_{E_t}\beta)(E_k)E_s$. On the other hand, by Proposition 1, we have $\partial \beta = 0$ and hence $(D_{E_t}\beta)(E_k) = (D_{E_k}\beta)(E_t)$, hence $(D_{E_t}\beta)(E_s)E_k = (D_{E_k}\beta)(E_t) \cdot E_s$. Therefore, for any normal vector field ν , we have

$$\begin{split} &\langle (\partial^*\beta) \cdot E_{\mathbf{k}}, \nu \rangle = -g^{st} \langle (D_{E_{\mathbf{k}}}\beta)(E_t)E_s, \nu \rangle \\ &= -g^{st} \{ \langle D_{E_{\mathbf{k}}}^{\perp}(\alpha(E_t, E_s)), \nu \rangle - \langle \alpha(\nabla_{E_{\mathbf{k}}}E_t, E_s), \nu \rangle \} \\ &- \langle \alpha(E_t, \nabla_{E_{\mathbf{k}}}E_s), \nu \rangle \}. \end{split}$$

Now

$$\begin{split} &g^{st}\langle D_{E_{\pmb{k}}}^{\perp}(\alpha(E_t,E_s),\nu\rangle \\ &=g^{st}\{E_{\pmb{k}}\langle\alpha(E_t,E_s),\nu\rangle -\langle\alpha(E_t,E_s),D_{E_{\pmb{k}}}^{\perp}\nu\rangle \\ &=E_{\pmb{k}}(g^{st}\langle\alpha(E_t,E_s),\nu\rangle) -(E_{\pmb{k}}g^{st})\langle\alpha(E_t,E_s),\nu\rangle -g^{st}\langle\alpha(E_t,E_s),D_{E_{\pmb{k}}}^{\perp}\nu\rangle \\ &=E_{\pmb{k}}(T_rA_{\nu}) -T_rA_{D_{E_{\pmb{k}}}^\perp} -E_{\pmb{k}}g^{st}\cdot\langle\alpha(E_t,E_s),\nu\rangle. \end{split}$$

¹⁾ We omit here the summation signs.

Since $\nabla_{E_k} E_i = 0$ at x, we have $E_k g^{st} = 0$ at x. Therefore we get from the above that

$$\langle (\partial^* \beta) E_{\mathbf{k}}, \nu \rangle (x) = \operatorname{Tr} A_{D_{\mathbf{k}}^{\perp} \nu} - E_{\mathbf{k}} (\operatorname{Tr} A_{\nu})$$

at x for $k = 1, 2, \dots, n$ and hence for any vector field X we have $\langle (\partial^* \beta) X, \nu \rangle (x) = \text{Tr} A_{D_X^{\perp} \nu} - X(\text{Tr} A_{\nu})$ at x. Since x is an arbitrary point of M and ν is an arbitrary normal vector field, we see from the above equation that $\partial^* \beta = 0$ if and only if M has a constant mean curvature.

From Propositions 1 and 2 we get the following

Theorem 2. Let M be a Riemannian manifold immersed isometrically into a Riemannian manifold M' of constant sectional curvature. Let β be the second fundamental form of M regarded as a Hom(T(M), N(M))-valued 1-form. Then β satisfies the equation $\square \beta = 0$, if M has a constant mean curvature. Conversely, if M is compact and orientable and $\square \beta = 0$, then M has a constant mean curvature.

3. We shall discuss in this section some applications of Theorems 1 and 2. Let M be a Riemannian manifold immersed isometrically into a Riemannian manifold M' of constant sectional curvature c. Let $x \in M$ and let $\{e_1, \cdots, e_n\}$ and $\{\nu_1, \cdots, \nu_p\}$ be orthonormal bases of $T_x(M)$ and $N_x(M)$ respectively. We shall denote by $A_a(a=1,2,\cdots,p)$ the endomorphism of $T_x(M)$ defined by A_au , $v>=\langle \beta(u)\cdot v, \nu_a\rangle$ and put $A_a\cdot e_i=\sum\limits_j (A_a)_i^j e_j$. Then we have the following Gauss equation:

(3.1)
$$R_{klij} = c \{ \delta_{ki} \delta_{lj} - \delta_{kj} \delta_{li} \} + \sum_{a} \{ (A_a)_i^k (A_a)_i^l - (A_a)_j^k (A_a)_i^l \},$$

where R_{klij} denote the components of the curvature tensor with respect to the basis $\{e_1, \dots, e_n\}$ of $T_x(M)$. Then the endomorphism S of $T_x(M)$ defined by $S(e_j)$ $= \sum_{l} S_{lj}(e_l)$ with $S_{ej} = \sum_{k} R_{klkj}$ is of the form

(3.2)
$$S = c(n-1)I + \sum_{a} (\operatorname{Tr} A_{a})A_{a} - \sum_{a} A_{a}^{2},$$

where I denotes the identity endomorphism of $T_x(M)$.

Let K be the scalar curvature of M. Then $K(x) = \operatorname{Tr} S = c(n-1)n + \sum_a (\operatorname{Tr} A_a)^2 - \sum_a \operatorname{Tr} A_a^2$. The value $\eta(x)$ at x of the mean curvature normal η is given by $\eta(x) = \frac{1}{n} \sum_a \operatorname{Tr} A_a \cdot \nu_a$ and hence $n^2 \langle \eta, \eta \rangle (x) = \sum_a (\operatorname{Tr} A_a)^2$. Analogously we have $\langle \beta, \beta \rangle (x) = \sum_a \operatorname{Tr} A_a^2$. Hence we get

$$(3.3) K = c(n-1)n + n^2 \langle \eta, \eta \rangle - \langle \beta, \beta \rangle,$$

where β and η denotes the second fundamental form and the mean curvature normal of M respectively. For any Riemannian vector bundle E over M we have defined the endomorphism $\tilde{R}(u,v)$ of the fiber E_x , where $u,v\in T_x(M)$. Let E=Hom(T(M),N(M)) and let $\varphi\in E_x$. Then $\tilde{R}(u,v)$ φ is an element of $E_x=\text{Hom}(T_x(M),N_x(M))$ such that

$$(\tilde{R}(u,v)\varphi)(w) = R^{\perp}(u,v)(w)\varphi - \varphi(R(u,v)w),$$

where $u, v, w \in T_x(M)$ and R^{\perp} denotes the curvature of the Riemannian vector bundle N(M).

Let ν be a normal vector of M at x and let N be a normal vector field such that $N_x = \nu$. Let X and Y be vector fields in M such that $X_x = u$ and $Y_x = v$. Then we have

$$R^{\perp}(u,v)_{\nu} = (D_{X}^{\perp}D_{Y}^{\perp} - D_{Y}^{\perp}D_{X}^{\perp} - D_{[X,Y]}^{\perp}) N$$

at x.

Denote by ∇' the covariant derivation in the ambiant space M'. Then we have

$$abla_{X'}Y =
abla_{X}Y + \alpha(X, Y),
\nabla_{X'}N = -A_{N}(X) + D_{X}^{\perp}N.$$

We see from these two equations that the normal component $(R'(X,Y)N)^{\perp}$ of R'(X,Y)N, where R' denotes the curvature tensor of M_i , is equal to $R^{\perp}(X,Y)N - \alpha(A_N(Y),X) + \alpha(A_N(X),Y)$. Since M' is of constant curvarute $R'(X,Y)N = c\{\langle N,Y\rangle X - \langle N,X\rangle Y\} = 0$ and hence we get $R^{\perp}(X,Y)N = -\alpha(A_N(X),Y) + \alpha(A_N(Y),X)$. Thus we have

$$R^{\perp}(u,v)\nu = -\alpha(A_{\nu}u,v) + \alpha(A_{\nu}v,u).$$

In particular

$$R^\perp\!(u,v)
u_a = -\, lpha(A_a u,v) + lpha(u,A_a v).$$

Since
$$\alpha(A_a u, v) = \sum_b \langle \alpha(A_a u, v), \nu_b \rangle \nu_b = \sum_b (A_b A_a u, v) \nu_b$$

and $\alpha(u, A_a v) = \sum_b \langle A_b u, A_a v \rangle \nu_b = \sum_b \langle A_a A_b u, v \rangle \nu_b$

we get

$$(3.5) \hspace{3.1em} R^{\perp}(u,v)\nu_a = \sum_b \langle [A_a,A_b]u,v\rangle \nu_b.$$

Now by Theorem 1, we have

$$\langle \Box \beta, \beta \rangle = \frac{1}{2} + \Delta \langle \beta, \beta \rangle + \langle D\beta, D\beta \rangle + A,$$

where

(3.6)
$$A(x) = \sum_{i,j} \langle \tilde{R}(e_j, e_i) \beta(e_j), \beta(e_i) \rangle + \sum_{i} \langle \beta(S(e_i), \beta(e_i)) \rangle.$$

Now

$$\begin{split} &\sum_{i} \langle \beta(S(e_i), \beta(e_i) \rangle = \sum_{i,j} \langle \alpha(S(e_i), e_j), \alpha(e_i, e_j) \rangle \\ &= \sum_{i,j} \langle A_a(S(e_i)), e_j \rangle \langle A_a(e_i), e_j \rangle = \sum_{a} \operatorname{Tr}(SA_a^2) \end{split}$$

and by (3.2) we get

(3.7)
$$\sum_{i} \langle \beta(S(e_{i}), \beta(e_{i}) \rangle$$

$$= c(n-1) \sum_{a} \operatorname{Tr} A_{a}^{2} + \sum_{a,b} \operatorname{Tr} A_{a} \cdot \operatorname{Tr} (A_{a}A_{b}^{2}) - \sum_{a,b} \operatorname{Tr} (A_{a}^{2}A_{b}^{2}).$$

On the other hand,

$$\begin{split} &\sum_{i,j} \left< \tilde{R}(e_j, e_i) \beta(e_j), \, \beta(e_i) \right> \\ &= \sum_{i,j,k} \left< R^{\perp}(e_j, e_i) \alpha(e_j, e_k), \, \alpha(e_i, e_k) \right> - \sum_{i,j,k} \left< \alpha(e_j, R(e_j, e_i) e_k), \, \alpha(e_i, e_k) \right> \\ &= \sum_{i,j,k} \sum_{a,b} \left< A_a e_j, \, e_k \right> \left< A_b e_i, \, e_k \right> \left< R^{\perp}(e_j, e_i) \nu_a \nu_b \right> \\ &- \sum_{i,j,k} \sum_{a} \left< A_a e_j, \, R(e_j, e_i) e_k \right> \left< A_a e_i, \, e_k \right> \end{split}$$

and by (3.5), the first term equals $\sum_{a,b} \operatorname{Tr}(A_a A_b [A_a, A_b]) = -\sum_{a,b} \operatorname{Tr}(A_a^2 A_a^2) + \sum_{a,b} \operatorname{Tr}(A_a A_b)^2$ and by the Gauss equation (3.1) the second term equals $-c \sum_a (\operatorname{Tr}(A_a A_b)^2 + c \sum_a \operatorname{Tr}(A_a^2) - \sum_{a,b} (\operatorname{Tr}(A_a A_b))^2 + \sum_{a,b} \operatorname{Tr}(A_a A_b)^2$.

Therefore we have

(3.8)
$$\sum_{i,j} \langle \tilde{R}(e_u, e_i) \beta(e_j), \beta(e_i) \rangle$$

$$= c \sum_{a} \operatorname{Tr} A_a^2 - c \sum_{v} (\operatorname{Tr} A_a)^2 - \sum_{a,b} \operatorname{Tr} (A_a^2 A_a^2) - \sum_{a,b} (\operatorname{Tr} (A_a A_b))^2 + 2 \sum_{a,b} \operatorname{Tr} (A_a A_b)^2$$

Then we get from (3.6), (3.7) and (3.8) that

(3.9)
$$A(x) = cn \sum_{a} \operatorname{Tr} A_{b}^{2} - c \sum_{a} (\operatorname{Tr} A_{a})^{2} - \sum_{a,b} (\operatorname{Tr}(A_{a}A_{b}))^{2} + \sum_{a,b} \operatorname{Tr} A_{a} \cdot \operatorname{Tr}(A_{a}A_{b}^{2}) + \sum_{a,b} \operatorname{Tr}[A_{a}, A_{b}]^{2}.$$

Now let $\lambda_1^{(a)}, \dots, \lambda_n^{(a)}$ be eigen-values of A_a and let $\{e_1^{(a)}, \dots, e_n^{(n)}\}$ be an orthonormal basis of $T_x(M)$ such that $A_a e_i^{(a)} = \lambda_i^{(a)} e_i^{(a)} (i=1,\dots,n,\ a=1,\dots,p)$.

We shall denote by $K_{ij}^{(a)}$ the sectional curvature for the 2-plane spanned by $e_i^{(a)}$ and $e_j^{(a)}$, $i \neq j$.

We show that

(3.10)
$$A(x) = \sum_{v} \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 K_{ij}^{(a)} + \frac{1}{2} \sum_{a,b} \operatorname{Tr}[A_a, A_b]^2.$$

We write A(x) in the following form:

(3.11)
$$A(x) = B(x) + \sum_{a \neq b} \operatorname{Tr} A_a \cdot \operatorname{Tr} (A_a A_b^2) - \sum_{a \neq b} (\operatorname{Tr} (A_a A_b))^2 + \sum_{a \neq b} \operatorname{Tr} [A_a, A_b]^2,$$

where

(3.12)
$$B(x) = \sum_{a} \{cn \operatorname{Tr} A_a^2 - c(\operatorname{Tr} A_a)^2 - (\operatorname{Tr} A_a^2)^2 + \operatorname{Tr} A_a \cdot \operatorname{Tr} A_a^3\}.$$

Now by a lemma of Nomizu-Smyth [4] we have

(3.13)
$$\operatorname{cn} \operatorname{Tr} A_{a}^{2} - c(\operatorname{Tr} A_{a})^{2} - (\operatorname{Tr} A_{a}^{2})^{2} + \operatorname{Tr} A_{a} \cdot \operatorname{Tr}(A_{a})^{3}$$
$$= \sum_{i \leq j} (\lambda_{i}^{(a)} - \lambda_{j}^{(a)})^{2} (c + \lambda_{j}^{(a)} \lambda_{j}^{(a)})$$

for each a. Now fix an index a and let

$$A_b e_i^{(a)} = \sum_i (A_b)_i^j e_j^{(a)} \quad (b=1,2,\cdots,p)$$

Then we have $(A_a)_j^i = \delta_j^i \lambda_j^{(a)}$ and hence

$$(3.14) (A_a A_b)_j^i = \lambda_i^{(a)}{}_b (A_b)_j^i, (A_b A_a)_j^i = (A_b)_j^i \lambda_j^{(a)}.$$

By the equation of Gauss we have

$$\begin{split} K^{(a)}_{ij} &= R(e^{(a)}_i, e^{(a)}_j, e^{(a)}_i, e^{(a)}_j) \\ &= c + \sum_b (A_b)^i_i (A_b)^j_j - \sum_b (A_b)^i_j (A_b)^j_i. \\ &= c + \lambda^{(a)}_i \lambda^{(a)}_j + \sum_{b \neq a} (A_b)^i_i (A_b)^j_j - \sum_b (A_b)^i_j (A_b)^j_i. \end{split}$$

Hence we have

$$\begin{split} &(\lambda_{i}^{(a)}\lambda - {}_{j}^{(a)})^{2}(c + \lambda_{i}^{(a)}\lambda_{j}^{(a)}) \\ &= (\lambda_{i}^{(a)} - \lambda_{j}^{(a)})^{2}K_{ij}^{(a)} + \sum_{b} (\lambda_{i}^{(a)} - \lambda_{j}^{(a)})^{2}(A_{b})_{i}^{i}(A_{b})_{i}^{j} \\ &- \sum_{b \pm a} (\lambda_{i}^{(a)} - \lambda_{j}^{(a)})^{2}(A_{b})_{i}^{i}(A_{b})_{j}^{j}. \end{split}$$

This equality holds also for i=j trivially if we define $K_{ii}^{\scriptscriptstyle (a)}=0$.

Then by (3.14)

$$\begin{split} &\sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 (c + \lambda_i^{(a)} \lambda_j^{(a)}) = \frac{1}{2} \sum_{i,j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 (c + \lambda_i^{(a)} \lambda_j^{(a)}) \\ &= \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 K_{ij}^{(a)} - \frac{1}{2} \sum_{b} \sum_{i,j} (\lambda_i^{(a)} - \lambda_j^{(a)}) (A_b)_j^i (\lambda_j^{(a)} - \lambda_i^{(a)}) (A_b)_i^j \end{split}$$

$$\begin{split} &-\frac{1}{2} \sum_{b \neq a} \{ \sum_{i,j} (\lambda_i^{(a)})^2 (A_a)_i^t \sum_j (A_b)_j^t - 2 \sum_i \lambda_i^{(a)} (A_b)_i^t \sum_j \lambda_j^{(a)} (A_b)_j^t \} \\ &+ \sum_i (A_b)_i^t \sum_j \lambda_j^{(a)} (A_b)_j^t \} \\ &= \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 K_{ij}^{(a)} - \frac{1}{2} \sum_b \mathrm{Tr}[A_a, A_b]^2 \\ &- \sum_{b \neq a} \{ \mathrm{Tr} \ A_b \cdot \mathrm{Tr} (A_a^2 A_b) - (\mathrm{Tr} (A_a A_b))^2 \}. \end{split}$$

Then we obtain from (3.11), (3.12) and (3.13) the equality (3.10). Now we cite the following two lemmas from [1].

Lemma 1. Let A and B be symmetric $n \times n$ matrices. Then

$$\operatorname{Tr}[A, B]^2 \geq -2\operatorname{Tr} A^2 \cdot \operatorname{Tr} B^2$$

and the equality holds for non-zero matrices A and B if and only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiple of \widehat{A} and \widehat{B} respectively, where

(3.15)
$$\widehat{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}, \quad \widetilde{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}.$$

Lemma 2. Let A_1 , A_2 and A_3 be $n \times n$ symmetric matrices and if

$$\operatorname{Tr}[A_a, A_b]^2 = -2\operatorname{Tr} A_a^2 \cdot \operatorname{Tr} A_b^2$$

for $1 \le a < b \le 3$, then at least one of the matrices A_a must be zero.

By Lemma 1, we have

$$\frac{1}{2} \sum_{a,b} \mathrm{Tr}[A_a,A_b]^2 \geq - \sum_{a = b} \mathrm{Tr} \ A_a^2 \cdot \mathrm{Tr} \ A_b^2 = -2 \sum_{a < b} \mathrm{Tr} \ A_a^2 \cdot \mathrm{Tr} \ A_b^2.$$
 Put $S_a = \mathrm{Tr} \ A_a^2$. Then $\sum_a S_a = \langle \beta, \beta \rangle (x)$.

Since

$$\begin{split} 0 & \leq \sum_{a < b} (S_a - S_b)^2 = \sum_{a < b} (S_a^2 + S_b^2) - 2 \sum_{a < b} S_a S_b \\ & = (p - 1) \sum_a S_a^2 - 2 \sum_{a < b} S_a S_b \\ & = (p - 1) \{ (\sum_a S_a)^2 - 2 \sum_{a < b} S_a S_b \} - 2 \sum_{a < b} S_a S_b \} \\ & = (p - 1) \langle \beta, \beta \rangle^2 (x) - 2p \sum_{a < b} S_a S_b \end{split}$$

we have

$$-2\sum_{a< b} S_a S_b \ge -\frac{(p-1)}{p} \langle \beta, \beta \rangle^2(x)$$

ane here the equality holds if and only if $S_a = S_b$ for $a,b=1,\cdots,p$. Therefore we get

(3.16)
$$\frac{1}{2} \sum_{a,b} \operatorname{Tr}[A_a, A_b]^2 \ge -\frac{(p-1)}{p} \langle \beta, \beta \rangle^2(x)$$

and the equality holds if and only if $\operatorname{Tr} A_a^2 = \operatorname{Tr} A_b^2 = \operatorname{Tr} A_b^2$ for $a, b = 1, \dots, p$ and either A_a are all zero except possibly one of them or A_a are all zero except two of them, say A_1 and A_2 , and they can be transformed simultaneously by an orthogonal matrix into scalar multiple of the matrices of the form (3.15). Thus we obtain from (3.10) the inequality

$$(3.17) A(x) \ge \sum_{a} \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 K_{ij}^{(a)} - \frac{p-1}{p} \langle \beta, \beta \rangle^2(x).$$

Assume now that the scalar curvatures of M are bounded below by a positive constant d. Then

$$\sum_{a} \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 K_{ij}^{(a)} \ge d \sum_{a} \sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2$$

and

$$\begin{split} &\sum_{i < j} (\lambda_i^{(a)} - \lambda_j^{(a)})^2 = (n-1) \mathrm{Tr} \ A_a^2 - 2 \sum_{i < j} \lambda_i^{(a)} \lambda_j^{(a)} \\ &- 2 \sum_{i < j} \lambda_i^{(a)} \lambda_j^{(a)} = \mathrm{Tr} \ A_a^2 - (\mathrm{Tr} \ A_a)^2 \end{split}$$

and hence

$$\sum_{a}\sum_{i< j} (\lambda_{i}^{(a)} - \lambda_{j}^{(a)})^{2} = n \langle \beta, \beta \rangle (x) - n^{2} \langle \eta, \eta \rangle (x),$$

where η denotes the mean curvature normal of M. Thus we get the following inequality

(3.17)
$$A \geq \left(dn - \frac{p-1}{p} \langle \beta, \beta \rangle\right) \langle \beta, \beta \rangle - dn^2 \langle \eta, \eta \rangle$$

at each point of M.

We obtain from Corollaries 1 and 2 of Theorem 1 and Theorem 2 the following

Theorem 3. Let M be an n-dimensional, Riemannian manifold with sectional curvatures bounded below by a positive constant d. Assume that M is immersed in a Riemannian manifold M' of constant sectional curvature of dimension n+p and that M has a constant mean curvature. Then, if M is compact and orientable or if the length of the second fundamental form β of M is constant, then we have

$$(3.18) 0 \ge A \ge \left\{ dn - \frac{p-1}{p} \langle \beta, \beta \rangle \right\} \langle \beta, \beta \rangle - dn^2 \langle \eta, \eta \rangle$$

at each point of M, where η denotes the mean curvature normal of M which is parallel and $\langle \eta, \eta \rangle$ is a constant.

Now assume M is compact and oriented and let $k = \langle \eta, \eta \rangle$. Then integrating both sides of the inequality (3.18) we obtain

$$dn^2k\int_M *1 \ge \int_M \left\{ dn - \frac{p-1}{p} \langle \beta, \beta \rangle \right\} \langle \beta, \beta \rangle *1$$

and we have the equality here if and only if

$$dn^2k = \left\{dn - \frac{p-1}{p}\langle \beta, \beta \rangle\right\}\langle \beta, \beta \rangle$$

and this implies also that A=0 and that β is parallel by Theorem 1. Then $\langle \beta, \beta \rangle$ must satisfy the quadratic equation $(p-1)x^2-p\ dn\ x+pn^2k=0$ and since the discriminant of this equation should be positive we should have the inequality

$$d \ge \frac{4k(p-1)}{p}.$$

University of Notre Dame

Bibliography

- [1] S. S. Chern, M. DoCarmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, to appear.
- [2] J. A. Erbacher: Isomertric immersions of Riemannian manifold into space forms, Thesis, Brown University, 1970.
- [3] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vol. I and II, J. Wiley, 1963 and 1969.
- [4] K. Nomizu and B. Smyth: A formula of Simon's type and hypersurfaces of constant mean curvature. J. Differential Geometry 3 (1969), 367-377.
- [5] J. Simons: Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.