

Title	Crystallization Behavior of Synthetic Blast Furnace Slag by TiO ₂ (Materials, Metallurgy, Weldability)
Author(s)	Iwamoto, Nobuya; Umesaki, Norimasa
Citation	Transactions of JWRI. 1979, 8(2), p. 205-211
Version Type	VoR
URL	https://doi.org/10.18910/7609
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Crystallization Behavior of Synthetic Blast Furnace Slag by TiO_2 †

Nobuya IWAMOTO* and Norimasa UMESAKI**

Abstract

To reutilize blast furnace slag, crystallization behavior of synthetic one with the addition of TiO_2 which plays effectively for nuclei formation was studied with the use of many analyzing means such as differential thermal analysis (DTA), X-ray diffraction, infrared absorption (IR), optical and scanning electron microscopes.

KEY WORDS: (Slag) (Steelmaking) (Ironmaking) (Glass) (Crystallization) (Rutile)

1. Introduction

In iron- and steel-making, slag plays an important role for the refinement. However a large quantity of slag, amounts to 40 per cent of pig iron, can be produced. Since sixteenth century blast furnace slag has been utilized on a small scale. At present it is widely used for civil engineering such as pavement and aggregate for concrete. In such utilization it is necessary to give a suitable strength and hardness to slag. The technique of partial crystallization was applied in order to get such properties^{1),2)}.

Usually TiO_2 and ZrO_2 , which are effective nucleating catalysts¹⁾⁻⁸⁾, are contained in blast furnace slag. Therefore it became necessary to separate the combined effects to know precisely each action for controlling the crystallization behavior of slag.

In this paper, crystallization behavior of synthetic blast furnace slag containing varying amounts of TiO_2 was studied with the use of various analyzing means such as differential thermal analysis (DTA), X-ray diffraction, infrared absorption (IR), optical and scanning electron microscopes.

2. Experimental Procedures

The composition of parent synthetic blast furnace slag is given in Table 1. The parent slag and TiO_2 weighed

were thoroughly mixed and melted in platinum crucible at 1500°C for one hour in air, and then quenched into ice-cooled water. To cause crystallization, these specimens were then heattreated for one hour at 950° or 1000°C, and then quenched into ice-cooled water. In order to know the degree of crystallization in these specimens, DTA, X-ray diffraction and IR measurements were carried out. Further, the observations under optical microscope and SEM were performed. These experimental conditions are as follows:

[DTA]

Heating rate: 5°C/min.

Specimen: powder

Standard material: corundum

[X-ray diffraction]

Target: $CuK\alpha$ with Ni filter

Current and Voltage: 35 KV × 15 mA

[IR]

Range: 2000 - 400 cm^{-1}

Specimen: KBr disk

[Optical microscopy]

Etchant: 5% nital (30 min)

[SEM]

Etchant: 5% nital (30 min)

Accelerating voltage: 20 KV

Surface treatment: Au evaporation

In Table 2, measuring instrument used and the remark of each specimens are summerized.

Table 1 Chemical composition of parent slag (Wt%)

SiO_2	CaO	Al_2O_3	MgO	Fe_2O_3	CaO/SiO_2
35.00	42.88	15.98	5.46	0.35	1.225

† Received on September 17, 1979

Transactions of JWRI is published by Welding Research Institute of Osaka University, Suita, Osaka, Japan

* Professor

** Research Associate

Table 2 Analysis performed and changes detected in the slag after each heat-treatment cycle.

Specimen TiO_2 (Wt%)	Heat-treatment ($^{\circ}\text{C} \times \text{time}$)	Analysis performed	Remarks
0	As-quenched glass	DTA, Xrd, IR, Optm, SEM	Dark brown colour
	950 \times 1 hr	Xrd, IR, Optm, SEM	Opalescence
	1000 \times 1 hr	Xrd, IR	Ceramics
2	As-quenched glass	DTA, Xrd, IR, Optm, SEM	Dark brown colour
5	As-quenched glass	DTA, Xrd, IR, Optm, SEM	Dark brown colour
	950 \times 1 hr	Xrd, IR, Optm, SEM	Opalescence
	1000 \times 1 hr	Xrd, IR, Optm, SEM	Ceramics
10	As-quenched glass	DTA, Xrd, IR	Dark brown colour
	950 \times 1 hr	Xrd, IR, Optm, SEM	Opalescence
	1000 \times 1 hr	Xrd, IR, Optm, SEM	Ceramics

Description:

DTA, differential thermal analysis
 Xrd, X-ray diffraction
 IR, infrared absorption
 Optm, optical microscopy
 SEM, scanning electron microscopy

3. Experimental Results

3.1 Differential thermal analysis

Figure 1 shows result of DTA. In Table 3, transition point of glass (T_g) and crystallization with exothermic peak

Fig. 1 Thermograms of slag, parent and containing TiO_2 .

Table 3 Transformations during DTA.

Specimen TiO_2 (Wt%)	Transition point of glass T_g ($^{\circ}\text{C}$)	Crystalline temp. T_c ($^{\circ}\text{C}$)
0	766	936, 963
2	757	955
5	753	940
10	738	929

(T_c) obtained from Fig. 1 are summarized. Endothermic peak ranging before and after nearly 900°C is originated from softening and nucleation. The peak changed to lower temperature with increasing TiO_2 content. T_c means that the degree of crystal growth becomes maximum at this temperature. The parent slag without TiO_2 showed two peaks at 936° and 963°C . It seems probable that crystallized specimen at 936°C commences phase transition at 963°C .

When TiO_2 was added, separation of T_c did not occur and T_c decreased.

3.2 X-ray diffraction

X-ray diffraction patterns obtained are shown in

Figure 2. When parent slag without TiO_2 and slag containing 5% TiO_2 were heat-treated at 950°C for 1 hr, few peaks showing formation of crystal were observed except broad pattern.

Fig. 2 X-ray diffraction patterns of slag, parent and containing TiO_2 , heat-treated at various temperatures.

However slag containing 10% TiO_2 exhibited many peaks after that heat-treatment and their intensities became stronger with the heat-treatment at higher temperature.

Crystal precipitated from each specimens is melilite which is solid solution from gehlenite ($\text{Ca}_2\text{Al}_2\text{SiO}_7$) and akermanite ($\text{Ca}_2\text{MgSi}_2\text{O}_7$). In fig. 2, sites and intensities of diffraction patterns of gehlenite and akermanite were shown. At present diffraction peak appeared in the specimens, parent slag heat-treated at 950°C and 1000°C and slag containing 5% TiO_2 heat-treated at 950°C , remain unresolved.

3.3 Infrared absorption

Infrared absorption spectra are shown in Figure 3. Broad absorption from 1100 to 800 cm^{-1} originates to $\text{Si-O } \nu_3$ stretching. Although every specimens heat-treated at 1000°C exhibited many absorption peaks, it remains unknown to where the peaks must be assigned.

Fig. 3 Infrared absorption result of slag, parent and containing TiO_2 , heat-treated at various temperatures.
 (a): heat-treated at 1000°C for 1 hr
 (b): heat-treated at 950°C for 1 hr
 (c): original glassy specimen

3.4 Optical and scanning microscopy, and electron probe analysis

Photo. 1 show textures of parent slag without TiO_2 heat-treated at 950°C and 1000°C for 1 hr. Precipitates were observed at surface and interior of specimen heat-treated at 950°C . As the temperature increased to 1000°C , probably smallest crystals were formed wholly and found traces of larger spherical crystal.

Photo. 2 show that spherical precipitate appeared by heat-treatment at 950°C contains much magnesium than matrix. Probably it means that at first akermanite precipitated in the crystallization process.

In Table 4, energy of characteristic X-ray is given.

Photo. 3 and 4 show textures under optical and scanning electron microscopes, and the result of microanalysis

Photo. 1 Texture under optical microscope (parent slag).

(a): heat treated at 950°C for 1 hr, surface (c): heat treated at 1000°C for 1 hr, surface
(b): heat treated at 950°C for 1 hr, interior (d): heat treated at 1000°C for 1 hr, interior

Photo. 2 Micro analysis of parent slag heat treated at 950°C and 1000°C for 1 hr.

(a): analysis of spherical precipitate, $950^{\circ}\text{C} \times 1$ hr (c): micro structure, $1000^{\circ}\text{C} \times 1$ hr
(b): analysis of matrix, $950^{\circ}\text{C} \times 1$ hr (d): analysis of specimen, $1000^{\circ}\text{C} \times 1$ hr

Photo. 3 Texture under optical microscope (slag containing 5% TiO_2).
 (a): surface, $950^\circ C \times 1$ hr (c): surface, $1000^\circ C \times 1$ hr
 (b): interior, $950^\circ C \times 1$ hr (d): interior, $1000^\circ C \times 1$ hr

Photo. 4 Micro analysis of slag containing 5% TiO_2 heat treated at $950^\circ C$ and $1000^\circ C$ for 1 hr.
 (a): analysis of rosette-like precipitate, $950^\circ C \times 1$ hr
 (b): analysis of spherical precipitate except rosette-like one, $950^\circ C \times 1$ hr
 (c): analysis of glassy matrix, $950^\circ C \times 1$ hr
 (d): micro structure, $1000^\circ C \times 1$ hr

Photo. 5 Texture under optical microscope (slag containing 10% TiO_2).

- (a): surface, $950^\circ\text{C} \times 1\text{ hr}$
- (b): interior, $950^\circ\text{C} \times 1\text{ hr}$
- (c): surface, $1000^\circ\text{C} \times 1\text{ hr}$
- (d): interior, $1000^\circ\text{C} \times 1\text{ hr}$

Photo. 6 Micro analysis of slag containing 10% TiO_2 .

- (a): analysis of surface layer precipitated, $950^\circ\text{C} \times 1\text{ hr}$
- (b): analysis of matrix, $950^\circ\text{C} \times 1\text{ hr}$
- (c): micro structure, $1000^\circ\text{C} \times 1\text{ hr}$

Table 4 Energies of characteristic X-ray excited of elements composed of specimen.

Element	K α_1	K α_2	K β
Mg	1.25	1.25	1.30
Al	1.49	1.49	1.55
Si	1.74	1.74	1.83
Ca	3.69	3.69	4.01
Ti	4.51	4.52	4.93
Fe	7.10	6.41	7.06

of slag containing 5% TiO₂ which was heat-treated at 950°C and 1000°C. Similarly precipitation occurs at surface and interior of specimen. When compared with parent slag, precipitating layer at surface becomes thicker. Further another rosette-like precipitate was appeared in the spherical one. According to the result by microanalysis, rosette-like region contained much magnesium, but other region contained much titan. It can be considered that titan works crystallization effectively. When heat-treatment increased to 1000°C, rosette-like precipitate remained in a small part.

Photos 5 and 6 show textures under optical and scanning electron microscopes, and the result of micro-analysis of slag containing 10% TiO₂ which was heat-treated at 950°C and 1000°C. Likewise precipitation occurred from surface and interior of specimen. When compared one from specimen containing 5% TiO₂, the thickness of surface layer and the size of spherical precipitate increased and gross crystal boundary in whole crystals precipitated. When the heat-treatment increased to 1000°C, texture became homogeneous with the smallest crystals except surface precipitate.

4. Summary

When parent slag and slag containing 5 and 10% TiO₂ was heat-treated, precipitation layer at surface and spherical precipitate in interior of specimen was found. With the addition of TiO₂, temperature commencing nucleation and growth decreased. Accordingly crystallization can be promoted in the case of slag containing TiO₂ with same heat-treatment above crystallization temperature when compared with slag without TiO₂. Especially with the addition of 10% TiO₂ crystallization proceeded rapidly.

Micro structure of spherical precipitate changed remarkably with or without TiO₂. In the specimen containing 5% TiO₂ heat-treated at 950°C for 1 hr segregation of titan occurred inspherical precipitate. From this it can be recognized that titan works effectively with changing the concentration on crystallization⁹⁾. Precipitate was melilite which is solid solution from gehlenite and akermanite.

References

- 1) M.W. Davies, B. Kerrison, W.E. Cross, M.J. Robson and D.F. Wichall: J. Iron & Steel Inst., April (1970), p.348.
- 2) J.A. Topping: J. Can. Ceram. Soc., 45 (1976), p.63.
- 3) TIN BOO YEE and A.L. Andrews: J. Amer. Ceram. Soc., 39 (1956), p.188.
- 4) P.W. McMillan: "Glass Ceramic" Academic Press, New York & London, (1964).
- 5) J.I. Barry, D. Clinton, L.A. Lay, R.A. Mercer and R.P. Miller: J. Mat. Sci., 5 (1970), p.117.
- 6) A.G. Gregory and T.J. Veasey: ibid, 6 (1971), p.1312.
- 7) W. Zdaniewski: ibid, 8 (1973), p.192.
- 8) J.A. Topping: Amer. Ceram. Bull., 56 (1977), p.574.
- 9) R.D. Maurer: J. Appl. Phys., 6 (1962), p.2132.