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Abstract

As one of the classical academic topics, hydroelasticity has been researched by many scholars
in the field of naval architecture and ocean engineering. From the 2000s, the industrial importance
has been increased due to enlargement in size of commercial ships. Accordingly, much
investigation has been implemented by various organizations. Springing and whipping are well
recognized as hydroelastic responses. In particular, the springing is known as a resonance
phenomenon induced by harmonic incoming waves, which could occur not only by linear waves
but also non-linear waves. The higher-order springing has been confirmed in various types of
ships at several model experiments. On the other hands, most of the numerical studies has been
conducted based on linear formulation with non-linear correction incorporated from integration

on the instantaneous wetted surface of ship-hull surface until now.

In this thesis, a computer code is developed for numerical calculation of the non-linear springing
of an elastic body with forward speed. Due to mathematical and numerical difficulties, the study
is focused on the second-order springing problem by using higher-order boundary element method

(HOBEM) in the perturbation scheme under the assumption of small wave slope.

Chapter 1 describes the background, review of the related past work, objective and outline of
the present study, and then in Chapter 2, general mathematical formulations are described for the
first-order and second-order boundary-value problems of a rigid/elastic body. To obtain the force
and response of an elastic body, the generalized eigen-function expansion method is adopted, and
several equations such as variation of the normal vector, mode-shape functions, and so on are
derived by using continuum mechanics and directional derivative formulation. These variables up
to second-order are applied to obtain first- and second-order body boundary conditions with

body’s elastic deformation and several kinds of generalized forces on an elastic body.

In Chapter 3, to solve the boundary-value problems obtained, the time-domain Rankine panel
method is introduced and discretization method for the boundary integral equation using HOBEM
is presented. Various numerical schemes to calculate the derivatives of the velocity potential are
given, and some schemes for implementing the time-domain Rankine panel method are explained,
such as time-marching scheme, grid generation on the free-surface, numerical damping beach, and

numerical filter for removing numerical instability.

In Chapter 4, the developed computer code has been validated step by step for each of different
conditions. In monochromatic waves, the direct time-domain simulation based on Rankine panel

method has been implemented for both rigid & elastic bodies with/without forward speed. Validity



of obtained results for the second-order forces and responses are discussed mainly through
comparison with corresponding results obtained by other researchers. Furthermore, in Chapter 5,
frequency-domain analysis in bichromatic waves without forward speed is conducted by using
free-surface Green function HOBEM. Indirect method to calculate second-order velocity potential
on an elastic body is introduced. Using semi-analytic solutions in published papers, the results of

suggested equation are validated by showing good agreement.

In the final, obtained results in the present thesis are summarized together with future work.



Contents

R 1 0] € o To (3Tt o] o PRSPPSO 1
1.1 ReSearch DaCKGroUNG ..........ccoiiiiiic s 1
1.2 Objective and SCOPE OF STUAY .......cccveiiiieie et nae s 3
1.3 Previous researches (state of the artS) ......c.covveieiiiieiice e 4

1.3.1 Numerical study on hydroelastic problem ... 4
1.3.2 Numerical study on second-order wave-body interaction problem ..........c.cccccovevvennee. 6
1.4 OULliNg OF dISSEITATION ......eivieiieieee e et ne s 9

2. Mathematical Formulation .............ccooiiiiiiiii s 11
P22 R )4 [T [ o PP 11
2.2 Generalized mode expansion MEthOd ..........cccceiveiiiicicie e 11
2.3 COOIAINGLE SYSTEIMS ....uviiviciicieite ettt sttt ettt e s te et s be e e be s be e e e s besaeesbestaesbesbeeraesbesaeeneenreans 12
2.4 Deformed surface of an elastic DoAY ...........ccoviiiiiiiiii e 12
2.5 Boundary-value problem in monoChromatic WaVeS............ccocuovrirereieiieisesese e 14

2.5.1 Free-surface boundary Condition..........ccocoviiieiiii i 14
2.5.2 Body-surface boundary condition ...........ccccceiveiiii e 15
2.6 Generalized hydrodynamiC fOICE ..........coviiiiiiiiie e 16
2.7 Equation of motion in generalized MOUE .......cccccveiiii i e 18
2.7.1 Generalized iNertial fOrCe ........covieieiiiiice e 18
2.7.2 Generalized gravity restoring fOrCE.........cuuiiiriiiieieise e 20
2.7.3 Linear & second-order equations Of MOTION ..........cccvviiiriiiienieiceccse e 20

3. Numerical iImplemeNntation...........cccooiiiiiiiiice e 22
3.1 Boundary integral equation (BIE) .........cccoiiiiiiiiiieiccicie ettt 22
3.2 Higher-order boundary element method (HOBEM) .........cccooiiiiininii e 22
3.3 Green’s FUNCHION ... ..cciiii et e e s ate e e ste e e st e e s be e e sabeesnbeestaeesnraeesneens 24
3.4 Calculation of several derivatives in HOBEM ...........cccooiiiiiiiineieeeee s 25
3.5 TIME-MArching SCREIME ........cviiiiiie ettt resbe e nre s 27
3.6 Type of grid 0N fre@-SUIMACE. ..o s 28
3.7 Numerical damping DEACH........c.oiii e 29
3.8 NUMEKICAI FIIEY ...ttt ere e e e 30

4. Numerical study by time-domain analysis in monochromatic waves................... 31
I a1 0o U od o] o PSPPSR 31
4.2 CONVEIGENCE STUAY ....veeieeeieieie sttt ettt sttt sttt e e e te et e seeese e tesreaneesaeeneenaeenes 31

4.2.1 Computational dOMaIN SIZE.........ccuiiiiieii et ees 32



4.2.2 TIME SEEP SIZE..uiuiiiiiteeie ettt sttt e e sttt e e te e e sbeese e besreesaesteenesrearen 34

e 1] I SRS 34
4.3 Numerical study without forward speed (rigid model) ... 36
I DG o ToTo Y2 S S 36
4.3.2 Forced oSCIllating DOGY .........ooviiiiiie it 39
4.3.3 Freely-floating DOaY ..o 42
4.3.4 SUMIMEIY ..ottt r e r et e nn e r e e nr e em e sr e e n e e n e s re e e e nne e e nrenres 46
4.4 Numerical study with forward speed (rigid model) ........ccccoooveiiiiiii i 46
4.4.1 Simulated Ship MOTEL.........ccoiiiiii e 46
4.4.2 Linear diffraction & radiation problem of ship models ... 48
4.4.3 Freely-floating sShip MOdelS..........ccoiiiiiii i e 50
U 0] 1 T T Y TSRS 54
4.5 Numerical study without forward speed (elastic model)...........cccooereieiiininiicieee 55
4.5.1 Simulated structural MOGEl...........cooviiiiiiiie e 55
4.5.2 Bottom-mounted elastic vertical CYliNdEr ..........c.cceviiiiii i 58
4.5.3 Elastic floating Darge.........cooiiiiii e 62
A.5.4 SUMIMEIY ..ottt r e bbbt e nn e bt enb e b e e nesb e e s e e resreenenre s e e nrennes 67
4.6 Numerical study with forward speed (elastic model)..........ccoocevviiiiiiiciiiic e, 67
4.6.1 Linear hydrodynamic response of elastic Wigleyl model ............cccocvvvveviieiiecenne. 67
4.6.2 The effect of flexibility on quadratic product forces for ship model ..............cccceeveneee 68
4.6.3 The effect of forward speed and flexural rigidity on second-order excitation forces .69
4.6.4 SUMIMAIY ...eeeieieee ittt sttt e stae e st e e s s e e snte e s te e e snteeanteeesseeesnteeesseeesneeeansenesnneennnenans 71

. Numerical study by frequency-domain analysis in bichromatic waves................ 72
TS0 [ 0o [N 44T ) o S SSSSSS 72
5.2 Mathematical formulation in biChromatic WaVeS............cccecieiriniiennesesece s 72
5.2.1 Boundary-value problem.........c.cciiiiiiiiie e e s 72
5.2.2 Wave Green TUNCHION .......oiviieieie et sttt s sne e seenns 74
5.2.3 Generalized hydrodynamic force in bichromatic Waves ...........cccocevevevveresvsiiesenne 75
5.3 Evaluation of second-order velocity potential fOrce ..........cccocoevviieiiiiiiiiiiece e 76
5.3.1 The INCIAENT WAVE PAT ......ccueiieiiiie ettt sttt sbe e be e srens 77
5.3.2 ThE DOGY PAN ...t 78
5.3.3 The Tree-SUITACE PAIT ......c.ei ettt enes 79
5.4 Numerical reSUlt and diSCUSSION........ciuiiiiiieiee ettt nee s 88
. Conclusions and FULTUIE WOTKS ........ccoiiiiieiiiie e 94
TN 0] 0] U] o] SR 94
8.2 FULUIE WOTKS ...ttt ettt st esreere e tesaeeneenne e 96
6.2.1 Improvement of frequency-domain analysiS.........ccccoiiiriieriniiie i 96

v



6.2.2 Improvement of numerical model ...........ccov e 96

6.2.3 Indirect method for second-order velocity potential force with forward speed........... 97
RETEIENCES ...t bbbttt bbbt 104
Appendix A: Vector identity of normal vector variation on a rigid body.............. 111
Appendix B: Vector identity of the inertial force on a rigid body ............ccccveneee. 114



Nomenclature

In this dissertation, both Greek and English alphabets are used as a notation of physical variables.
Some of them are repeated at different chapter and if there is no additional explanation, each
alphabet has following meaning.

- Overdot means time derivative.
t:time
& : wave elevation

A: wave lamda
k : wave number

/3 . incident wave heading angle

L : deep water wave number
¢|,5,R : incident wave & diffraction & radiation velocity potential
¢, - disturbed (radiation + diffraction) velocity potential

é:j : modal amplitude in the j-th mode.

h: modal vector in the j-th mode.

H : second-order component of Euler angle tensor

—

X(X,Y,Z): position vector at inertial coordinates / field point vector in HOBEM
)Z'(X "Y',Z") : source point vector in HOBEM

X(x,Y,2): position vector at body-fixed coordinates

Xg (Xg Ygr Zg) : centre of mass vector

ZV : center of neutral axis

Vi



A > wave amplitude
El : flexural rigidity
GA : Shear rigidity

w; : vertical displacement
¥, angular displacement

G : Green’s function

H : water depth

U : forward speed of ship

g : gravitational acceleration

L : length of body

(i, j,Kk) : basis vector in Cartesian coordinates
m : body mass (kg)

ms : sectional mass (kg/m)

M : body mass tensor (kg)

a: Added mass tensor (kg)

b : damping coefficient tensor

C : hydrostatic restoring stiffness tensor
K : structural stiffness tensor

I : inertia tensor of body mass

p : hydro- static and dynamic pressure

@ : encounter wave frequency
@, - natural frequency of body
Te : wave period

S : instantaneous wetted body surface
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S : instantaneous free-surface

Sg, : Mmean wetted body surface

Sg, : mean free-surface

S : instantaneous bottom surface

Sc @ instantaneous radiation surface

i - imaginary unit

O : Kronecker delta function

Hn : Hankel function of the second kind

K, : Modified Bessel function of the second kind

Jn : Bessel function of the first kind

_ 0 0
V : two dimensional gradient operator | —,—
oX oY

. . i 0 o0 0

v : three dimensional gradient operator | —,—,—

oX oY oz
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Abbreviation

If there is no additional explanation, capital letter is abbreviation of following words.

HOBEM : Higher-Order Boundary Element Method
CPM : Constant Panel Method

VLFS : Very Large Floating Structure
NWT : Numerical Wave Tank

MEL : Mixed Eulerian Lagrangian
FEM : Finite Element Method

QTF : Quadratic Transfer Function
RAO : Response Amplitude Operator
TLPs : Tension Leg Platforms

Fn : Froude number

EUT : Enhanced Unified Theory
RPM : Rankine Panel Method

NSM : New Strip Method

NK : Neumann-Kelvin

WL : Water Line
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CAHPTER1 : Introduction

CHAPTER 1

Introduction

1.1 Research background

Early Container ship (1956 -)
__________________ Capacity : 500 — 800 TEU., Size : 137 X 17 X 9 meters

- - Fully Container ship (1970 -)
Capacity : 1,000 — 2,500 TEU, Size : 215 % 20 % 10 meters
= aeaEEledls, Panamax (1980 - )
b Capacity : 3,000 — 3,400 TEU, Size : 250 % 32 X 12.5 meters
' R FL e | Panamax Max (1985 -)
~ “h‘;ll*.' Capacity : 3,400 — 4,500 TEU, Size : 200 x 32 x 12.5 meters
. 1 Post Panamax (1988 -)
'- "lum §y Capacity : 4.000 — 5,000 TEU, Size : 285 x 40 X 13 meters
Bl ‘ - - Post Panamax Plus (2000 - )
- -.l m ﬂm Capacity : 6,000 — 8,000 TEU, Size : 300 x 43 x 14.5 meters

n
RS- New Panamax (2014 )
- . - d Capacity : 12,500TEU, Size : 366 X 49 x 15.2 meters
- W . EF._E_H
- - | el i -
M- EERE e TrplcE @13 )

Capacity : 18,000TEU, Size : 400 X 39 x 15.5 meters

Fig. 1 Trend on the size of commercial vessels for S0 years (1960s ~ 2010s)

One of continuous trends of the commercial vessel is enlargement of the size. Due to increase
of the container traffic and economic feasibility, the ship’s size has been increased continuously
from several decades ago. If the ship size becomes large, the length overall necessarily increases
and 400m lengthy ships appear in the 2010s as shown in Figure 1. It makes the structural strength

be reduced and the ratio between stiffness and weight of hull girder decreases. As a result, a ship’s
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hull girder has relatively low natural frequency of wave induced vibration and the effect of wave

induced vibration has been increased.

The effect by wave induced vibration which is also called hydroelastic response or high-
frequency vibration on hull girder has been confirmed by continuous investigation over the past
decades. From the systematic investigation on several ships conducted by various ways, many
researchers reported that the high-frequency vibration has about 30~60% of total fatigue damage
on large vessels (ISSC, 2015; 2018) and its effect should not be ignored. Accordingly, hydroelastic
response has been considered in earnest at the stage of ship design and the rule on the dynamic

response has been also changed.

Among global hydroelastic response, slamming induced whipping and springing are well
recognized. Whipping is a transiently large response which happens by impact loads like
slamming and decays after few seconds. On the other hands, springing is a resonance phenomenon
by harmonic incoming waves. It could happen not only linear waves but also non-linear waves

where it is so called super-harmonic resonance.

These wave induced vibrations have been studied by mainly three ways; i.e. real ship
measurement, the model test, numerical analysis. The detail investigations on the hydroelastic

responses have been conducted at each method to clarify various uncertainties.

In real ship measurement, several variables on hydroelastic response of a real sea-state have
been considered. Since a real ship has complex geometry, the uncertainty which could not be
predicted in the ship model has appeared. As one of them, structure damping has been measured
to predict the effect of ship’s high frequency vibrations. Since hydroelastic response generally
happens at high-frequency region and the radiation damping is very small, the amplitude is
relatively very sensitive to structural damping. From several reports, it has been confirmed that
the hull’s steel has small structural damping than other materials on a ship. It also has different
value depending on the each vibration mode and generally torsional bending has larger damping

than vertical bending modes due to cargos loaded on a ship (ISSC, 2018).

In model experiments, many kinds of non-linear factors have been confirmed. One of them
non-linear springing has been shown in the model test clearly. It has appeared in various types of
ships at several experiments (e.g. Storhaug, 2009) and its effect was considerable. For instance,
some of non-linear springing have had up to fifth-order in bending modes (Miyake et al., 2008)
and in moderate sea states, second-order springing could become predominant than linear

springing (Hong and Kim, 2014). It is also expected that if the ship has forward speed, non-linear

-2.
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springing could appear easily because it happens near 1/n of natural frequency of a ship. It also

means the response spectrum could increase considerably.

In numerical analysis, the hydroelastic response has been calculated on a 3-dimensional ship
model with development of several panel methods. Not only global response but also local
guantities located on main points such as hot spot region have been considered in detail. However,
most solution is based on linear variable with non-linear correction incorporated from integration

on the instantaneous wetted surface of ship-hull surface to analyse springing phenomenon.

The detail analysis on contribution of non-linear hydrodynamic force has been remain work. In
the real sea state, there are many kinds of wave non-linear components. Especially the sum-
frequency wave loads could also be made by numerous combinations of wave frequencies and its
non-linearity comes from body and free-surface non-linearity, respectively. Thus, it might be

better for analysis of non-linear contribution to use numerical analysis.

1.2 Objective and scope of study

In this research background, our final goal is to develop the numerical analysis for the
calculation of the non-linear springing of an elastic ship with forward speed. In numerical study,
the second-order is almost the highest-order what could be considered due to limitation of
mathematical and numerical difficulty. Thus, we are focusing on second-order springing of an

elastic body in this dissertation.

However, it is also quite complex problem which includes several difficulty such as second-
order wave-body interaction, elasticity, forward speed effect, structural modelling, etc. Thus, we
conducted development procedure step by step from the initial stage. At each different condition,

the developed code is first validated and it goes to the next step.

In hydroelastic problem, there are several important issues from both hydrodynamic and
structural points of view. In this study, we are also focusing on mainly hydrodynamic aspect rather
than structural aspect. Using relatively simple structural model, several fluid solvers based on the
potential flow are used in both time- and frequency- domains. To consider hydroelastic response,
some kinds of generalized forces and boundary conditions are re-derived and applied to the linear
and second-order hydrodynamic problems of an elastic body. In the validation process, simple
geometric body is mainly used to compare numerical result and non-linear hydroelastic response

is discussed in these models.
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1.3 Previous researches (state of the arts)

In this section, we introduce several previous researches in terms of both hydroelastic response
and non-linear wave-body interaction because second-order springing includes all these issues.
These topics are classical problems in naval architectures, thus huge amount of studies have been
conducted by various research groups. Many more references could be confirmed other review
papers (e.g. reports of ISSC or ITTC). We introduced only numerical study and also selected a
few of them. The key issue of both hydroelastic response and non-linear wave body interaction is
briefly described and at the last, numerical research on the non-linear hydroelastic response is

introduced.

1.3.1 Numerical study on hydroelastic problem

Two-dimensional approach (strip theory)

Two-dimensional strip theory has been used widely due to its practicality and effective way as
a seakeeping code. It is coupled with several structure solvers in both time- and frequency-domain
to analyse hydroelastic response. Few published papers on two-dimensional approach are

introduced briefly as follows:

Bishop and Price (1979) combined two-dimensional strip theory with FEM based on
Timoshenko beam theory and calculated several kinds of linear hydroelastic responses using the

mode superposition method.

Jensen and Pedersen (1978) developed second-order strip theory (SOST) which is based on
linear strip theory of Gerristma and Beukelman (1972). In SOST, non-linear hydrodynamic
coefficients and restoring force are obtained by using Taylor expansion based on hull’s slope on
the waterline. The strip theory is also coupled with Timoshenko beam to obtain vertical bending
moment at each linear and second-order. Vidic-Perunovic and Jensen (2005) extended SOST for
the bichromatic wave condition. They calculated both sum — and difference — frequency wave

loads and discussed the second-order effect on the bending moment at multidirectional waves.

Using the time-domain analysis, various types of non-linear forces such as slamming, green
water impact, and etc. can be considered. Thus nonlinear effects on the ship response have been

investigated by using the time-domain strip theory in both rigid and flexible ships.
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For instance, Fonseca and Guedes (1999) used time-memory effect function and considered
non-linear effect in the time-domain. Xia and Wang (1997) used time-domain strip theory and
calculated wave loads on the ship. Wu and Moan (1996) considered several non-linear forces such
as slamming and non-linear restoring & Froude-Krylov forces on instantaneous wetted surface
and Wu and Hermundstad (2005) suggested the semi-static solution for the high-mode which is
difficult to be converged well.

Three-dimensional approach (Panel method)

From the 1990s, many three-dimensional seakeeping codes with forward speed have been
developed; these are based on the linear potential flow using several types of Green functions and
have been coupled with Finite Element Method (FEM) or beam theory for the hydroelastic
response. As a result, the discussion is moved to consider both global & local quantities and more
exact consideration of complex geometry of ships.

Newman (1994) calculated linear hydrodynamic force and response of an elastic body by using
CPM and generalized mode expansion method. He showed that several mathematical formulations
could be used instead of eigenvalue solution for modal vector and also derived generalized
hydrostatic restoring stiffness on an elastic body. Huang and Rigg (2000) derived more improved
hydrostatic restoring stiffness by using concept of continuum mechanics. Later, it is found that
one term (pressure variation) is missing in Huang and Rigg (2000) and exact linear generalized

hydrostatic restoring stiffness is confirmed by Malenica et al. (2009), and so on.

Malenica et al. (2003) developed hydroelastic code based on FEM and wave Green-function in
the frequency-domain and their method is applied to the time-domain simulation by using
retardation function. The validation process is also conducted by comparing with result of the
experiment. Using segmented flexible barge, vertical motion of several points in regular waves
are measured. The RAO result shows that vertical bending effect is well predicted in numerical

simulation.

Senjanovic et al. (2007) also calculated not only vertical bending mode but also horizontal and
torsional bending modes. The developed code is also compared with the experiment on flexible

barge at different wave angles in both regular/irregular waves (Remy et al., 2006).

Although VLFS is not of interest in this study, hydroelastic response of VLFS has been

conducted continuously by many researchers especially in Japan as reviewed by Kashiwagi (2000)
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and Watanabe et al. (2004). Both linear and second-order forces have been considered by using

several numerical methods such as zero-draft assumption, generalized modes method and so forth.

ljima et al. (2008) used three-dimensional potential flow solver and FEM. They calculated both
global and local quantities of symmetric & anti-symmetric vibration modes and also included non-

linear effect from quadratic product of linear quantities and instantaneous wetted surface.

Kim et al. (2009, 2013, 2014) developed springing analysis code based on their three-
dimensional Rankine panel code named WISH. They have developed different approaches such
as direct coupling between potential solver and several structure solvers in the Cartesian and

generalized coordinates, respectively.

Although many kinds of three-dimensional codes have been developed, most codes are
adopting linear solution and as used in two-dimensional hydrodynamic codes, weakly non-linear
variables are corrected by considering non-linear Froude-Krylov and restoring forces. (e.g.
Kashiwagi et al., 2015; Kim and Kim, 2014).

1.3.2 Numerical study on second-order wave-body interaction problem

Second-order wave-body interaction has been researched mainly on the stationary structures.
The non-linear wave force is generally smaller than linear wave force in moderate sea state.
However, it dramatically increases as wave amplitude increases thus it could become more
important in harsh environments. The non-linear force could also coincide with resonance at high-
frequency or low-frequency; e.g. vertical loads on TLPs, horizontal response of moored vessels.
Not only wave exciting force but also local quantities such as pressure, wave run-up in second-
order have been also studied for better design of offshore-structure at operating and survival

conditions.

The numerical study on second-order hydrodynamic force has been conducted by using mainly
two ways. First is to use perturbation approximation in the frequency-domain with the weakly
non-linear assumption. In this method, it is particularly important and difficult to calculate second-
order velocity potential force thus many researches have been conducted to obtain exact second-
order velocity potential by solving second-order boundary-value problem (Ogilvie, 1983).
Another way is to solve initial-value problem on instantaneous boundary condition by using time-
domain simulation. Numerical wave tank (NWT) based on semi-Lagrangian or MEL approaches

on fixed and floating bodies has been developed by many researchers on both 2D/3D bodies (e.g.
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Ferrant, 1998; Cointe et al., 1990; Tanizawa, 1995; Wu and Taylor, 2003; Kashiwagi et al., 1998;
Koo and Kim, 2004). However, it generally needs re-meshing and evaluation of influence matrix
at each time step to consider non-linearity of body & free-surfaces. Thus it should need a lot of

time and stable treatment to keep the code.

As a combined method, the perturbation method is applied to time-domain analysis. In this
method, linear and second-order velocity potentials are calculated by solving each boundary
condition at each time step. Although it could not consider fully-nonlinear effects, it has advantage
that it can consider linear & second-order wave forces and needs only once evaluation of influence

matrix without re-meshing scheme.

Some of published papers on second-order wave body interaction by frequency/time-domain

simulations based on perturbation method are introduced as follows:
Frequency-domain analysis on a rigid model

Molin (1979) showed that second-order velocity potential could be solved by separating the
locked and free wave components. He also showed that second-order radiation condition is
satisfied and suggested indirect method to obtain second-order velocity potential force by using

only linear quantities.

Kim and Yue (1989, 1990) calculated second-order velocity potential by using ring source
Green function on an axis-symmetric body. Their solution is known as a first complete solution
of second-order velocity potential and QTF is also calculated by using indirect method in
bichromatic waves. They discussed the effect of body and free-surface non-linearity, respectively.

It is confirmed that the free-surface effect is important especially on sum-frequency wave forces.

Using bottom-mounted vertical cylinder, Newman (1990) derived asymptotic solution of
second-order velocity potential. He regarded non-homogeneous component as an added
oscillating pressure on free-surface and showed that far-field value of free-surface non-
homogeneous term makes several properties of second-order unsteady wave & pressure. It is also
shown that second-order free-surface effect is stronger at the double frequency summated by same

frequency than summation of different frequency components.

Chau and Taylor (1992) derived special Green function which satisfies second-order boundary
condition of bottom-mounted vertical cylinder and derived semi-analytic solution of second-order
velocity potential based on eigen function expansion method. Their method is extended to third-

order diffraction problem by Malenica and Molin (1995) and similar ways are also applied to

-7-
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various conditions such as truncated vertical cylinder, multiple-column, porus cylinder, etc. (e.g.
Huang and Taylor, 1996; Malenica et al., 1996; William and Li, 1994).

Kim (1991), Lee (1995) developed the numerical calculation of QTF for general floating body
by using constant panel method (CPM) based on wave Green function and Choi et al. (2001)
calculated second-order velocity potential force by using indirect method based on HOBEM in

the frequency-domain.
Time-domain analysis on a rigid model

Isaacson and Cheung (1991, 1992) solved second-order diffraction problem in 2D & 3D bodies
using perturbation time-domain simulation. Issacson and Ng (1993, 1995), Teng et al. (2002), Bai
et al. (2003) also solved second-order wave force in forced oscillating 2D & 3D bodies. Duan et
al. (2015a, 2015b) developed different BEM, so called second-order Taylor expansion BEM, to
solve second-order diffraction/radiation problems. They also showed that their method is effective

for higher-order potential flow problem.

Skourup et al. (2000) solved second-order wave force with/without a current and Buchmann et
al. (1998) discussed the second-order wave run-up of vertical cylinder with result of fully-

nonlinear waves in a current.

Shao and Faltinsen (2010, 2012, 2014) bring up the physical problem on the higher-order
derivative of velocity potential with sharp corner. They also showed that the slow convergence of
velocity potential’s derivatives and developed so called body-fixed coordinate method in
perturbation time-domain simulation based on HOBEM. Instead of using Taylor expansion on the
body boundary condition, they obtained the force and boundary condition in the frame of body-
fixed coordinate system without derivative of velocity potential. They presented that their method
could be applied to second-order boundary value problem of general body with/without forward
speed and ship motion & added resistance with forward speed where there are several higher-

order derivative of velocity potential.

Wu and Taylor (1994), Hong and Nam (2011) used FEM instead of BEM to analyse non-linear

wave-body interaction in the time-domain.
Frequency/time-domain analysis on an elastic model

We introduced numerical investigation on second-order wave force with rigid body assumption.

However, there are relatively few researches which consider both non-linear hydrodynamic and
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elasticity. As a last section, some of study on the non-linear hydroelasticity problem are introduced

as follows:

Wu et al. (1997) and Chen et al. (2003) calculated generalized quadratic product of linear
guantities on an elastic body in regular and irregular waves. They considered elasticity by adding
the effect of elastic response to the normal and position vectors, respectively. Park et al. (2018)

revised Wu’s method and calculated added resistance of an elastic ship with forward speed.

The mean drift force on VLFS was also conducted by using near — and far-field approaches by

Kashiwagi (1998) and Utsunomiya et al. (2001) based on zero draft assumption, respectively.

Choi (2004) derived the generalized second-order hydrodynamic force and calculated mean
drift force & moment of an elastic barge by using HOBEM based on wave Green function and his
approach is applied to analysis of the floating fish cage which is composed of multiple elastic
torus (Choi and Yeo, 2009).

Recently, the second-order hydrodynamic force including second-order velocity potential is
considered on an elastic body. Choi (2013) calculated second-order hydrodynamic force and
response of bottom-mounted elastic vertical cylinder in semi-analytic way based on eigen function
expansion. Malenica et al. (2018) calculated numerically second-order velocity potential force of

an elastic body based on commercial software HydroSTAR.

However, it is difficult to find the numerical study on the second-order springing of an elastic

body with forward speed with the full consideration of elasticity & hydrodynamics until now.

1.4 Outline of dissertation

Outline of dissertation is as follows:

In chapter 2, general mathematical formulations to solve boundary-value problem of a
rigid/elastic body are described. Several boundary conditions and generalized forces on an elastic

body are derived with consideration of body deformation based on perturbation scheme.

In chapter 3, numerical implementations used in fluid-domain solver are introduced. The basis
of HOBEM is described and the discretization method of the boundary integral equation is

presented. The Green function adopted in BEM is defined and various numerical schemes to
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calculate derivative of velocity potential are also given. Several necessary schemes to implement

time-domain Rankine panel method are introduced in the last section.

In chapter 4, the direct time-domain simulation is used to study on the rigid/elastic models in
monochromatic waves with/without forward speed. The developed time-domain computer code
is validated at several different conditions (with/without forward speed and rigid/elastic body) and
applied to the second-order springing in limited condition. From the obtained result, discussion

on perturbation time-domain simulation is conducted.

In chapter 5, the frequency-domain analysis is implemented to study on a simple elastic body
model in bichromatic waves without forward speed. Several additional formulations are
introduced for consideration of bichromatic waves. The detail formulation to calculate second-
order velocity potential force is described and a few results are compared with semi-analytic
solution as a validation process.

In the final chapter, the conclusion of this study and future works are summarized.
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CHAPTER 2

Mathematical formulation

2.1 Introduction

In this chapter, the general mathematical formulation for the calculation of linear & second-
order forces and responses are described on an elastic body. The fluid is assumed to be inviscid
and incompressible with irrotational motion. Then with the potential flow theory, the Laplace

equation becomes governing equation.
Ap=0 (2.1)

With assumption of weakly-nonlinear several quantities such as velocity potential, wave
elevation, motion, force, and so forth are perturbated based on wave slope. The maximum order

of physical quantities is second-order. They are expressed in this form.

p=ep® +£°9% +0(°) (2.2)
C=et®+e7¢?+0() (2.3)
F=eF9+£F®+0(&) (2.4)

2.2 Generalized mode expansion method

In the analysis of fluid-structure interaction, generalized eigen-mode expansion method is one
of classic ways to consider the hydroelastic response on an elastic body (Newman, 1994). Both
rigid and elastic body motions are calculated simply by extending the total number of modes. The
mode-shape function can be obtained by solving eigenvalue problems of structure solvers such as

the beam theory or Finite Element Method (FEM) with satisfied boundary conditions. The total

-11 -



CAHPTER? : Mathematical formulation

response is calculated by summation of the modal vector multiplied by its amplitude. It is as

follows:
N — .
=) &h! (2.5)
j=1

It is known that any function which satisfies geometric boundary condition could be adopted
for the modal vector. This approach could also be applied to multi-body analysis in the generalized

modes.

2.3 Coordinate systems

a E

N

Fig. 2 Earth-fixed, inertial, body-fixed coordinate systems

In the analysis to follow, as shown in Fig. 2, we use both body-fixed coordinate system and
inertial coordinate system with steady translation at velocity U along the X axis. Following
classical ways, several approximations for boundary conditions, forces, and so forth are conducted

on the inertial coordinates.

2.4 Deformed surface of an elastic body

In this study, we are considering elastic body dynamics and several physical variables are re-
defined in the generalized mode to include the effect of an elastic motion. As a first procedure,
linear and second-order normal vector variations which consider both rigid and elastic body

motions are expressed by using the concept of continuum mechanics.

The normal vector of deformed surface could be approximated by using normal vector at initial

state with displacement (Huang and Rigg, 2000). It is expressed in this form.
Nds = J(F*)" AidS (2.6)

Here, J: Jacobian, F: Deformation gradient, ri : Deformed normal vector, N : Initial normal vector,

ds: Deformed surface, dS: Undeformed surface
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If the position vector at each mode is expressed by
X =%X+7 2.7)

T

1

etV 4+ &2 (?(2) +}7(2))+O(83) (2.8)

Here, 7@ is displacement obtained by quadratic product of linear displacements

Deformation gradient tensor could be written by substituting above equations.

oX, OX, OX,
oX,  OX, 0OX
Fo oX, o0X, 0X,
ox, OX, OX
oX, O0X,; 0OX,
| 0%, OX, OXg |
(2.9)
M 2(.(2 (2) ()] 2(.(2) (2) @ 2(.(2) (2)
l+er]+¢ (71,1 AT ) &l T & (Tl,z 712 ) ETig +& (71,3 73 )
— [©] 2(.(2) (2) [©) 2(.(2) (2) [©) 2((2) (2)
=| €1 t€ (72,1 721 ) l+er, +¢ (Tz,z +7z,2) €T3+ €& (72,3 +7’2,3)
1) 2(.(2) (2) @ 2(.(2) (2) @ 2(.(2) (2)
&3 T & (13,1 * 731 ) €Tz, +€ (73,2 732 ) l+eryy+e (73,3 +733 )

After inversing and transposing the deformation gradient tensor, it multiplies with Jacobian. So
then, it is rewritten by matrix form.

Leo(eyorl) el el
JFH = —81'1(2 l+¢ (Tff + rélg ) —513(‘1;
—etly —e1y) 1+¢ (1'1(11) +7{) )
(24 e)e (2 +r2) 0 R
+¢ ~7% ~ 13 (2 +2)+(r2 +12)] ~33 ~ Va3
-3 ~ "3 ~133 ~ V34 (£ +22)+(r2 +72)}

[ @ D @) 1) @) 1) (1) 1) () 1) (@)
T22733 723732 723731 721733 721732 ~ 722731

N

(O] O] Q)] O] O] E] 3
TE | TiaTay ~ 12733 TiaTaz ~Tiglar  T12731 —Tigfa2 | T 0(5 )

1.1 1) (1) 1) (1) 1) (1) 1 (1) 1) (1)
| 71223 ~Tiz%22  Tiglen ~Tiales TinTae ~Ti2T2

(2.10)

This could also be expressed by using following vector form (Choi, 2004).
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Nds\s =0(l)s, +0(e)s, +0(c%)5, +-+ (2.11)
o) = fidS 2.12)
O(s) = {(v-f@)ﬁ—[v;m T ~ﬁ}dS (2.13)

T

V(79 +79)a-[vE@ +v7@ T 6
0(82) = af(l) 6f(1) (3f(1) af(l) 6{:(1) 5f(1) ds (2.14)
+[ X X X -n

oy oL oz oX  OX oy

The defined normal vector variation is applied to the derivation of several generalized
formulation which will be explained later. These expressions for the normal vector derived in the
generalized mode correspond with classical equations for the rigid-body motion. The vector

identity between generalized mode equation and classical expression is described in Appendix A.

2.5 Boundary-value problem in monochromatic waves

Boundary-value problem is considered to obtain velocity potentials. In the forward speed
problem, velocity potential and wave elevation are decomposed into several components. They

are as follows:
¢:®B+¢I+¢S’ §:§|+§s (2-15)

where suffix B means the basis flow
The basis flow is taken as the double-body flow, which is expressed by a sum of uniform flow

and steady disturbance flow as follows:
@, =-UX +® (2.16)

where @ denotes the double-body velocity potential.
To solve the boundary-value problem, the boundary conditions should be described. The
kinematic and dynamic free-surface and the body boundary condition on the instantaneous surface

are written as follows:

2.5.1 Free-surface boundary condition
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The kinematic & dynamic free-surface boundary conditions on instantaneous surface are

expressed in this form.

[§+v¢.v}(z_;):0 on Z=Z(xy.0) (217)

0 1 2
[a+v¢~v}¢=—gg+5(v¢.v¢+u ) on Z=~(% Y1) (2.18)

Both kinematic and dynamic free-surface boundary conditions are approximated on the still water

surface (Z =0) by taking Taylor expansion. They are as follows:

m (m) (m) mY
a%t Vv = agsz _[ag,t ~ ag,z ]—v VOt (219)
(m) B
¢ +V V¢ (m _ géls(m) [a¢l + gé’l(m)j —V- V¢|(m) n hm (220)
o°D og® oLV og® oc® o2 220
here f, =¢® Cf == _ e L2 0?P
" 1= oz® *  oX oX oY oY d 072 ¢ oz2

1 o (o™ -

and V=-Ui+Vod

2.5.2 Body-surface boundary condition
The kinematic body boundary condition on the instantaneous surface is expressed in this form.

9 45— N-7ds on S, (2.21)
oN

Substituting the deformed normal vector defined in Egs. (2.12~14) into kinematic body boundary
condition Eq. (2.21), linear and second-order generalized body boundary conditions with forward

speed are derived as follows:

%{” _ 0 .ﬁ+(\7.[vfm]T 0 .W).ﬁ_(v.;<1>)(\7.ﬁ) 5;5:) (2.22)
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5¢(2) =(2) |, 22 _ =( 1) (8] *(2) ”(2 0 a
nis B A VVD — (7 -t rW® — |
an 4 7 ) Z o 6x|

N {;(1) LV 7O, V\7} : {(v 7O ) fi— [V 7@ ]T . ﬁ} ag:) (2.23)

V~( }/(2)) |:V‘L'(2) +V}7(Z):| ‘A
—\7 : 6"(1) az. @) or =(1) az-:(l) az-:(l) az—:(l)
+ X . ﬁ

’ l

oy oL oz OX  OX oy

Calculating the rotational motion by both rigid and elastic bodies, as shown in Appendix A, }7(2)
could be obtained and becomes equal to HX in terms of the second-order expansion of Euler-

angle matrix in case where only the rigid-body motion exists. It is also noteworthy that both

linear and second-order boundary conditions have several terms which exist only for an elastic

body; e.g. the divergence of displacement V-7 in the linear boundary condition. In the first-
order body-boundary condition, we can also find that the second term on the right-hand side of

Eqg. (2.22) corresponds to m;-terms in the seakeeping problem.

2.6 Generalized hydrodynamic force

The hydrodynamic force acting on a body is defined with generalized mode in the following
form (Newman, 1994):

F=[[p(h’-N)ds (2.24)

To calculate the generalized hydrodynamic force, the inner product of mode shape and normal
vector on the body surface should be obtained. Huang and Rigg (2000) calculated the inner
product and multiplied it by the hydrostatic pressure to calculate the linear hydrostatic stiffness of
an elastic body. It can also be expanded up to second-order on the mean surface. Choi (2004)
derived second-order inner product by taking Taylor expansion on mode-shape function and
generalized normal vector defined in Eqgs. (2.12-14). In this thesis, the variation of modal function
is defined by directional derivative and it is coupled with generalized normal vector. The derived

inner product could be expressed as follows:

AN

. =0@)s, +0(e)s, +0()s, +-- (2.25)
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oW ={sh’-s|" ds =h'-fds (2.26)
O(e)={ohi -5} ds ={Vh! .70 + (v -79)R! vz Ri}.fids (2.27)
VI (7@ +7@)=v (7@ +7@). )

O(c?)={oh -6 "ds={ +V.(7@ +z@)R1+(VhI.70).v7® Lids  (228)
[a-'(l) oW /7@ az-:(l) or® a-'(l)JhJ

oy oz ez “Tox T ox oy

In the present study, the generalized hydrodynamic force for the forward speed problem is
derived by considering the change in the pressure on the body surface. The linear external force

is expressed as follows:

:_p”{ ¢()+gr3 +;r V(a \7)+\7-V¢(1)}(ﬁj-ﬁ)ds
(2.29)
—ij{(ﬁ—%V@j-Vdﬂgz}{Vﬁi-*1 (V-79)ni vz h’} AdS

Here, we can calculate the hydrostatic coefficient by evaluating the directional derivative for the
displacement. The definition of derivative is written by

-—|F (gf)]gzo (2.30)

After adding the linear gravity restoring force, the hydrostatic coefficient on an elastic body is

obtained as follows:
Cij:pg”h31-ﬁiﬁdS+psg.m(ﬁi-V)hsjdV+pgjjz{(V-ﬁi)ﬁj+ﬁj-Vﬁi (n )h‘} fids
Se, v, S,
(2.31)

This hydrostatic coefficient can be shown to be the same as other hydrostatic formulations for an
elastic body (Malenica et al., 2009). In the second-order, the hydrodynamic force could be

decomposed into several components by a typical way. They are as follows:

F(Z) F<2)+|:(2) +|:(2) (2.32)

res
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FO =—pl] ( v V¢s(i)|J( iT)ds (2.33)

Sgy

F& =C;&? (2.34)

res;

- o
. Sshi.sh ] . . Sh'.sn
, PrY J'(é' () { S } dl_p\&[_{(\/_qu))vcp}(g()_r?(’)){ S } dl

WL
_pﬂ{;Wﬁm Vo + 7O V(ag:) +\7-V¢(1)]+gy(2) N ;}/ (\7-\7)}{651 .5ﬁ}(°’ "
_pjj{aat +grld += 7(1) V(\7~\7)+\7-V¢(1)}{5ﬁi ‘5ﬁ}(1) ds
_pﬁ{ V ——VCD Vq)—f-gz}{é‘ﬁj .5ﬁ}(z) ds

(2.35)

2.7 Equation of motion in generalized mode

2.7.1 Generalized inertial force

Several generalized forces should be included to derive the equation of motion for the
hydroelastic response. As the generalized force on the body, the inertial force shows the relation
between inertia of the body mass and external force. Using the conservation of momentum, the
inertial force of the body mass for the translational and rotational motion is expressed as follows
(Newman, 1977):

= = [ o, + 2 xz)dv (2.36)
M= [[[ pX x(y + g x %) dV (2.37)

where ¢ : translational acceleration, & : rotational acceleration

In the generalized mode, these inertial forces can be redefined as follows:
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F =[] (N -7)av (2.38)

ﬁj is the transformed modal vector where each position is described at inertial coordinates.

The non-linear inertial force could also be approximated by taking perturbation series in the

following form.

F, ZJ‘”ps{ﬁtj(O)+ﬁtj<1>}.{;<1) L@ +7.7'(2)}dv (2.39)
Vo

After collecting the terms of each order, the first- and second-order inertial forces are expressed

as follows:

LE m‘ P, {H{i(o) £ }dV (2.40)

Vo

R "
Vb

Here, h/® - 7® becomes the time derivative of a dyadic product between the body-mass inertia

and the angular velocity which include quadratic inertial force when the mode shape is rotational
motion (Ogilvie, 1983). The vector identity between Egs. (2.37), (2.41) on a rigid body and the
quadratic inertial force for rotational motion is described in Appendix B. The linear inertial force
can also be expressed by using the mass matrix which is defined by the inner product of each

mode-shape function (Newman, 1977).

M, EQ = F® (2.42)
Mijzmps(ﬁ‘-ﬁi)dv (2.43)

By substituting the mode shape (1~6 modes; translation and rotation) into Eq. (2.43), we can

confirm the classic mass matrix.

(h,h?,h*) = (i, j,k), (h*,h® h®) = (i, j,k)x X (2.44)
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m 0 0 0 mz, -my,
0 0o -mz, 0 mx
0 0 m m —mXx 0
M, = Yo T (2.45)
o -mz;, my, I, I, ls
mz, 0 —mx; 1y
| —my,  mX, 0 L, 1y I3 |

where [ :” pS(X“é'ij —xixj)dV
\

2.7.2 Generalized gravity restoring force

The body could have the gravity restoring force due to rotation in case that the mode shape has

variation. This force could be written in the generalized mode as follows (Malenica et al., 2003):

F,, =—9][[ o.(oh; -K)av (2.46)

This can also be approximated up to second-order by using perturbation series, and the results can

be written as

F,, ~F+F® =—g[[ p,(6h® + oh? )-kav (2.47)
Vo
FO =—g][] o (VR1-79)-Kav (2.49)
\0
RO =—g[[[ o, (VR 7@ + VA1 7). Kav (2.49)
Vo

In the linear wave-body problem, the force is proportional to the displacement and therefore it
is usually included in the restoring stiffness of both rigid and elastic bodies (Senyanovic et al.,
2007). In the second-order force, the first term means the force by pure second-order displacement

and it is usually included in the second-order restoring coefficient.

2.7.3 Linear & second-order equations of motion
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From Newton’s equations, both first- and second-order equations of motion in the generalized
mode can be derived by considering several generalized forces already described together with

structural stiffness. The motion equations in the i-th direction are written as follows:

o (vl ot b, -, Je <R (2.50)
B
i[ 40" (M, +a) )+2|a)b +Ku+Cu]§}”
| - : B} ﬂ (2.51)
=[Fo7e [ { (A7 4R ) g (VA7) KV

Pi

where HWX is the phase angle of each external force, Here, the external moment should be

described based on the origin of body-fixed coordinates.
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CHAPTER 3

Numerical implementation

3.1 Boundary integral equation (BIE)

In 3-diemnsional wave-body interaction, the boundary integral equation with potential flow

assumption has been used widely. Its basic form is expressed as follows:

aG(P Q) 6¢é”‘) Q)

C(P)A™ (P)+ jj #7(Q——2dS(Q) = HG(P Q—=—2d5(Q) (31)

where P = (X,Y,Z) means a field point; Q = (X,Y,Z) means a source point; C(P) means the solid

angle at the field point P; Sris entire computational domain (Sg+Sg+Sp+Sc).

3.2 Higher-order boundary element method (HOBEM)

Boundary integral equation could be solved analytically or numerically by numerous ways. In
the light of a general geometry of body model, numerical integration is conducted with Green
function which is called boundary element method (BEM). In this study, the boundary integral
equation is discretised numerically by quadrilateral panel to solve boundary-value problem. At

first, the integral domain is segmented into each quadrilateral panel. It is written by

6¢s '@

CPA P+ [ ¢§'“’(Q>5G(P s @) =3 [[6(P.Q) 5@ (32

=l e i=l e

In HOBEM, the velocity potential is approximated to summation of the value at each node by bi-

quadratic shape function in the panel. It is expressed in this form.
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(™ = ZN (U, V)¢ (3.3)

where N; is shape function

Z 4 7 3(L 1)

u
Mapping p ’
;X
/ I(1,-1) |5 2
Y

Fig. 3.1 Mapping from inertial coordinates to local coordinates on a panel

Here, the velocity potential could be interpolated in the local coordinates which was mapped from

inertial coordinates (See Fig. 3.1). In this coordinates, each shape function has following form.

Nl(ulv)=w, N2( , )=W,N3(u,v)=w

4 Y 4 4
N4(u,v)=—(u _1)(A\r/+1)uv,Ns(u,v)=—(l_u )z(v_l)v,Ns(u,v)=—(u+l)(21_v )u (3.4)
1-u?)(v+1)v (u-1)(1-v*)u , ,

N7(u,v)=%,Ns(u,v):%,Ng(u,v):(1—u )(1-v*)

Substituting Eqg. (3.3) into boundary integral equation Eq. (3.2), each integration is composed of

shape function and velocity potential on the node with Green’s function. It is as follows:

CEIAP)+ X [[ 3N, 00" @ B Das o)

j=1 e i=1

(3.5)

(m)
—ZHG<P Q)ZN(u e (Q)dS(Q)

_19
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The integration of shape function with Green’s function can be obtained provided geometry of all

boundaries is given. Thus, velocity potential can go out from the integration. It is written by

C(P)¢s m)(P)+ZZ¢ m)HNi(U’V)%dS(Q)
j=1i=1 e Q
’ (3.6)

. 04" Q)
>

j=1 i=1 anQ

ﬁ G(P,Q)N, (u,v)dS(Q)

The evaluation of integration is conducted by using different ways depending on strength of the
singularity. The detail description of evaluation for each integration and solid angle of HOBEM
is described in Zhang (2018).

3.3 Green’s function

In potential flow solver, several kinds of Green’s function have been used. In time-domain

simulation, we adopted Rankine source as a Green’s function. It is defined in this form.

1 1
G(P,Q)—€+E (3.7)

2

R=y(X =XV +(Y =Y +(z-2'

Rz=\/(X XV (Y=Y +(Z+Z+2H)

where

The bottom condition is automatically satisfied by adding image source R,. Using symmetric
property of body geometry and velocity potential, only half-domain in total surface is considered
for the simulation. After applying boundary conditions to the integral equation and collecting
unknown and known values at each boundary on the left- and right-hand sides respectively, a

matrix form is obtained in the following form:

N "
[Ai Az] 8¢s(m) :[Bl Bz] on Seq (3.8)
. .
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where A and B mean influence matrices which include an integral over a discretised panel in terms
of the Green function together with shape function, respectively. The velocity potential is obtained
by solving Eqg. (3.8) at each boundary in the perturbation series.

3.4 Calculation of several derivatives in HOBEM

In the perturbation method, several spatial derivative of velocity potential should be calculated.
Many kinds of method have been suggested to obtain derivative of velocity potential. It is well
known that the first derivative could be conducted by using derivative of integral equation without
any difficulty. It could also be obtained by using shape function because the velocity potential is
approximated by mathematical formulation in HOBEM. First derivative of velocity potential is
expressed in this form.

-1

¢X X u Yu Z u ¢u

g |=I X, Y, Z,| |4 (3.9)
¢Z n)( nY nZ ¢n

On the other hands, it is relatively difficult to obtain second derivative of variable than first
derivative of it. If double differentiation for the integral equation is conducted, the singularity is
much more increased in Green’s function and numerical error is expected due to hyper singularity.
To increase the accuracy of second derivative quantities, other methods have been suggested based

on boundary integral equation.

For instance, using desingularized BEM and geometry of a body model, first derivative of
velocity potential is obtained and then differentiation for the boundary integral equation is
conducted to obtain second derivatives of velocity potentials(e.g. Shao, 2010). Similar way is also
applied on Dirichlet type formulation (Chen and Malenica, 1996; Lee et al., 2017). In this method,
first derivative of velocity potential is substituted to Dirichlet type equation and it is differentiated

to obtain second derivative of velocity potential.

In case HOBEM is adopted, second derivative of shape function could be used directly as same
with calculation of first derivative quantities. There are two types of formulation on second

derivative as used in Choi et al. (2001) and Kim (1996). They are as follows:
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P P X Yo Zu

By P X Yo Zu I[P

b |=[D1 || |- Xuw Yur Zu || (3.10)
Pz P Ny Ny Ny L&

by, L Br N, N, 0Ny ]

X2-z2 YZ-Z2 2X)Y, 2X,Z, 2YZ,

XZ-Z2 YP-zZ2 2X)Y, 2X,Z, 2Y,Z,

where, [D] =| X, X,-2,Z, Y,Y,-Z2,Z, XY, +X)Y, X, Z,+X,Z, Y, Z,+Y,Z,
n,X,-n,zZ, nX,-n, 2z, nX,+nY, n,X,+nZ, n,Y,+nZ,
n,X,-n,zZ, nX,-nz, nX,+nZ, n,X,+n,Z, nyY, +n,z,

4 Py X, Y, Z, 00
¢XX P, X, Y, Z, 00
Xy
U T 0 X, 0 Y, Z
s ={[S] [S]} [S] 4 where S = o x o0 v 2 (3.11)
n v v v
Zy ¢Z§ _Zu 0 Xu _Zu Yu
‘ ¢Zz] _Zv 0 Xv _Zv Yv

The accuracy in second derivative variables on the ship hull surface is checked by using a
simple Rankine source (1/ 4~R ) where the source and field points are arbitrarily located on and
outside the body surface. Two numerical results obtained by Egs. (3.10-11) and the analytic
solution for the second derivative of Rankine source on the line of hull surface are depicted in Fig.
3.2.

In the calculation, the numbers of body-surface division used in the X- and Z-directions are
48 and 8, respectively. It can be seen from this figure that both numerical methods provide good
agreement with analytic solution, but judging from the results, the first equation (3.10) provides
more stable result than the second equation (3.11). Thus we adopted the first equation in our
simulation. These results suggest that when the velocity potential has smooth value, the second-
derivative of velocity potential could be obtained accurately by using the shape function in
HOBEM.
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Fig. 3.2 Comparison of second derivatives at source point between numerical methods and analytic
solution

It is known that spatial derivative on the free-surface makes numerical instability in Rankine
panel method. In the ship forward speed problem, derivative for X-direction on a free-surface is
calculated by using 3-point upwind scheme which gives more stable solution in the forward speed

problem. It is as follows:

2 _X(h-h)+X;(4,-4) (3.12)
oX X2X3(X3—X2)

where X; and ¢ mean the X-coordinates and velocity potential at the i-th node with assumption

(Xl = 0)

3.5 Time-marching scheme

In the time-domain simulation, initial-value problem should be solved. Physical quantities of
next time step is predicted by using present values. In our simulation, the explicit Runge-Kutta

4th-order method is adopted. Unsteady velocity potential and wave elevation are updated on free-
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surface and body boundary conditions at each time step after determining the coefficients of

Runge-Kutta. It is expressed in this form.

[¢n+l’é/n+l]:[¢n’é,n]+%(k1+2k1+2k3+k4)At (313)

where k_ : coefficients for Runge-Kutta fourth-order, n : present time step

In the freely-floating body, the calculation of unsteady displacement and velocity of a body
model are obtained by using 4th-order Runge-Kutta-Nystrom method. They are expressed in this
form (Koo and Kim, 2004).

&=f(1.8) (3.14)

k1 :lAtf (tﬂ'gnié:l;)’ k2 :lAtf (tn +1At’§n + K’é:n +k1j
> 2 2 (3.15)

K, :%Atf (tn +%At,§n +K,E + kzj, K, :%Atf (t,+ALE + L& +2k,)

1 1 ,
where K :EMLSE" +§k ) L=At(& +ky)
Using obtained acceleration in the equation of motion, velocity and displacements are updated
every time step.

In the initial time steps, Ramp function (I") is applied over the several wave periods (T¢) to

prevent sudden increase of a response. The function is written by

0.5(1.0 - cos(LﬂD (t<nT,)
r= o, (3.16)

3.6 Type of grid on free-surface
In Rankine panel method, panel mesh exists on both body and free-surface boundaries. The

free-surface mesh has two kinds of shape (See Fig.3.3); i.e. oval and rectangular types of grid.

Each shape has advantage and disadvantage.
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Fig. 3.3 Top view of computation region and panels on the oval/rectangular type free-surface

It is known that generally the oval type grid is more efficient and on the other hands, the
rectangular type grid needs more number of mesh but it is more stable than oval type grid. In our
simulation, axis-symmetric body is calculated on the oval type free-surface and other general

bodies such as ship, barge models are simulated on rectangular type of grid.

Damping Zone

Damping Zone

Fig. 3.4 Numerical damping beach at each free-surface type

3.7 Numerical damping beach

In time-domain simulation, the radiation condition is satisfied by using numerical damping
scheme to prevent making reflected waves. The general damping zone of each type of grid is
shown in the Figure 3.4. In the zero forward speed problem, the artificial damping is installed the
edge of free-surface. On the other hands, a ship model with forward speed has damping beach
only edge of horizontal direction and downstream region on the free-surface. In damping zone,

the artificial damping is added on kinematic free-surface boundary conditions. It is as follows:
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m (m) (m) my 2
00" gm0 [0 00| Gyt oy Vg (317)
ot oz ot oz g
r—r ?
— o
where v = aa{ Lq ] (r>1)
0 (r<r)

and « is strength of damping and Lk is the length of damping zone

3.8 Numerical filter

Simulations of wave-body interaction could have various instabilities especially on the free-
surface. As one of the instabilities, the free-surface has the so-called saw-tooth behaviour. Using
a low-pass filter is a simple way to prevent this kind of instability. However, the numerical filter
could affect the result if the strength and operation frequency are high. In this simulation, the
three-point low-pass filter (Shao and Faltinsen, 2010) is applied to the wave elevation to reduce

the effect of a filter. The equation adopted is as follows:

51' =C5171+(1_20)§j +CG (3.18)

where j is a node number of collocation point used in the numerical filter and £ is a new wave

elevation after filtering. The strength of numerical filter (c) is decided by considering the wave
period and time step size, and the value of c is fixed equal to 0.025 in all simulations. Numerical
filter is operated once per 10 time steps for the linear wave elevation and once per 5 time steps for

the non-linear wave elevation.
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CHAPTER 4

Numerical study by time-domain analysis in monochromatic
waves

4.1 Introduction

In this chapter, direct time-domain simulation by using developed HOBEM code and modal
approach is implemented for the analysis of the wave-body interaction at different situations of
monochromatic waves. Since the second-order springing of an elastic body is complex to be

solved directly, the numerical simulation is conducted step by step.

In chapter 4.2, necessary convergence study is introduced before numerical calculation. The
generalized mode approach is applied on both rigid and elastic bodies. In chapter 4.3, the wave-
body interaction of a rigid body without forward speed is conducted and it is extended to forward
speed problem in chapter 4.4. In the last, the numerical study is applied on an elastic body

without/with forward speed in chapter 4.5 & 4.6, respectively.

4.2 Convergence study

Convergence study is important for the validation of new code and it should be performed
systematically. Before conducting numerical calculation, convergence study is conducted on
hemisphere, vertical cylinder in zero forward speed problem and Wigley1 model in forward speed
problem. As one of the most important factors in time-domain Rankine panel method, 3
components are considered for convergence study such as computational domain size, time step

size, mesh size (He and Kashiwagi, 2014).
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4.2.1 Computational domain size

Convergence study for the length of free-surface domain is implemented. During this study,
both first-order and second-order quantities are confirmed for computational domain size. The
free-surface length is one of the important parameters which could affect the simulation results.
Especially there are additional forcing terms composed of several quadratic products in the
second-order free-surface boundary condition. It is known that the exact evaluation of free-surface
integral in the second-order boundary-value problem is crucial and difficult work. In the present
research, we adopted a simple Rankine source as the Green function with rectangular/oval type
free surface which is shown in Fig. 3.3. It makes the free-surface integration readily be evaluated.
However, the region of integration is definite, thus sufficient extent of the free surface should be

given.

In all cases in zero forward speed problem, length of damping zone size is fixed on half of total
free-surface length on oval type free-surface. Figure 4.1 is the second-order hydrodynamic force
at different free-surface domain size. This figure shows that the result is different depending on
computational domain size. It seems that enough length of free-surface should be adopted. During
this study, over 2.0 wave lambda of free-surface length is used for simulation in case oval type of

grid is chosen.

Fig. 4.1 Sensitivity of second-order hydrodynamic force to free-surface length for hemisphere
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Fig. 4.2 Top view of computation region and rectangular panels on free surface
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Fig. 4.3 Second-order hydrodynamic force at different free-surface length (wave frequency: 5.5 rad/s,
atFn=0.2)

In the forward speed problem, we checked both longitudinal and lateral lengths of the free
surface from the ship model. Figure 4.3 is the second-order hydrodynamic force when different
free-surface lengths are used. The left figure shows the influence of the longitudinal free-surface
length (a) defined in Fig. 4.2, and likewise the right figure shows the influence of the lateral free-
surface length (b). The result shows that the second-order velocity-potential force (Fp) has
continuously small oscillation depending on the longitudinal free-surface length and the quadratic-
product force (Fy) composed of linear solutions does not change. On the other hand, the lateral
free-surface length does not give any effect on both quadratic-product force and second-order
velocity-potential force. From these confirmations, we adopted 1.5 for the values of (a) and (b) as

the free-surface length. Here, a numerical damping beach for satisfying the radiation condition is
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installed for 0.5 and 1.0 wave length (1) in the lateral and longitudinal directions, respectively,

from the edge of free-surface region.

4.2.2 Time step size

Large time step makes numerical result be unstable and it may not give convergent result. Fig.
4.4 shows second-order hydrodynamic force at different time step size. Compared to the free-
surface length, it does not show large sensitivity. However, there is little difference between results.
In this study, At/T.= 200 is used for all cases.
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Fig. 4.4 Sensitivity of second order hydrodynamic force to time step for hemisphere

4.2.3 Mesh size

Table 4.1 A list of number of body and free-surface panel

Model No. of Body panel No. of Free-surface panel
Test Meshl 75 270
Test Mesh2 120 400
Test Mesh3 300 900
Hemisphere 300 900
Vertical circular cylinder 400~1000 1000~1200

It is well known that the second-order forces are more sensitive to the number of panels on
both body and free-surface boundaries. The sensitivity test at a short wave region is conducted
with different panel size. In the higher-order boundary element method (HOBEM), body and free-
surface boundaries share several nodes on the intersection waterline. Thus, the increase in the
number of body-surface panels also increases the number of free-surface panels. Table 1 shows a

list of number of mesh used in convergence study at zero speed problem and Fig. 4.5 is the result
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of second-order hydrodynamic force at different mesh size. It shows fast convergence for panel
mesh and Mesh3 gives enough convergent result for second-order hydrodynamic force. In this
study, 300 body panels and 900 free-surface panels are used for hemisphere in half domain and

more many number of mesh is used for vertical circular cylinder to remove an error by mesh
problem.
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Fig. 4.6 Second-order hydrodynamic force at different number of panels (wave frequency: 5.5 rad/s,
atFn=0.2)

In the forward speed problem, effect of panel mesh is more sensitive than zero forward speed
problem. The result of second-order hydrodynamic force at different number of panels is denoted
on figure 4.6. The left is the result of quadratic-product force of linear quantities (Fq). It shows
that 40 panels for the longitudinal direction gives almost converged result. However, in the right
figure for the second-order velocity-potential force (Fy), the result is not converged even with 40
panels in the longitudinal direction. Since the second-order velocity potential is influenced by the

free-surface and body-surface panels and both boundaries include second-derivatives of the
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velocity potential which have crucial effect on accuracy, the force is much more sensitive to the
number of panels on the boundaries. Although we could not obtain fully converged result on the
second-order velocity-potential force, we used a large number of panels with where the quadratic-

product force shows a converged result.

4.3 Numerical study without forward speed (rigid model)

As a first validation process, linear & second-order hydrodynamic forces for the rigid body
motion are confirmed by comparing with classical results. In zero forward speed problem, wave-
body interaction at different conditions such as fixed & forced oscillating & freely floating are

simulated and the numerical result is discussed.

4.3.1 Fixed body

1) Hemisphere
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Fig. 4.7 The amplitude of linear surge & heave exciting forces for fixed hemisphere (H = 3a)

A fixed hemisphere is studied for sum-frequency hydrodynamic force in the second-order. The
water depth is H=3a (a: Radius of hemisphere) and before comparing with sum-frequency
hydrodynamic forces, linear quantity is first checked. Figure 4.7 is surge and heave linear wave
exciting forces for fixed hemisphere. It shows a good agreement with result of another frequency-

domain in-house code.

The second-order diffraction problem on a fixed hemisphere is studied by several researchers.
In this study, the result of Kim and Yue (1990), Shao and Faltinsen (2010) are compared with the

present result. As mentioned in chapter 2, second-order hydrodynamic force could be divided two
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components at diffraction problem. First component is caused by second order velocity potential

(Fp). Another component is quadratic product of linear quantities (Fq).
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Fig. 4.8 The amplitude of sum-frequency surge & heave forces for fixed hemisphere (H = 3a)

Figure 4.8 is non-dimensional amplitude of surge and heave sum-frequency hydrodynamic
force on a fixed hemisphere. It shows second-order velocity potential component is substantial in
sum-frequency hydrodynamic force. Especially short wave length region, contribution of second
order velocity potential becomes larger. Both second-order velocity potential and quadratic

product of linear quantities forces show a good agreement with other papers.

2) Vertical cylinder

Vertical cylinder is frequently used for the validation study of developed code in hydrodynamic
field because there are many kinds of solution in both linear and non-linear variables. The eigen-
function expansion method is particularly often used for different situations such as bottom
mounted or surface piercing column, multi-column, and so forth. Present numerical result is

compared with that of bottom-mounted and truncated vertical cylinders.

First, fixed truncated vertical cylinder which has same draft (d) with radius (a) is considered
and water depth (H) is chosen to 2 radius (a). The linear wave exciting and drift force results are
compared with that of Kinoshita et al. (1997), Shao (2010). In Kinoshita et al. (1997), the result
is obtained by numerical method based on BEM. Figure 4.9 is the amplitude of non-dimensional

surge and heave linear wave exciting forces and shows a good agreement with other results. In
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sequence, Figure 4.10 is the amplitude of non-dimensional surge drift force. It also shows a good

agreement overall frequencies.
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Fig. 4.9 The amplitude of linear surge & heave wave forces for vertical circular cylinder (H=2a, d=a)
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Fig. 4.10 The amplitude of surge drift force for vertical circular cylinder (H = 2a,d = a)

The double-frequency force in the second-order quantities is also confirmed on a bottom-
mounted vertical cylinder. The result is compared with that of Kim & Yue (1990), Choi (2013).
In Kim and Yue (1990), the result is obtained by ring source Green function semi-analytically. In
Choi (2013), the velocity potential is obtained by using eigen-function expansion and the
integration of surface is conducted by semi-analytic way. The left and right in Figure 4.11 show
the sum-frequency force of draft(d)/radius(a) are 4 and 10 bottom-mounted vertical cylinders,

respectively. All kinds of second-order forces show a good agreement with other results.
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Fig. 4.11 Second-order hydrodynamic forces on rigid vertical cylinder (d/a is 4 and 10)

From the numerical study of diffraction problem, we could confirm that the second-order
hydrodynamic force on a fixed body could be calculated with good accuracy by using time-domain
HOBEM.

4.3.2 Forced oscillating body

1) Hemisphere

As already shown in diffraction problem, a first-order quantity is confirmed before obtaining a
second-order quantity. Added mass and damping coefficients are obtained by using forced
oscillating body. Using orthogonal property of trigonometric function, time-domain results are
transformed to hydrodynamic coefficients (e.g. Zhou et al., 2013). This procedure is briefly as

follows:

The total force acting on the body surface can be written in this form (Koo and Kim, 2006)
Fi(t);_aijgj _l)ljéj _Cijgj (4-1)

After multiplying hydrodynamic force with either acceleration or velocity, the integration over

the one period is conducted. It is as follows:

Js(aijé;:.jz+Cij§j§j)dt:__r|:i(t)§jdt (4-2)
[[by& 2t = -] F ()&t 43)
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In forced oscillating simulation, body has sinusoidal acceleration, velocity, motion such as

& =—Acosat, & =Awsinat, & = Ao’ cosat (4.4)
Substituting Eq. (4.4) to Eq. (4.2) and (4.3), the added mass and radiation damping coefficient

could be determined by orthogonal property of trigonometric function. It is as follows:

1% c 17 :
a; = [F®cosatdt+ =%, by =——— [ F(t)sin otdt (4.5)
0 @ A %

1) 7Z'Aja) 1j i

As a numerical model, a hemisphere is also chosen for added mass and radiation damping
coefficients. The results are compared with analytic solution (Hulme, 1982). Fig. 4.12 and Fig.
4.13 denote surge, heave added mass and radiation damping coefficients. They show a good

agreement with analytic solution.
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Fig. 4.13 Non-dimensional heave added mass & radiation damping coefficients of a hemisphere
2) Truncated vertical cylinder

Truncated vertical circular cylinder is also chosen as a second-order radiation problem. The
water depth (H) is 1.5 radius (a) and draft (d) is set on 0.5 radius (a). Teng et al. (2002), Duan et
al. (2015b) used same model for comparison of second-order hydrodynamic force under forced
oscillating body. Second-order hydrodynamic force of radiation problem is also decomposed into
two components; i.e. F, and Fq as same with diffraction problem. Fig. 4.14 and Fig. 4.15 show
double-frequency vertical hydrodynamic forces due to harmonic oscillating heave and surge
motions. Each component of second order hydrodynamic forces is compared with that of other

published papers. Overall results show favourable agreement in both surge and heaving body.

* Duan etal., 2015 +* Duan etal., 2015

10 8
Teng etal., 2002 I Teng etal., 2002
Y= @] Present | S @] Present

€

[®)
| ( /
(@]
4k

) G/A 2? @/)

i L L L n L L L L 0 L L L L L L L L L L L L L L
%,-1 0.8 1.2 1.6 2 0.4 0.8 1.2 1.6 2
ka ka

FlpgAta®
e
Ff)." pgA’a’

Fig. 4.14 Sum-frequency heave hydrodynamic force due to second order velocity potential (Fp) &
quadratic product of linear quantities (Fq) on a forced oscillating heaving cylinder
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Fig. 4.15 Sum-frequency heave hydrodynamic force due to second order velocity potential (Fp) &

quadratic product of linear quantities (Fq) on a forced oscillating surging cylinder

However, the problem including second derivative of velocity potential have been one of
difficult numerical problems. It is well known that linear seakeeping analysis of a ship with
forward speed has second derivative of double body velocity potential so called m;-term and
second-order radiation problem of stationary structure also has second derivative of unsteady
velocity potential on body boundary condition. Accuracy problems of second derivative quantities
have been brought by several researchers (e.g. Zhao and Faltinsen, 1989; Nakos, 1990; Shao and
Faltinsen, 2010). Thus, many different schemes have been developed to avoid calculation of
second derivative itself. In the forward speed problem, Tuck’s theorem is generally used to avoid
second derivative of double body velocity potential (Ogilvie and Tuck, 1969). In second-order
radiation force, similar mathematical formulation is also suggested. For example, Teng et al.
(2002), Lee (1995) obtained second-order unsteady velocity potential without second derivative
of velocity potential on body surface by taking Stokes theorem on boundary integral equation.
Shao and Faltinsen (2010) also used body-fixed coordinate method not to perform the Taylor
expansion on body boundary condition. They also insisted that if the structure has sharp corners
with interior angle less than 180 degree, the second derivative of velocity potential in Bernoulli

equation fails to converge due to singularity of the flow.

Although the second derivative quantities on body boundary could make a little error, the effect
seems not so large at least in the second-order force of the forced oscillating body. Other
hydrodynamic forces could also be obtained with good accuracy in time-domain Rankin panel

method.

4.3.3 Freely-floating body

As a last section, the motion and force of a freely-floating body has been considered. In the
direct time-domain simulation, a freely-floating body continues to drift for wave-direction in
horizontal motions because there is no restoring force for these motions. In this study, soft spring
is installed at surge, sway, yaw motions to prevent continuous drift of a body. The steady state
result of the horizontal motion is obtained after several period of the simulation by using Fourier
transform. It is well known that duration period of Ramp function at initial time make different
drift of horizontal motion. Fig. 4.16 shows the comparison of the horizontal motion with different

duration period of Ramp function without soft spring. It shows long duration time of Ramp
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function could reduce the drift of a freely-floating body. Fig. 4.17 shows the comparison of the
horizontal motion with different period of soft spring. Here, low period means strong restoring
force which could be confirmed at the following definition.

_(m+a) (4.6)
T rlIT)

where Ts : Period of soft spring

Since large strength of soft spring affects the result of horizontal motion, it should be careful to

choose for strength of it.
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Fig. 4.16 Comparison of horizontal motion with different duration period of Ramp function
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Fig. 4.17 Comparison of horizontal motion with different soft spring period

As a validation model, a freely-floating hemisphere is adopted again. The water depth is set on
1 wave lambda (4 ) and numerical results are compared with that of Pinkster (1980) and the
experiment result of Kudou (1977). In this simulation, time derivative of velocity potential in
hydrodynamic force is calculated by two methods. First method is using finite difference scheme
(backward) for the velocity potential. Second method is obtaining so called acceleration potential
by using BEM solver for the time derivative of velocity potential simultaneously. Boundary-value
problem for time derivative of velocity potential is solved by using Eq. (4.7) and body boundary

condition is re-obtained on acceleration potential.
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a(P)(P)+ [ 422 85(Q) = [[6 2 d5(Q) (4.7)

VP -A=7-R (4.8)

In both methods, iteration loop for hydrodynamic force & acceleration is not used. Figure 4.18 is
surge, heave RAO on a freely-floating hemisphere. It shows that second method is more similar
with result of Pinkster (1980). Because of improved linear quantities, the mean drift force also

shows more similar result with experiment data as shown in Fig 4.19.
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Fig. 4.19 Surge mean drift of freely floating hemisphere (H= 1)

Next, double-frequency hydrodynamic force is also calculated at the same condition with
diffraction problem. The result is compared with semi-analytic solution of Kim and Yue (1990)

and another in-house frequency-domain code which is based on wave Green function HOBEM.
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Figure 4.20 shows the second-order force from quadratic product of linear quantities (Fq) on a
freely-floating hemisphere. Left and right figures mean surge and heave direction forces,
respectively. Although there is a little difference near the resonance, overall results agree well

with other semi-analytic and frequency-domain results.
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Fig. 4.20 Quadratic product of linear quantities (Fg) on freely-floating hemisphere. Left figure means

surge direction force and right figure is heave direction force (H=3a)

The contribution of second-order velocity potential (F,) in the second-order hydrodynamic
force is also compared with frequency-domain in-house code whose detail will be explained at
next chapter. Fig. 4.21 shows that the second-order velocity potential force at each surge and heave
direction. In the left figure, the surge force shows a good agreement each other. On the other hands,

heave direction force shows remarkable difference near resonance region.
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Fig. 4.21 Non-dimensional total second order velocity potential force (Fp) on freely-floating

hemisphere. Left figure means surge direction force and right figure is heave direction force (H=3a).
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There might be possible two reasons of the difference except inaccuracy of linear quantities.
The first is numerical inaccuracy in the second derivatives of velocity potential which needed in
the second-order body boundary condition as mentioned previous section. The second-derivative
term is coupled with body motion on second-order boundary condition. In the light of the fact that
difference dramatically increases as body motion increases, second derivative quantities on body
surface seem sensitive. Another reason may be due to truncated free-surface region adopted in the
Rankine panel method. This truncated free-surface problem was not prominent in the second-

order diffraction/radiation problems of fixed or forced oscillating body simulations.

4.3.4 Summary

From the study of a rigid body at zero forward speed, it seems that second-order velocity
potential could be obtained with good accuracy in diffraction problem. When the body has motion,
there exists second derivative of velocity potential and it causes an error in second-order
hydrodynamic force. Especially in the freely-floating condition, an error could appear near
resonance region due to inaccuracy of second-derivative on body boundary condition and strong
coupling of non-homogeneous components on free-surface boundary. It is also confirmed that the
acceleration potential could improve the result of free-body simulation and the calculation of

second-order velocity potential force.

4.4 Numerical study with forward speed (rigid model)

The forward speed problem with rigid body assumption is considered in this section. Using
previous researches conducted by experiment or another numerical simulation, the validation

study of developed code is implemented on a rigid ship model.
4.4.1 Simulated ship model

The ship model considered in forward speed problem is slender & blunt modified Wigley
models (Kashiwagi, 2013) and Wigleyl model (Journee, 1992) whose hull shape has relatively

simple as shown in Figure 4.22. They can also be expressed in a mathematical form with the

following equation:
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Fig. 4.22 Slender and blunt modified models

1) Slender modified Wigley & Wigleyl ship model

4

n= (1— gz)(l—l//z)(1+ 0.21,1/2 ) +g2 (1—g8)(1—l//2) (4.9)

2) Blunt modified Wigley ship model
n= (1—g2)(1—1//2)(1+ 0.6y° +0.21//4)+g2 (1—g8)(1—1//2 )4 (4.10)

where w=2x/L, n=2y/B,and¢g=2z/d

Principal dimensions of the ship model are shown in Table 4.2. The Froude number (F:) is

fixed to 0.2 in all simulations and 0.3 is additionally considered on the Wigleyl model.

Considering numerical accuracy in the body boundary condition which includes several
higher-order derivatives of double body velocity potential, we adopted the so-called Neumann-
Kelvin assumption in all simulations. Hence, the double body velocity potential and its
derivatives are not included in this study.
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Table 4.2 Principal dimensions of ship models

Principal dimension Blurc/t\lgg?gﬁed SlenwiéTgSified Wigleyl
Length (L) 2.5m 20 m 3.0 m
Breadth (B) 05 m 0.3 m 0.3 m

Draft (d) 0.175 m 0.125 m 0.1875 m
Center of gravity (OG) -0.03 m -0.0404 m -0.0175 m
Cs 0.635 0.56 0.563

4.4.2 Linear diffraction & radiation problem of ship models

Before obtaining motion response, diffraction/radiation problems are considered on
slender/blunt modified Wigley models. Figures 4.23 and 4.24 are hydrodynamic coefficients and
wave exciting forces of blunt modified Wigley ship and Figure 4.25 and 4.26 are same variables
of slender modified Wigley ship. These results are compared with that of experiment and
numerical result of EUT (He and Kashiwagi, 2014). Figures show that time-domain HOBEM

results give a good agreement with other results.
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Fig. 4.23 Heave added mass & damping coefficient of blunt modified Wigley ship (Fn =0.2)
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4.4.3 Freely-floating ship models

Using the equation of motion, motion response of Wigley ship models is calculated. After
obtained acceleration in the equation of motion, velocity & motion of a ship model are calculated
by using Runge-Kutta-Nystrom method at each time step. Artificial spring is installed to avoid
continuous drift phenomenon. Long duration of Ramp function period at initial time steps is also

used to reduce drifting for horizontal direction.

First, the motion responses of both slender & blunt modified Wigley models are calculated and
compared with other result of the experiment and different numerical results such as EUT, NSM,
3-D RPM as shown in Kashiwagi (2013).

Fig. 4.27 is the surge, heave, pitch motion responses of blunt modified Wigley model. It seems
that HOBEM gives fair agreement with other results but vertical motions are relatively

underestimated at low frequency regions.

Figure 4.28 is same kinds of motion response in slender modified Wigley model. In heave
motion, HOBEM result is more similar with that of A=0.025m experiment than A=0.01m case. In
the heave & pitch motions, present result has better agreement with that of 3-D RPM than blunt
model’s response case. Referred RPM code adopted double body flow assumption, thus it seems
that slender modified Wigley ship has smaller effect of steady disturbed potential than blunt
modified Wigley ship.

o Bland moified W igles Blvnt modified Wigley Bhast modified Wigley
E 2 -

Fig. 4.27 Motion response of blunt modified Wigley model [Surge,Heave,Pitch] (Fn = 0.2, B = 180°)
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Fig. 4.28 Motion responses of slender modified Wigley model [Surge,Heave,Pitch] (Fn = 0.2, p = 180°)

At the last, Wigleyl model is used as a validation. This model has the most slender hull shape
among numerical models in this study. Vertical motions are compared with that of experiment
(Journee, 1992) and other 3-D RPM codes in time-domain (Shao and Faltinsen, 2012; Joncquez,

2009

Figure 4.29 and 4.30 show motion responses at different Froude number 0.2 and 0.3,
respectively in head waves. We could confirm that the vertical motions increase as forward speed
increases. It also seems that NK assumption slightly overestimates the motion responses near

).
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Fig. 4.29 Motion response of Wigleyl model [Heave, Pitch] (Fn =0.2, = 180°)
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Using linear variables, quadratic product of linear quantities could be calculated and the steady
force can be obtained by measuring the average value of it. As a validation of quadratic forces,
the steady force is compared with published data. In particular, the surge steady force is called
wave induced added resistance which has been particularly researched in the seakeeping problem

by many researchers.

From the several decades, numerous methods to predict exact added resistance of a ship have
been suggested. Since the steady force could be calculated by not only pressure integration but
also momentum conservation theorem which is so called far-field method, several formulations
to calculate steady force in waves have been developed. For instance, Maruo (1960) derived the
formulation of steady force by using far-field method based on Kochin function. Gerritsma and
Beukelman (1972) suggested radiated wave energy method based on momentum conservation
theorem. Using Parseval’s theorem, Kashiwagi (1995) also derived similar formulation in the
frame of far-field method and calculated wave induced steady force based on enhanced unified
theory (EUT). Using wave elevations near the ship hull, the added resistance is calculated by
Okushu (1980) in the cylindrical coordinate system. Kashiwagi (2013) suggested general
formulation of unsteady wave pattern analysis in Cartesian coordinate and measured wave pattern

in experiments.

In Kashiwagi (2013), he compared several methods and discussed some components of added
resistance in waves. His results are compared with present time-domain simulation based on
pressure integration method in generalized modes. As same with zero forward speed problem, the

translational mode is substituted to modal vector in generalized mode’s formulation.
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Figure 4.31 shows wave induced added resistance of two modified Wigley models. Left figure
is the result of slender modified Wigley model and the right figure is that of blunt modified Wigley
model. In slender model, it shows favourable agreement with other results though it is
underestimated than others. However, blunt model shows rather poor agreement with other results.

It seems that the underestimated vertical motion might be one of main reason and steady flow

effect is larger than slender models as same with the linear motion response case.
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Fig. 4.31 Added resistance of slender & blunt modified Wigley model (Fn =0.2, = 180°)

In the last, the steady force for rigid body motions of Wigleyl ship model is compared with
experiment and another time-domain RPM results (Joncquez, 2009) in different forward speed.
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Fig. 4.32 Steady force of Wigleyl model [Surge, Heave, Pitch] (Fn = 0.2, B = 180°)
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Fig. 4.33 Steady force of Wigleyl model [Surge, Heave, Pitch] (Fn = 0.3, B = 180°)

Figure 4.32 and 4.33 show the steady force at Froude number 0.2 and 0.3 in head waves.
Present simulations show a little smaller value than other results especially near resonance region.
One of reason might be come from the inaccuracy in calculation for the second derivative of
unsteady velocity potential on body surface. Thus, we denoted the result without second-
derivative of unsteady velocity potential together in figures. The existence of second derivative of
unsteady velocity potential reduces the value of surge direction force and other heave and pitch
direction forces increase especially near resonance region in this model. If we considers the fact
that these ship models are relatively slender and we are using NK assumption, we could figure out
that the difficulty of exact calculation of second-order force with forward speed as discussed by

previous researchers (e.g. Shao and Faltinsen, 2012; Lee et al., 2017).

4.4.4 Summary

In NK assumption, several simple ship models are used in the validation process. The motion
responses show a good agreement except rather blunt ship model and overestimates peak values
near resonance frequency in slender models. The mean drift force is also confirmed by calculating
guadratic product of linear quantities. The results show favourable agreement in slender models
and rather poor agreement is confirmed in blunt models. It is confirmed that second derivative of
velocity potential is more sensitive in forward speed problem though the ship hull is simple and
slender. More detail study should be given for estimation of second-order hydrodynamic force

with forward speed by using various methods.
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4.5 Numerical study without forward speed (elastic model)

From this section, we consider the responses of an elastic body. Before solving forward speed
problem, the numerical study is conducted on zero forward speed problem. Since there are many
other researches on stationary body, the developed codes are compared with these published
results. After structural model what used in this study is introduced, numerical results on fixed

and floating bodies are calculated and discussed.

4.5.1 Simulated structural model

The floating body is treated as a simple beam to calculate the hydroelastic response. The Euler-
Bernoulli & Timoshenko beam equations are used for the structure model. Since the head wave
condition is considered, only the vertical bending mode is included as the elastic responses. Hence,

the modal vector can be defined as follows:

hljz_a_XJ(Z_ZN)’ hl =0, h)=w, (4.11)

1) Euler-Bernoulli beam theory

The dynamic Euler-Bernoulli beam equation could be written in this form.

2 4
Az gdn_; (4.12)

m
° dt? dx*

Using the method of weighted residuals, the beam equation could be transformed to following
equation.

igj(t) Lj'zwi(X) msgjsz(XMElgj% dX = szwi(X)f(X,t)dX (4.13)

—-L/2 dt —-L/2

Using defined modal mass and stiffness matrices, Eq. (4.13) could be summarized in this form.

dIME M+ KO ]=FR) (4.14)
j=1
From the equation, the mode shape of the beam model could be obtained by solving the eigen-

value problem. The homogeneous solution of Euler-Bernoulli beam can be readily obtained by
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assuming the free-free end condition and the time harmonic oscillation. The final symmetric and

anti-symmetric mode shapes can be expressed as follows:

_(q)zl(COSszq+coshKZJqJ (.15

W
2 2| cosk,,  coshx,,

W (q)zl sinzc2j+lq+sinhz<2j+1q (4.16)
2 2\ sink,,,, sinhx,,, '

where g is the non-dimensional coordinates (2X/L) , and j=0 and 1 denote the rigid modes;

namely heave and pitch motions, respectively. The factor «'; (which is the j-th eigenvalue related
to the elastic natural frequency) can be calculated numerically, satisfying the following eigen-
value equation (Newman, 1994).

(-1’ tank; +tanhx; =0 (4.17)

The modal mass and stiffness matrices can be obtained from the sectional mass (ms). In this
study, the sectional mass and flexural rigidity are assumed constant along the ship length (L). In

this case, the modal mass and stiffness matrices are simply expressed in the following form.

L/2 m.L

My =m, [ w(X)w,(X)dX = g G for i g7
-L12 . (4.18)
My =My =miL, Mg :EmSLZ
L2 ~2 2
o*w (X) 0°w;(X) El
Kij:Elj oX? a>l(2 dx:4FK?_55ij 19

-L/2
2) Timoshenko beam theory

Considering shear stress in section area, the rotation in-plane at each section could be
considered. Timoshenko beam equation is derived by taking into account the shear effect for

Euler-Bernoulli beam.
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Euler-Bernoulli

Fig. 4.34 Comparison of Euler-Bernoulli beam and Timoshenko beam

Using force & moment equilibrium and constitute equation of Timoshenko beam, free-free end

dynamic Timoshenko beam equation could be written in this form (Jensen, 2001).

2
9 El(l+ugja—w +yGA(1+u§j(@_V,J=msrzﬁ_f (4.20)
X at ) ax at )\ ox ot
0 o \( ow o*w
LA 1oL | E oy | -m S - F 421
ax{” ( Uatj[ax "'ﬂ ot (4.21)

where visco-elastic stress-strain relationship is assumed, p is shear coefficient, v is structural

damping, r is radius of gyration.

Using modal superposition method, both vertical & angular displacements in Timoshenko beam

model could be expressed by summation of modal function and amplitude. It is as follows:

w(X.t) =Z§i (e’ (X) (4.22)
WO, = 38 OO0 @29

To obtain modal function at each mode, orthogonality and normalization of modal functions are
used for eigenvalue analysis. The following orthogonal relation is given as follows:
L/2

[mr?a'a’ +mhh) JdX =5 (4.24)

-L/2

L2 ) i ) i ) ) i i
[ {a 199 ), oAl Ao || oAl e 9% || lgx o (4.25)
ox oX X X

-L/2
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Substituting Eq. (4.22) and (4.23) to Eq. (4.20) and (4.21) and using orthogonal relation Eq. (4.24)
and (4.25), the equation of motion could be expressed as follows (Jensen, 2001):
aZé:j aé L/2

= +Ua)ijJ+a)fj§j= j hJ (X)f (X,t)dX (4.26)
-L/2

If each cross-sectional variable has different value, the modal function is generally calculated by

using FEM. In this study, Stodola method is used to obtain the modal function (Jensen, 2001).

4.5.2 Bottom-mounted elastic vertical cylinder

Table 4.3 Principal dimensions of bottom-mounted elastic cylinder

Principal dimensions Original model Present model
Radius of cylinder (a) 10m 1m
Draft of cylinder (d) 200 m 20 m
Water depth (H) 200 m 20 m
Distributed mass (md) 0.322 x 108 kg 0.322 x 10°kg
Concentrated mass (mo) 0.643 x 108 kg 0.643 x 10° kg
Flexural rigidity (EI) 0.211 x 10*kg m%s? | 0.211 x 10%kg m3/s?

To confirm the excitation force for the elastic response, we performed several computations for
an elastic vertical cylinder with superstructure. The model used to calculate the linear and second-
order horizontal deflections in (Newman, 1994; Choi, 2013) is selected in the present simulation.
The principal dimensions of this model are 10 m in radius (a), 200 m in draft (d) and flexural
rigidity is El/mo H3= 0.41 s2. Summation of the mass distribution (md) is half of submerged mass

and a concentrated mass (mo) is added on the top of the cylinder.

In our simulation, the radius (a) of model is non-dimensionalized, thus it has 1.0 as described
on the Table 4.3 This elastic cylinder has free-fixed condition at each edge and its mode shape is
demonstrated in the Figure 4.35. Described mode shape is obtained by using Jacobian polynomial
function which is admissible since it satisfies geometric boundary condition. The equation is

expressed as follows:
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h (Z) =P, (), q=r+§ (4.27)

(4+2n—m)! nm

m!(n—m)!(4+n—m)! (4.28)

P (@)= ()"

P =1
P,=6q-5

P, =28q° —42q +15

P, =120q9° - 2529° +168q — 35

where

Fig. 4.35 The mode shape of a bottom-mounted elastic cylinder

Both of the linear and second-order forces and responses are calculated for the elastic cylinder.
In addition, linear quantities and their quadratic-product force are obtained. These results are
compared with semi-analytical results obtained by the eigen function expansion method (Choi,
2013). In the zero speed problem, the quadratic product of linear quantities of each mode could

be decomposed into four components. They are as follows:

E@ =—pg [ﬂ {;(1) (l) ndI Q)]
_pJ'J'EWu) -V $PRdS (m

5 1 (4.29)
_pﬂ(fu) ,v)%()ﬁds (1)
offfoe s s
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Figure 4.36 shows the result of each component in the quadratic product of linear quantities
for the first mode and we can confirm good agreement with semi-analytical and present numerical
results at each component. Summation of three components in Eq. (4.29) and the second-order
velocity-potential force are also shown in Fig. 4.37. The left figure is the quadratic-product force
and the right figure is the second-order velocity-potential force. The summation of each
component of quadratic-product force has a good agreement with semi-analytic solution. However,
the second-order velocity-potential force by the time-domain simulation shows that the difference
increases as it approaches near linear resonance wave frequency where a noticeable

underestimated force is obtained compared to semi-analytical solution.

25

[
T

i
T

Present

- Semi-analytic

in
T

R FlpgA’a)
\
1

F(Z'I(p=gAza)
T

FPl(pgA’a)

|

N
S
: A

0.2 0.4 0.6

va

Fig. 4.36 Component of quadratic product force of the first mode (1, I, 111 from the left)

We deduce possible reasons why the results are different from semi-analytical solution except
inaccuracy of linear quantities. It is almost same with the previous conclusion of rigid body
dynamics for freely-floating body. The first is numerical inaccuracy in the second derivatives
needed in the second-order body boundary condition. Another reason may be due to truncated

free-surface region adopted in the Rankine panel method.
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Fig. 4.37 The second-order forces due to quadratic product of linear quantities (Fq, left figure) and

second-order velocity potential (Fp, right figure) of the first mode
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Fig. 4.38 Comparison of second-order added mass (A1) and damping coefficient (Bi1) of the first

mode
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Fig. 4.39 Comparison of linear and second-order hydroelastic responses of the first mode

To obtain the second-order response, second-order hydrodynamic coefficients are calculated.
Using the forced oscillating simulation with second-order motion, the second-order added mass
and damping coefficients are obtained. Fig. 4.38 shows an example of the added mass and
damping coefficients of the first mode, which are in good agreement with semi-analytical
solutions. Using the motion equation, linear and second-order hydroelastic responses are obtained.
The left and right figures in Fig. 4.39 are the linear and second-order hydroelastic responses of the
first mode, respectively. The linear results show a good agreement with each other. The second-
order response shows a little different value only near the resonance due to difference in the

second-order external forces. The second-order resonance is confirmed near half of the natural

-61-



CAHPTERA4 : Numerical study by time-domain analysis in monochromatic waves

frequency but the response amplitude operator (RAO) is relatively very small in this mode overall

wave frequencies.

4.5.3 Elastic floating barge

No.12 No.11 No. 9 No.7 No.5 No.3 No.

Il
o

60cm 19cm

Sem
10cm
i Sem Scm

Fig. 4.40 Elastic barge model from side and plan view and shape of first floater
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Fig. 4.41 Plan view of Malenica (left) & Remy (right) model

Deformable stationary barge is used to confirm the numerical result on a floating elastic body.
Two experiments for same barge model have been performed by Malenica et al. (2003) and Remy
et al. (2006). In this dissertation, we call each model used in experiment Malenica and Remy
model, respectively. The shape of barge model is shown in Figure 4.40. The barge is composed
of 12 floaters which have 0.19 m length, 0.6 m breadth, 0.25 m depth and 0.12 m draft. Each floater
has 0.015 m gap to prevent collapse of bodies so the total length of model is 2.445 m. The first

floater has slightly modified.
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Structural part is a little difference due to connector of body. In Malenica model, floater is
connected by two steel plates which have 6 mm x 50 mm size. In Remy model, plates are changed
to a steel rod which has 10 mm x 10 mm size to consider both vertical and torsional bending
modes as shown in Figure 4.41. Principal dimension of structure part is described in Table 4.4. In
the experiment, each section’s front part has optical sensor, thus the displacement is measured on

top of a floater by these sensors.

Table 4.4 Principal dimension of each barge model

Principle dimension Malenica model Remy model
Mass (m) 171.77 kg
Center of Gravity (KG) 0.128 m 0.163 m
Radius of Gyration (Kyy/L) 0.294
Flexural rigidity (EI) 360.5 Nm? 175 Nm?

1) Malenica model

Among the hydroelastic response, vertical displacement of Malenica model in head wave is
calculated at 1,3,5,7,9,11 sections (See Fig. 4.40). The result is compared with experiment and
numerical result of Kim et al. (2009). They calculated the results by using direct coupling with

time domain Rankine panel and one-dimensional FEM.

The vertical RAOs of each point are denoted in the Figure 4.42. The result of different beam
model shows almost same value except resonance region and Timoshenko beam model gives a
little smaller resonance frequency. However, both results show a good agreement with experiment
and another numerical result. In this model, the resonance region of vibration was not measured
at experiment. Although the resonance frequency of two-node vibration has almost same
frequency around 8.5 rad/s, the result shows that there is some difference near resonance

frequency.
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Fig. 4.42 Comparison for vertical displacement of each point for Malenica model (head waves)

2) Remy model

In Remy model, the experiment is implemented several times in both regular and irregular
waves with different heading angles. The average of results at irregular waves are given after using
Fourier transformation. As conducted in Malenica model’s experiment, the motion is measured
on top of each floater but measured point 11 moves to section 12. In this study, head wave’s
vertical displacement is selected in the experiment result. Since there is also only averaged value
in Remy et al. (2006), we used experiment data denoted in Kim et al. (2009) and their numerical
is also compared together. The comparison of RAO result is shown in Figure 4.43. It seems that
present result shows favourable agreement with other results overall frequencies. However, the

numerical result is sensitive near resonance region.

In this experiment, resonance frequency of elastic response is included in measured frequency
of experiment. Euler beam model’s result shows that there are some differences with experiment
especially near 7.5rad/s due to difference of resonance for elastic response. In Timoshenko beam,
natural frequency is slightly moved to lower frequency region for both models thus it gives more
similar results near resonance region. However, numerical results are overestimated at resonance

frequency. The difference is larger at both tips of barge model than other sections. In both tips of

-64 -



CAHPTERA4 : Numerical study by time-domain analysis in monochromatic waves

barge, there exist several vertical modes simultaneously and two-node vertical mode is also
relatively large. Hence, the vertical displacement is more sensitive than other sections. The reason
of difference might be come from not exact hydrodynamic modelling and structural damping.

As a validation process of developed generalized modes, the second-order quantities are
additionally calculated. However, it is difficult to find the sum-frequency result in second-order
hydrodynamic force. The mean drift force is considered as a comparison variable and the

flexibility effect is confirmed.

If there is no elastic motion, it could be calculated by classical second-order formulation so
called Pinkster formulation on stationary structure (Pinkster, 1980). The generalized mode
formulation is first confirmed with Eq. (4.29) and another numerical result (Park et al., 2016) on
a rigid body assumption. Figure 4. 44 shows the surge mean drift force of barge model. Left figure
shows that generalized mode formulation has a perfect agreement with classical formulation as
proven in Appendix A. Right figure also shows that each component also gives a good agreement

with another numerical result.
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Fig. 4.43 Comparison for vertical displacement of each point for Remy model (head waves)
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Fig. 4.44 Mean drift force of floating rigid barge (head waves)

In Fig. 4.45, both Malenica model (E1=360.5Nm?) and Remy model (EI=175Nm?)’s surge mean
drift forces are compared with that of rigid body model. In low frequency region, the result shifts
to high frequency region when the flexural rigidity decreases due to reduction of relative vertical
wave elevation by hydroelastic response as shown in the right figure. In high frequency region,
the result increases drastically near resonance region due to excitation of elastic response. We
could also confirm component 4 is slightly increased than rigid body overall frequencies due to

hydroelastic response.
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Fig. 4.45 Mean drift force of an elastic barge at different flexural rigidity (Malenica and Remy model)

and comparison of component 1, 4 on Remy model
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4.5.4 Summary

In the zero forward speed problem, the hydroelastic response of an elastic body is calculated.
Linear hydroelastic response is obtained with good accuracy in both bottom-mounted cylinder and
very flexible floating barge models. However, the motion is little sensitive near resonance region
and overestimated than experiment’s results. To improve the response near resonance, more exact
modelling should be conducted. The mean drift force on elastic barge is also checked. The
generalized mode formulation shows a good agreement with classical equations. The effect of
elastic response on mean drift force is also well confirmed. However, the second-order velocity

potential force at free-motion does not show good agreement as same with rigid body motion case.

4.6 Numerical study with forward speed (elastic model)

As a final step, numerical study on hydrodynamic force with consideration of both elasticity
and forward speed is conducted. The flexibility and forward speed effect on linear & second-order

hydrodynamic force are discussed.

4.6.1 Linear hydrodynamic response of elastic Wigleyl model

Several linear hydrodynamic responses of an elastic Wigleyl ship model in head waves are
calculated by changing the flexural rigidity. Three structure models are artificially determined to

confirm the hydroelastic response.

2 15 5
ﬁfiﬁﬂﬁ‘“j |c[=::::im: E=200Nn’
Rem e R EES00Nm
Joncyues, (2009, NK) nE Joncquer (2009, NK) 4f
15 [} Jource (1992, EXP.) o Joumee (1992, EXF. )
fi ~0
N
U
I 9 3 3
Iy =
B 3 3 z
TF T Ew T
L g \ 2
%]
3 1k
L—=~L | e | et
o _ e s ST
" L ol B e ) I b = == 0 I 1 |
4 45 5 5.5 3 65 4 45 5 e 0 5 + 45 5 S5 6 65
Wave frequency (rad/s) Wave frequency (rad/s) Wave frequency (rad/s)

Fig. 4.46 Linear responses in heave, pitch, and two-node vertical bending mode of Wigley1 ship model

in head waves (Fn = 0.2)
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Figure 4.46 shows linear vertical responses in head waves at three different modes. Another
time-domain result using Neumann-Kelvin assumption (Joncquez, 2009) and experimental results
(Journee, 1992) are also included in this figure. The right figure for the 2-node vertical bending
mode shows that the elastic ship with EI=200 Nm? has resonance phenomenon at wave frequency
5.5. The other heave and pitch motions are influenced near the frequency of elastic resonance
especially in the heave motion, and also we can see slight decrease in amplitude as the flexural

rigidity decreases except at resonance region.

In the linear wave-body interaction, we can see the body boundary condition (Eq. (2.22)) has
adivergence term of displacement V - 7® which only exists in a deformable body. We confirmed
the effect of this term for the linear response in head waves. However, there is almost no change
in the linear response with/without this divergence term, and therefore it seems that this term has
no substantial effect on the hydrodynamic response. This divergence term exists as shown in Fig.
4.47 but the value is too small (about 0.1% of total value in linear body boundary) to affect the

response.

@ 1 1

Fig. 4.47 The divergence of displacement in the linear body boundary condition

4.6.2 The effect of flexibility on quadratic product forces for ship model

The effect of flexibility on the quadratic product of linear quantities is checked for a freely-
floating body. Double frequency wave forces are obtained by changing the flexural rigidity of the
ship model. Fig. 4.48 shows that all forces at three different motion modes decrease as the flexural
rigidity decreases except around the region of resonant wave frequency and the effect of flexibility

is relatively small on two-node vertical bending mode.
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Fig. 4.48 Double frequency wave loads by quadratic product of linear quantities (Fq) for heave, pitch,
and two-node vertical bending of Wigleyl ship model in head waves (Fn = 0.2)

In the force due to quadratic product of linear quantities, the steady force can be calculated by
taking the time average of the force. Fig. 4.49 shows the steady forces in surge, heave, and pitch
of the ship model. In this figure, computed results for the rigid model by another time-domain
simulation using the Neumann-Kelvin assumption (Joncquez, 2009) and the measured results only
at surge (Jouernee, 1992) direction are also included as same with rigid body case. The surge
steady force, which is called the added resistance in waves, shows the same tendency as double-
frequency forces discussed earlier with regard to the effect of flexibility. We can see also from
this figure that the heave steady force increases as the flexural rigidity decreases in a low

frequency region and the effect of flexibility for the pitch steady moment is relatively small.
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Fig. 4.49 The steady force for surge, heave, and pitch of Wigley1 ship in head waves (Fn = 0.2)

4.6.3 The effect of forward speed and flexural rigidity on second-order excitation
forces

Due to uncertainty in the calculation of second-order velocity potential on a freely-floating

body in the Rankine panel method, we fixed unsteady rigid body motions. The generalized second-
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order velocity-potential force for the two-node vertical bending mode is calculated with elastic

mode response.

In this condition, the forward speed effect is checked by changing the Froude number from
0.12 to 0.20. The left figure in Fig. 4.50 shows that the velocity-potential force increases as the
Froude number increases in the low-frequency region but the force changes little in short-
wavelength regions. In the same condition, the effect of flexural rigidity is also confirmed. The
right figure of Fig. 4.50 shows that the second-order velocity-potential force increases as the

flexural rigidity decreases due to the increase of elastic response.

The total second-order forces with different flexural rigidity are shown in Fig. 4.51. It seems
that the effect of flexibility on the quadratic-product force is larger than that on the second-order
velocity-potential force. As shown in the right figure, the quadratic-product force for a very
flexible ship becomes much larger than the velocity-potential force near the resonance region.
Considering the flexural rigidity of usual ships, however, it could be deduced that the second-
order velocity-potential force is predominant on the generalized non-linear excitation force for

hydroelastic response.

5 10
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Fn=0.20 RIGID
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Fig. 4.50 Second-order velocity-potential force for two-node vertical bending of Wigley1 ship model

in head waves with different forward speed and flexural rigidity (unsteady rigid body motion is fixed)
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Fig. 4.51 Double-frequency wave loads for two-node vertical bending of rigid (left), EI =500 (middle),
and EI = 200 (right) Wigleyl ship model in head waves (Fn = 0.16, unsteady rigid body motion is
fixed)

4.6.4 Summary

The linear and second-order hydrodynamic forces and responses with forward speed on an
elastic body are calculated. In the linear motion, the divergence term which only exists in elastic
body has no substantial effect and the vertical rigid motion is influenced by elastic bending mode.
In the second-order, several quantities are checked by changing forward speed, flexural rigidity
and so forth. The effect of flexural rigidity on second-order force is similar with zero forward
speed case. The importance of second-order velocity potential force is also confirmed. However,
it is calculated with some limitation of Rankine panel method on the free body motion in waves.
Thus, much further investigations should be conducted in detail.
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CHAPTER 5

Numerical study by frequency-domain analysis in bichromatic
waves

5.1 Introduction

In this chapter, wave-body interaction of an elastic body is extended for bichromatic waves
without forward speed. The steady state assumption is adopted additionally thus frequency-
domain analysis is performed by using wave Green function in HOBEM. Several mathematical
formulations to calculate second-order hydrodynamic force in bichromatic waves are explained
additionally in the chapter 5.2. Among second-order hydrodynamic forces, detail way to calculate
second-order velocity potential force is considered in chapter 5.3. In the last, several numerical

results in bichromatic waves are demonstrated.

5.2 Mathematical formulation in bichromatic waves

5.2.1 Boundary-value problem

As mentioned in chapter 2, boundary condition should be defined to solve boundary-value
problem. Provided that bottom and radiation conditions are automatically satisfied, other

instantaneous free-surface and body boundary conditions in stationary structure are written as

follows:
2
5?+gaﬂz_2vq>.vaﬁ_1vq>.v(w>-vq>) onS, (5.1)
ot oz ot 2
o . -
E:n-r on Sg (5.2)
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In bichromatic waves, the linear velocity potential is defined in this form.

oY (x,t)= Re{zz:gé}l)e"”“} (5.3)

j=1

N

1 1 1 1 1) (1

where 6 = AP (68 + )+ 604
i=1

The solution of linear velocity potential is very well known and can be obtained by using
numerous analytical, numerical ways. In the frame work of weakly non-linear assumption, each
variables such as velocity potential, motion, force, etc. is approximated on the value of mean
surface in perturbation series. Using Taylor expansion, the second-order boundary conditions are

approximated on each mean surface. They are expressed in this form.

1) Free-surface boundary condition

52(13(2) aq)(Z)
pre +9 = =Q onzZ=0 (5.4)

@ () 35 (1) 2.1 (1)
where Q. =-2vVo® Ly 10 (8 i oo j

= +
g a \ovez 9 az?

2) Body-surface boundary condition

=i-7?+Q, on 'S, (5.5)

where Qg =ii(7®)-f-[z® - VVvo® |+ {(v F0)i-[vz® ]T : ﬁ} {70 —vo}

In the frequency-domain analysis, the second-order velocity potential can be decomposed into

three parts as same with linear wave-body interaction problem. It is as follows:
2 2 2 2
¥ =0 + 0P +0f (5.6)

Among several components, scattering velocity potential contains all non-homogeneous terms on

both free- & body- surfaces. Thus its boundary condition is expressed in this form.

0P P
&25 +g 825 =Qr — Q¢ onZ=0 (5.7)
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o0Y  odP
T s 69

The non-homogeneous component makes second-order boundary-value problem be difficult to be
solved. Especially non-homogeneous component on the free-surface is regarded as an added
oscillating pressure and makes several property of second-order velocity potential (Newman,
1990).

5.2.2 Wave Green function

Before calculating second-order quantities, linear velocity potential should be calculated
exactly. In the frequency-domain, it is obtained by using HOBEM based on wave Green function.
As well known, the wave Green function has several kinds of form. After conducting the eigen-
function expansion on the water depth, the wave Green function could be expressed by series

expansion (John, 1950). It is as follows:

o 2 cosk (Z +H
o 1 k: cosk,(Z+H) n( )Ko(knR)
ﬂn=lv—H(kn2+v2) cosk,H cosk H
. (5.9)
i& 2 coshk(Z +H
+lZ k coshk(Z+H) ( )Ho(kR)
2n=1v+H(k2—v2) cosh kH coshkH

where ®° =—gk, tank h

Substituting the wave Green function to the integral equation, the velocity potential on the body

& free-surface boundaries could be obtained in this form.

2{[% ] - [ DE; ]} for radiation

. (5.10)
&, ()Z)—Z[DE”] for diffraction

0 S
[5/]=[15re(X X )os(@)
where uo , NP : body panel number

[0, ]= o5 (%.% )as(Q)

s q
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5.2.3 Generalized hydrodynamic force in bichromatic waves

Several second-order quantities in bichromatic waves are decomposed into sum- and difference

— frequency components. They are as follows:

2 _ Rezz { ¢(2)+ei(wj +o )‘} + ReZZ{qﬁ(z)ei(wj o )‘} (5.11)
Q-] = ReZZ{[Q; Qe+ ReZZ{[QE,QB‘]ei(’”" “H (5.12)
[P,7]= ReZZ{[pJ,, 7y e }+Rezz{[p,,, 7 " )} (5.13)

F,J(,Z’—ReZZ{F”(f o }+ReZZ{FU(,2) e } (5.14)

In the second-order wave-body interaction problem, difference frequency components are
important for several situations such as slowly varying force on the moored vessels or low-
frequency resonance phenomenon. In this study, however, we are focusing on springing problem

thus the sum-frequency components are only considered.

As described in chapter 2, each force is redefined by using inner product of modal vector and

pressure in the generalized modes. We can rewrite it in this form.
)+ _ + (R N
Fi J;I p; (R 'N),-. ds (5.15)

Approximating the pressure and inner product on mean body surface, the second-order
generalized force could also be obtained in bichromatic waves. Using the classical way, the

second-order hydrodynamic force is analysed by summation of three following forces.

R R R R 619

Frfe?.ff C, k(ﬁ) (5.17)

R =ip(oy+a) [Jo (7)o 519
Sy



CAHPTERS : Numerical study by frequency-domain analysis in bichromatic waves

& —_p_zg J' (C,-(l) —r‘”)((,‘l) (1))(ﬁi 'ﬁ)d|

Gy 3j 3 Sinﬁ
+pﬂ( VoD Ve +ia7® V¢f”+gy3”J(ﬁ .1i)ds
ep [ (i0,g? + ge) (V-0 + (V-0 )R~V 5 R ids
Sgo

(V-7Q ) =v7P -ht+vh' 7P

1 - ~(1) =~ ~(1) =~ ‘N
+pg!jz +(Vﬁi .f_(l)) 4(1) ey o7 . az_l(l) ,871- . az_l(l) ,571_ . 61,(1) nds
N ! 0z oz ox ox oy

(5.19)

Second-order boundary-value problem should be solved to obtain second-order restoring (Fres) &

velocity potential force (F,). On the other hands, another force (Fg) consists of linear quantities.

5.3 Evaluation of second-order velocity potential force

Instead of solving second-order boundary condition, the second-order velocity potential force
could be calculated by using only linear quantities. Molin (1979) suggested so called indirect
method by applying the Haskind relation to the second-order boundary condition. This method is

starting from the following integral equation.

”( oy 6¢ jds+”( oy _l//f%]d8=0 (5.20)

Here, bottom and far-field radiation conditions are satisfied and become zero. y; is so called

assistant velocity potential which satisfies following boundary conditions

—(a)jia)l)zl//:+gaalzi_=0 onz=0 (5.21)
oy

—L=n onsS 5.22

on ' % (.22

Substituting second-order boundary condition into Eq. (5.20), the second-order scattering velocity

potential has following relation
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sﬂ 4, %ds = —Sﬂ vi (%T)w;jds —% j (@ -Qt Jwids (5.23)

Thus, the sum-frequency scattering velocity potential force can be expressed in this form

P =-ip(o; )] [(ﬁi ) i a@%}ds
, (5.24)
~ip(o, + o )Sﬂ wQudS i p(“’ig;“") g (Q: ~Q: s

This formulation includes several non-homogeneous components and it should be evaluated by
both body and free-surface integration. It has been decomposed into several components (Kim

and Yue, 1990). They are as follows:

o =i [ (8- - P Jos 22 ff(: -z e 629
Se Se)

fos =—ipo” [[ (4 Qs )dS (5.26)
SBO
Each component shows the contribution from non-homogeneous terms of body & free-surface

boundaries. The detail evaluation of each integration is explained at following sections.

5.3.1 The incident wave part

The second-order incident wave velocity potential could be obtained by satisfying the free-
surface boundary and sea bottom (Z=-H) condition. As a result, it could be obtained analytically
(Bowers, 1980) by substituting the linear incident wave velocity potential on the following free-

surface boundary condition.

FoP  an®

e P Q, onZ=0 (5.27)

where Q. =-2VO{ -V

ool 1000 (0P oo
+— >—+0 5
g ot \et’ez ~ oz

After solving above equation with sea bottom condition, the second-order incident velocity

potential is derived in this form.
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AA coshk™(Z+H) - .
+(2) _ ik* (X cos B+Y sin 8)
2 ————49(%| 7“}—7555;;;——6 (5.28)
2 2 2
where 7 = 1 k?(1-tanh?k;H )+ 2k k, (1-tanhk;H tanhk,H),V+ _(o+a) |
20, v' —k* tanhk™H g
k" =k; +k
5.3.2 The body part
The body surface integration is expressed by using symmetric form. It is as follows:
i+ H + +\+ : + 1 + + +
foe =—ipw ”(‘/4 Qs )dS =-lpw ”E(QB“ +0s, )l//i ds (5.29)
Seo Sgy

The body part includes integration of body non-homogeneous component. In non-homogeneous
term, there is one second derivative of velocity potential. Using shape function of HOBEM, we
could evaluate second derivative value accurately provided the geometry is not so complex.
Another way is to use following Stokes theorem to avoid the calculation of second-derivative
itself.

[[{w(vF)+(Vy)xF|-Nds = [fyF -Tal (5.30)
SBO WL
where T is unit tangent vector

On an elastic body, the second derivative of velocity potential term is expressed in this form.

[[a-[prz?- VV#”]dS——Hz//I (V-20)(Ve® i d8+ﬂ{wl (Vo -vED)- }ds

‘H{V‘/’. Vﬂ(l)xrl)}'”“*ﬂﬂ% (Vg <20 Tal
WL

(5.31)

Thus, the body surface integral could be rewritten without second derivative. It is as follows:
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i i Gt 5oL ooy
Sep

Sk,

[y (v-70)(V4? -)ds —% sj B{ {y/; (Vo -vz?). ﬁ}ds (5.32)

+%.U{Vl//i+ x(V¢I(l) X fj(l) )} -fidS _%\g‘gwr (v¢l(1) ij(l)).fdl

This modified integral form of the body part could be conducted numerically without any
difficulty.

5.3.3 The free-surface part

The free-surface integration is the most difficult part to be evaluated and important in second-
order velocity potential force. As a first step in evaluation of free-surface integral, the radius (Rs)
which does not have the local-wave is determined (See Fig. 5.1). Next, each region is integrated

by different methods. In the near-field region (r <Ry), the integration is conducted numerically
and in the far-field region (r > R, ), the integration is approximated mathematically by using series

expansion and defined functions. The detail method is described as follows:

TY

ﬁ m Far field
S

X
\ {

Fig. 5.1 The division of free-surface integral region (Top view)

1) Integration of near-field free-surface

The free-surface integral of near-field is computed numerically. The free-surface integral is

expressed by using symmetric form.
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_%Sﬂ (Q;_Q;")"’rds___ﬂ(% +0r - qﬁ," qFI,,J)u/i (5.33)

b, ¢(1)

Using free-surface boundary condition i.e. o =V, ¢(1) free-surface integral could be written by

o a¢_(1) 0 Q(l) a¢_(1) aﬂ(l)
+dS = “)(Qi MQQ ¢ _i j 4+ *dS
” O, Vi S” {¢ d 2z A ax ox oy oy [V

2 (5.34)
Ve

where A, =i {& + oV, }
2 J

In this integral, there is also a second derivative term of velocity potential. Using 2-dimensional
Gauss theorem on free-surface as used in Kim (1991), second derivative term could be removed.

a ¢% + 1) ﬁ( ) 1) +
¢ ZydS=— | 4 L Y lyea
j“- azz WL‘[R X aY !

o4 og®  opP g™\ | o4 oy 04" oy
+J.I( ] ﬂ + ] ﬂ v, +¢j(l) ﬂ Vi + ¢I Vi ds

FI n

oX oX oY oY oX oX oY oY

SI:in

(5.35)

Thus, the free-surface integral could be rewritten in this form

. O pap® Y 0 (9D Py .
J.J.qp dS:_ J. Ia)k¢| ( ¢J n, + ¢J ny]l//ierl-i-J..f |CO|¢| [ ¢J al//l + ¢J al//l ]ds

w2 L OX Y 22 X ox oy o
i (04 067 04" 047" )y, |
+ - + + ¢ A st dS
Sﬂ{ z[ax x ov oy [Ty

(5.36)

2) Integration of far-field free-surface

In the far-field free-surface region, the integration has infinite region and the integrand has
value in the far-field region due to slowly decaying property, thus direct numerical integration is
very difficult to give good accuracy. Instead of numerical integration, we could evaluate free-

surface integral by using far-field approximation of several linear variables.
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Before conducting series expansion, velocity potential is expressed mathematically by using
asymptotic formulation. The incident wave velocity potential is approximated by using Fourier-

Bessel expansion in this form.

_igA cosh(k(Z +H

) 0
= ngn . (kR)cosn(0- p)

(5.37)
|gA cosh(k Z+ H) 2
——————=%J, (kr)| A cosnd+ A sinnd
o  cosh(kH) nZ:(; " [A“ A ]
Af cosng
where &, (-1)" and ¢, =1,¢,=2(n>1)
A sinng
The disturbed velocity potentials can be obtained by solving following integration.
¢ =[[o(r.o)(r.or,0)ds
) (5.38)

where, G:i(%_¢ﬁ)
47\ on on

To evaluate the integration, the wave Green function in far-field is first approximated in this form

2

. k ,
G~-27i—————coshk(Z +H)cosh(Zz + H)H, (kR 5.39
"KPH —v?H +v ( Jcosh( Mo (KR) (5:39)

To expand above equation, Graf’s addition theorem is used in a Fourier-Bessel series. As a result,

the field and source points are separated in the Green function. It could be rewritten by

2

G~ Znimcosh k(Z+H)cosh(Z' +H)J, (kr')H, (kr)cosn(6-6')  (5.40)

After substituting Eq. (5.40) into Eq. (5.38), radiation & diffraction velocity potentials could be

expressed by using generalized Kochin function (By). It is as follows:

A =iHn(kr)[B§ cosnd + B; sin ne] (5.41)
n=0

C 2 , )
s |2 (.0 A O ) 2 s
B, k?H —v?H +v cosh(kH) sinng

Sg
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Using defined variables, far-field free-surface integration has been conducted by numerous
integration ways. In this study, we evaluated the integral by using same way suggested by
Newman (1991). Since we used indirect method, the far-field variable of assistant velocity
potential which is expressed as C is simply added on the equation. In this dissertation, we just
repeat the evaluation procedure of far-field free-surface integration in Newman (1991) and more
detail explanation is written in the paper. The far-field integration is divided into three components

as follows:

(e, +Qr, +Q2, pids (5.42)

§ Fout

To simplify the procedure of integration, only disturbed velocity potential (Qr:s) is first considered.

The free-surface integral could be rewritten in the cylindrical coordinate system. It is as follows:

049 340 06% A4W
—2((0. +a)) ¢ o4 +i ¢ 04 1V VOGO
i o er e r2 a0 09 VT
[[(Qe, pios=7 [ ‘ds (5.43)
Sout Skout +%¢ng) (_wlzvl ﬂ(l) n 9k|2¢|(1) ) n %ﬂa) (_wjzvj¢j(1) n gkfgb}”)

Substituting defined far-field variables into Eq. (5.43), it is expressed in this form.

H, (k,r)[Bﬁ1j cosmd + By, sin mH][Brf, cosnd + B, sin nH]

1M

T

3 -
—_— ~ ? ~—

=

~

S Fout

xi H, (k,r)[ Ci cosud +C, sinug [ds

u=0

(5.44)
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Using following recurrence relation of Hankel function, it is rewritten by

H, = (Hv—l - Hv+1)’ 2v F;V =H ,+H., (545)

=0

2 (Hm—lHn—l - Hm—lHn+1 + Hm+lHn+1 - Hm+1Hn—1)
x[B;j cosmé + By, sin me][BnC, cosné + By, sin ne]
(

. +ZZ{

m=0 n=0

~
=~
3
I
o
=]

H, H.,,+H, H. . +H ,H ,+ Hm+lHn—1)
x| ~Bg; sinmo + By, cosmé ][ ~By, sinng + By cosnd |

-V} 2(a)j + o )v,vj)

>

S Fout
k? -
N
(

(
XiiHm(kjp)Hn

m=0 n=0

k,p)| By; cosm@+ By sinmé || B, cosn6 + By, sinné |

%3 H, (kp)[ C5 cosud+ C;, sinud s

u=0

(5.46)

Since the variable is described in cylindrical coordinate system, the free-surface integral could be
evaluated by separating integration variables; i.e. azimuthal and radial directions. Thus the

equation could be rewritten by

{Hm—lHn—l - Hm—lHn+1 + Hm+1Hn+1 - Hm+lHn—l} Hu

Z ZZ [B;j Brtl:l Cl::k ﬂ’r;nu + Br?u Br?l CI.(J:k ﬂ’m_nu j
m=0n=0u=0| X c pSAS 9- S RC S 79—
kj kl ij BnICuk ﬂ“num + ij BnICuk ﬂ“umn
—2(CUJ- + o, )T

{Hm—lHn—1+Hm—lHn+1+Hm+1Hn+1+H Hn—l}Hu

+ZZZ x[ B:wj B:l Cl::k//i’r;nu + Br;j Br?l thkﬂ’ntnu ] rdr

m+1

I
=
— 8

0

O B B A ~ BEBICIA

mj —nl

num

mj —nl
2 2 2 2
oy (6 =)+ (K =) ~2(@; + @ Ju,
mj —nl mnu mj —nl mnu

+ o0 o0 o0
HHH
*2 2,2 HaH, B, B ClAn + BB ClAumn

(5.47)

[B“ BCS A", +BS B CE AL J
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Here, upper & lower lines in parenthesis (BBC) mean cosu@ & sinu@ components, respectively

and integration of trigonometric function for the azimuthal direction is defined in this form.

2z

j cosmé@cosndcosudd o = l[éu —_— mm] =Aou (5.48)
0 gu ' '

2z T

[ sinmosinnocosuade = —[5u —— mm] =1 (5.49)
0 gu ’ '
2z T

j cosmé@sinn@sinuddd = —[5m ur| ~ Omuen ] = Ao (5.50)
0 8u ’ '
2z P

[ sinmocosngsinuadd == 5, , = 8,um |= A (5.51)
0 gu ’ '

where integration which includes odd number of sin function has no value due to symmetric

property.

After few mathematical manipulations with defined variables, it could be expressed simpler form.
It is as follows:

{QjIHmHnHu _Ajl (Hm—lHn—l + Hm+1Hn+1)Hu}

Br?]j BuCo + Br?\j BaCok |( Amnu + Amns
X
Br?\j Br?ICLTk - Bncu' B§|Cjk /Kmn _ﬂ“r:um

rdr (5.52)
a0 im0 | +{QH HH, + Ay (H L H o+ H o H ) H

% Br?qj Br?ICJk - B;j B§|Cuck }bn:nu _/Ir;nu
B;j BSI Cusk + B;j BSI Cusk ﬂ'uimn + ﬂ“rijm

where 0, = (@, (K —v? )+ @ (K —v? )~ 2(e, + @ v, ) and A =(a, + )k k

In this step, let us consider integral of radial direction in detail. One of difficulty in free-surface
integral is come from infinite interval of radial direction. As shown in Eq. (5.52), the integration
of radial direction is composed of triple product of Hankel functions. It could be defined in this
form.

—38

F =

mnu

H., (k;2)H, (ko) H, (K p)rdr (5.53)

pel

%
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Since this integral has oscillating and slowly decaying properties, the integrand exists at the
very far region from the body. It is very difficult to evaluate integration accurately by using direct
numerical integration. Instead of using numerical integral, numerous ways such as series
expansion are suggested by many researchers. For instance, Newman (1991), Malenica et al.
(2018) used complex analysis and conducted numerical integration with exponential function in
complex region. Kim and Yue (1989) used series expansion based on recurrence relation of
Fresnel integral. Chau andTaylor (1992) developed approximation method using another series
expansion with minimum error. Choi et al. (2001) developed new analytic solution on radial
direction after stationary phase approximation on azimuthal direction. In this study, we also used
same series expansion of Chau and Taylor (1992). The asymptotic formulation of Hankel function

of the second-kind using series expansion is written as follows:

2 —i(X=7p - . Cm
Hm(x):\/%e s )po(—u)p Xp" (5.54)

(4m? ~1)(4m? —9)---[4m2 ~(2p —1)2]
p!8®

where y,. :%(m+—), Cop =

4m? —(2p-1)’
8p

C,,=1and Cmp = Cmp_l

Using above asymptotic formulation, integration which includes triple product of Hankel function
could be expressed as follows (Chau and Taylor, 1992; Choi, 2013):

o —i kj+k,+kk r
F = i i 2 ei(7m+7n+}’u) §Nm b (_i)PHHS Cmp qu Cus J‘ e ( ) dr (555)
" ”kj 7k, \ 7k, 0g=0 s=0 kjp qu klf R [ Pra+s+l/2

oo
Chau and Taylor (1992) suggested the maximum series number N, = m/2+2 to make minimum
error of summation. In this study, N, = m+5 is used as a maximum number and the approximation
is conducted on Hankel function of the second-kind. The remained integral is evaluated as follows
(Chau and Taylor, 1992):

o =i(kj+ki+ky ) p N T _1/2 —i(k;+ky +ky )R
e n+m 1 e
An = J. n+1/2 dr = Z ( 1/ 2 ) . m Rn+m—1/2 + EN (556)
R T m T(N+172) ik +k 4k )] R
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where Ey is a truncation error and it is known that the great number (N) has maximum within

(k; +k +k )R, —n.

However, if argument of Hankel function is less than Bessel-order, it could have large imaginary

value thus asymptotic form could make some error. In this study, we did integration numerically

by using Clenshaw-Curtis integration until argument of the function is larger than Bessel-order.

As a validation test, the evaluation of Eq. (5.53) [The test is conducted on Hankel function of the

first-kind] using asymptotic formulation and Clenshaw-Curtis integration is conducted. The result

is denoted in the Table 5.1 where the integration interval is from 10 to 11 and wave numbers are

1.0. This table shows that asymptotic expansion has little difference with another result at large

Bessel-order and Clenshaw-Curtis integration has a good agreement in all Bessel-orders.

Table 5.1 Comparison of integration which has triple Hankel funciton integrand in finite interval

mlnlu Chau and Taylor Asymptotic expansion Clenshaw-Curtis
(1992) (Present) (Present)

1|2 | 3| (0.001886,0.003742) (0.001886,0.003742) (0.001886,0.003742)
51| 3] 6 | (-0.006758,0.002120) (-0.006758,0.002120) (-0.006758,0.002120)
9 | 9|12 (-0.011812,-0.034072) | (-0.011812,-0.034072) (-0.011812,-0.034072)
11|11 | 14| (0.109891,0.000471) (0.109891,0.000472) (0.109891,0.000471)
141 9 | 17| (-0.361132,0.022987) (-0.361132,0.022982) (-0.361132,0.022987)
12 | 12 | 15 | (-0.040433,-0.246565) | (-0.040430,-0.246566) (-0.040433,-0.246565)
13 |13 | 17 | (-0.240852,0.712168) (-0.240862,0.712162) (-0.240852,0.712168)

In Eq.(5.42), there are three types of quadratic forcing term on the free-surface. As used in

disturbed velocity potential, the incident wave velocity also could be expressed by using Bessel

function or summation of Hankel function and its conjugates. They are defined in this form.

G

P

mnu

mnu

= ;[O H, (kjr)Jn (kr)H, (k,r)rdr = ;f H,, (kjr)

P =3

I (kjr)Hn (k,r)H, (k,r)rdr = j

{H, (kr)+H; (kr)}

(5.57)

2

= {Hm(kjr)+ H;(kjr)}
2

R,

s

H, (kr)H, (k.r)rdr

H, (k,r)rdr

(5.58)

Using these defined equations, all free-surface integrals of far-field region are expressed as a series

expansion in this form.
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BY(I:‘I Br(: Cuc + B:‘I B: Cuc Antnu + ﬂ’r;nu
[P B B 1)
I} (Q;BB“ )(//de =§Z;ZOZ; BEBOCE _BS B G \( 15 A
St m=0 n=0 u= aF A (F +F )} mj —nl ~uk mj —nl ~uk mnu mnu
HOFons + A5 (Fonise + Pty By BaCl + BriBaCi )\ Ao + Aoum
(5.59)

Brij A::I Cuck + B:u A?I C:k ﬂ';nu + ﬂ;nu
B2 AvClc = Bri AVClc )\ Aumn — Anum
B;j Afl CSK - Brij Afl Cuck }“r;lrnu _ﬂ’n;nu
Bri AnCac + BriACoc N\ A + 2

num

{QJIGm.n.u _Ajl (Gm—l,n—l.u +Gm+1,n+1,u )}(
+ + _ l Shah
J.J. (QFBI]I )llj dsS = 8 ZZZ

Skout

+{leGm,n,u +Aj| (Gm—l,n+1,u +Gm+l,n—l,u )}(

(5.60)

By [P0 BEC+ ABLCL ) (A + A
e A1s1j Br?l Cjk - A:wj B:|Cjk ﬂ'l;mn _/L;Jm

)} [A;] Br?l Cuck - A?]j Brfl Cuck J{ﬂ’n:nu = Ao J
AL BACE + ALBLCa ) A + Anum

(5.61)

(@R — Ay (R

m-1,n-Lu

+P

m+1,n-1,u

+{Q Pone + A5 (P

m-1,n+1,u

This series summation should conduct mxnxu number of calculations. It could be reduced by
using orthogonal property of already defined integral of trigonometric functions. As shown in Egs.
(5.59-61), there are four types of combination made by integration of trigonometric functions.

Their results are as follows:

Aou F Ay = 70 1o + 70, 1 (5.62)
A = Arum = 700 s = 70, i (5.63)
Aans = e = 70 man (5.64)
Ao+ Arum = 70, 1. (5.65)

This combination shows that this series expansion exists only where u=m-n; u=n-m; u=m-+n as

expressed in Figure 5.2.
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5 5 8 8 g

Fig. 5.2 Combination of series numbers which satisfy azimuthal direction of the free-surface
integration (each direction in the plot means respectively m,n,u)

Using symmetric property of trigonometric function, finally free-surface integral could be
expressed in this form.

R BS BSCE + B B:CS i N BS BSCE + B B:CL
I (QF,.».dS—8%(1%@[%(9[ P H ismo(wmo)[vmn(m[ gl ﬂ

Stout = B BaiCa — BriBaCl B,;BaCi — Br;BaCi

mj —nl 'mj —nl

sl BEB°CS —BS B:C® Y BS ASCE +BS ASCE
) U Ffepepercl | IR JCRPN M) bhoicheied
1 mi O ot Bmi B )| mi A Cikc — B A Cuk .

i%iZ(H%) an(G)[ij ALCS, + By A“CWH 7 ul{Wmn(G)[Bm%Cuk - BLiAICK H

B:ﬂ ACE - B;j ACo Brinj ALCL + B;j ALC
SN cCB°CS + ASBSCS SN CBSCS + ASBSCS
SIS W)Uy (P e T A LS vmn(m[‘\:’ A ]
8 AijnICuk_AﬂjBnICuk nem-u 8 AnjBnICuk_AnjBnICuk nemu

8 m=! jBnICuk + A’nj Bnlcuk n=u-m

(5.66)

Where Umn (F) = (le I:m,n,m—n - AjI I:Fm—l,n—l,m—n + I:m+1,n+1,m—n :|)

Vi (F)

(le I:m,n,n—m _Ajl [Fm—l,n—l,n—m + Fm+l,n+1,n—m :|)

Van (F) = (le I:m,n,m+n +Aj| I:Fm

—1,n+1,m+n + I:m+1,n—1,m+n :I)

5.4 Numerical result and discussion

To validate the developed numerical code and formulation in the generalized mode, the

validation could be conducted for the rigid body motion whose numerical results are obtained by
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substituting translational mode into modal vector. Thus second-order generalized hydrodynamic
forces for rigid body motion are compared with other results obtained in published paper and each

contribution of non-linear body and free-surface part is also confirmed in sequence.

Second-order hydrodynamic force on a fixed and freely-floating hemisphere is calculated. The
result is compared with semi-analytic solution of Kim and Yue (1990) and another frequency
domain solver MLINHYDH which is based on wave Green function HOBEM (Choi et al., 2001).

In this simulation, boundary radius (Rs) on free-surface is 10 m at all frequencies.

3 3
F (Present) || ——— F(Present
— 4 —
F{Kim&Yue) H ° g‘hﬁm&\'ue)
F, L
2.4 J F: —= 2.4 I - F';
— == Fcmiaay PPN — =~ HChlea
———-F, ' o H———-F
o Y o
/ < 1.8
N& 1.8 VA N< 1 ) 7
§n // AT % /s
= v = |
G112 SNz 5~
F /i = /,)ll’\c\»\
o A =
#> Ry o VA R k5
X . - | Y/ [She pue
[ = > y
~e | — ¢
0.6 === 0.6 y
I ~ | I [
L \\
- \r\\\j S
P Ll L 0 PN I
0 0.5 1 5 2 2.5 0 0.5 1 15 2 2.5
va va

Fig. 5.3 Comparison of surge & heave second-order hydrodynamic forces on a fixed hemisphere (H
=3a)

Figure 5.3 is the comparison of second-order hydrodynamic forces of a fixed hemisphere and
each figure means surge and heave forces. In all results, quadratic product forces show a good
agreement. On the other hands, the second-order velocity potential force shows a little difference
in surge direction force. In the fixed body, second-order velocity potential force almost obtained
from the contribution of free-surface non-linearity and the difference might be come from erupt

change of surge radiation velocity potential on free-surface as described in Choi et al. (2001).

In sequence, the second-order hydrodynamic force is analysed on the freely-floating body.
Provided that the floating body has motion, the non-linearity come from both body and free-
surface effects, thus each effect is analysed in detail.

Figure 5.4 shows surge & heave second-order hydrodynamic force from quadratic product (Fq)

and body non-linear effect in second-order velocity potential force (Fgs). From the obtained results
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where the value is large near linear resonance region, it seems that both non-linear forces are quite

influenced by the linear motion response. All results could be obtained with good accuracy.

Figure 5.5 shows total second-order hydrodynamic force (F) and free-surface non-linear effect
(Fp-s8) in second-order velocity potential force at each direction (surge & heave). In numerical
results, heave force shows a good agreement but surge direction force also shows a little difference
due to free-surface non-linear parts. The reason of difference might be severe oscillation of surge
radiation velocity potential on free-surface as same with fixed body. In the high-frequency,
second-order velocity potential has large value on this model.
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Fig. 5.4 Comparison of surge & heave second-order hydrodynamic forces on a freely-floating
hemisphere (Fq & Fgs)
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Fig. 5.5 Comparison of surge & heave second-order hydrodynamic forces on a freely-floating

hemisphere (Fp-Fse & Total force)

This oscillation in surge direction on free-surface can be confirmed by integration on different
range of near-field free-surface region. Figure 5.6 shows that the integration of different ranges
(radius of free-surface: 3, 5, 10 m, See right figure) changes the second-order velocity potential

force considerably over all frequencies.
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Fig. 5.6 Surge second-order velocity potential force at different range of near-field free-surface range

As mentioned in previous section, the free-surface integration should be evaluated up to quite
far region. The comparison study is conducted by changing the radius range in Egs. (5.55) and
(5.57-68). The far-field free-surface integration is evaluated numerically up to finite region and
mathematically by asymptotic value of infinite radius range. Figure 5.7 shows that that the real
part converges at very far-field region. On the other hands, imaginary part is continuously
oscillating depending on radius range. It means the integrand of free-surface integral exists at the

very far-field region and also shows that the integration should not be cut at some range.

-91 -



CAHPTERS : Numerical study by frequency-domain analysis in bichromatic waves

-

e
%
T

| REAL PART

b e
IS S
T

e
)

FPlpgA’

5
'S )
T

Asymptotic value

g
=S
T

=
©
T

——=—— Numerical integration

|
—
T

100 200
Outer radius (m)

300

Fig. 5.7 Comparison of far-field free-surface integration at different radius range (va = 1.0)

Using same model and condition, the second-order hydrodynamic force is calculated in

bichromatic waves.

Figure 5.8 shows the quadratic product of linear quantities at surge and heave direction. As
shown in previous figures, this force has large value near linear resonance region. In the freely-
floating hemisphere, there is only one resonance by heave motion. This resonance effect
influences stronger to heave direction force directly than surge direction force. Similar tendency

is also confirmed in non-linear effect of body on second-order velocity potential force as shown

in Figure 5.9.
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Fig. 5.8 Comparison of surge & heave quadratic product of linear quantities forces (Fq) i

bichromatic waves
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Fig. 5.9 Comparison of surge & heave body non-linear effect on second-order velocity potential force
(Fes) in bichromatic waves

—= Present —=e Present

Kim & Yue .
| Kim & Yue 18

Fig. 5.10 Comparison of surge & heave free-surface non-linear effect on second-order velocity

potential force (Fp-sg) in bichromatic waves

Figure 5.10 is free-surface non-linear effect on second-order velocity potential force at each
direction. It shows that it has large value at high-frequency region in both direction forces, thus
the contribution of second-order velocity potential becomes large in this frequency. In figures, we
could confirm that diagonal values in QTF matrix are generally larger than non-diagonal terms.
The combination of same frequency usually has larger value than that of combination of large
different frequency. This phenomenon is also shown mathematically on bottom-fixed vertical
cylinder (Newman, 1990). It is also known that this tendency is much larger at difference-
frequency forces thus evaluation of QTF without free-surface integral has been suggested by using

several approximations depending on the combination of frequencies (Hauteclocque et al., 2012).
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CHAPTER 6

Conclusions and future works

6.1 Conclusions

Using generalized mode expansion method and higher-order boundary element method
(HOBEM) in the potential flow assumption, linear & second-order hydrodynamic forces and
responses of rigid/elastic body are considered. The normal vector variation and body boundary
condition are re-defined by using continuum mechanics to consider elastic effect of body surface.
Several generalized force including inertial, gravity restoring forces are also derived to obtain
hydrodynamic response. Using relatively simple shape’s body and structural model, several linear
& second-order hydrodynamic variables are checked in numerous conditions. In chapter 4 and 5,

obtained numerical results are discussed in monochromatic /bichromatic waves, respectively.
They are summarized as follows:

In chapter 4, direct time-domain simulation is conducted based on Rankine panel method.
Several hydrodynamic forces and responses are obtained by using generalized formulation

with/without forward speed step by step.

In the zero forward speed problem of a rigid body, several second-order forces including
second-order velocity potential are calculated. The linear and second-order velocity potential
forces without forward speed are well estimated in diffraction/radiation problem. In the freely-
floating condition, however, the second-order velocity potential force does not show good
agreement with other results. It might be come from inaccuracy by second derivative of velocity

potential and truncated free-surface region.

In the forward speed problem of a rigid body, several Wigley models which have relatively
simple shape are studied on the linear and second-order force from linear quantities. In the slender

models, the linear results show good accuracy with other results except little overestimated value
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near resonance. On the other hands, blunt model shows generally underestimated vertical motions
due to simplified m;-term and accordingly the added resistance is also quite underestimated. The
mean drift force is checked as a validation study for all models, the sensitivity on second-
derivative of velocity potential could be confirmed. Non-linear force with forward speed should

be investigated more by using various methods as a future work.

In the zero forward speed problem of an elastic body, the hydroealstic responses of bottom-
mounted flexible cylinder and floating barges are calculated in a validation process. The linear
and quadratic force results show a good agreement with that of bottom mounted cylinder. But
second-order velocity potential force also shows some difference especially near resonance region.
The reason might be same with rigid body motion case. The barge model’s response of several
points is calculated and compared with other results. In both models, overall response results show
a good agreement and it is rather sensitive near resonance region. The mean drift force is also
checked by using generalized formulation and the reduction of surge mean drift force is confirmed

due to decrease of relative vertical wave elevations as well known.

In the forward speed problem of an elastic body, several quantities are checked by changing
forward speed, flexural rigidity and so forth. In the linear motion, the divergence term which only
exists in elastic body has no substantial effect. In the second-order, the effect of forward speed
and flexural rigidity is checked. The importance of second-order velocity potential force is
confirmed well. However, it shows some limitation of calculation for second-order velocity

potential force in Rankine panel method on the free body motion in waves.

In chapter 5, bichromatic wave condition is considered without forward speed. Frequency-
domain analysis is conducted in steady state assumption by using wave Green function. To
calculate generalized second-order velocity potential force, indirect method is adopted instead of
solving second-order boundary-value problem. The force formulation is re-defined by generalized
formulation as conducted in chapter 4. Several numerical results are compared with other semi-
analytic solutions on a fixed/freely floating hemisphere. The results show a good agreement each

other without particular difficulty.

On the freely-floating hemisphere, several non-linear effects are discussed. Quadratic product
of linear quantities and body non-linear components in second-order velocity potential force are
strongly influenced by linear motion. On the other hands, free-surface non-linearity has large

value in high-frequency.
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In bichromatic waves, body and free-surface non-linearity in combination of several
frequencies are also well confirmed on a rigid body. The strong coupling at double frequency
force could be also confirmed as same with vertical cylinder model.

Although only rigid body mode is considered as a validation, it could be extended to calculate

wave excitation force for elastic motion if the modal vector is simply changed to elastic mode.

6.2 Future works

6.2.1 Improvement of frequency-domain analysis

In this study, the second-order hydrodynamic force on an elastic body is only considered by
using indirect method. As well known, however, several local quantities could be calculated after
obtaining second-order velocity potential. It could be obtained by solving following boundary

integral equation directly as conducted many researchers (e.g. Chau and Taylor, 1992; Lee, 1995).
2 (2) aG(PvQ) _
CRIAY(P)+ [[47(Q) = =dS(Q) = [ 6(P.QIQ:dS() + [[6(P.QIQ:ASQ)  (6.)
Sgo Q Sg Sty

Next, more efficient evaluation of free-surface integral could be used. The near-field on free-
surface is additionally divided into two parts. The nearest region which includes water line is only
integrated by using numerical integral. Since the intermediate region in near-field has circular

shape, it could be evaluated semi-analytically. The velocity potential has generally following form.

=, & cosk,, ( Z+H)
~—4
/ m_lnz(; cosk,h
=, cosh k ( Z+H)
Zj cosh(kH)

K, (k,r)[ By, cosng + B, sinné |
6.2)
H, (kr)[ BS cosn@ + B sinnd |

The azimuthal direction is composed of only trigonometric functions which could be conducted
analytically and only radial direction integration is evaluated numerically. This semi-analytic
integration could reduce the evaluation of linear velocity potential on the large region of free-

surface. Thus it could improve both computational efficiency and numerical accuracy.

6.2.2 Improvement of numerical model
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In this study, the head wave condition is only considered thus vertical bending moment is
calculated in the elastic motion. In several heading angle, both horizontal and torsional bending
modes on the second-order should be considered.

In the structural part, there exist many design issues. For instance, the structural damping is one
of important parameter in real sea state on the ship design. Because the springing has very small
radiation damping, structural damping influence to the responses considerably. Using more exact
modal shape and structural damping, the effect of hydroelastic response on a ship could be

confirmed.

In the forward speed problem, we adopted NK assumption thus the steady flow effect is ignored.
As shown in chapter 4, however, the steady flow effect is also very important in both linear and

non-linear problems. DB flow assumption could be applied on forward speed problem.

We only calculated second-order velocity potential force with forward speed in limited
unsteady motion case in monochromatic waves due to uncertainty of present Rankine panel
method. However, the obtained result must be validated and complete solution should be

calculated by using more trustable way.

6.2.3 Indirect method for second-order velocity potential force with forward speed

As a future work, we would like to introduce the calculation method of second-order velocity
potential force with forward speed. As discussed in chapter 4, truncated free-surface integral
region might be a reason of error in calculation of second-order force with freely-floating
condition. Indirect method used in chapter 5 could be also extended with forward speed provided
linear velocity potential is given thus more trustable calculation could be conducted on second-
order force with forward speed. Although the calculation is not conducted in this dissertation, the

procedure of indirect method with forward speed is briefly explained as a final stage.

Molin (1979) extended the Haskind relation to the second-order problem in the zero forward
speed and showed that second-order scattering velocity potential force could be calculated by
using linear quantities. This method could be also extended to the forward speed case. First, the

second-order velocity potential force with forward speed is written in this form.

F&* =—p[[ (i ¢®* +V - V4> )iids (6.3)

Sgy

-97-



CAHPTERSG : Conclusions and future works

If we conduct the same approach used in Ogilvie and Tuck (1969), it could be rewritten by

F o+ =—p”(la) $* +V -V gP* ) ids =—p” iw'n, —Um, )¢®*fidS (6.4)

Se,

=—p j [io® ¢<2>+ds

where m; is m;-terms on linear body boundary condition with forward speed

Here, superscript r means reverse flow which has reverse forward speed and + sign means sum —
and difference — frequency components, respectively. This second-order reverse flow velocity

potential which is used as an assistant velocity potential satisfies following boundary conditions.

. oY .. oy

io"+U — | v +9g——=0 onZ=0 6.5

(w axj R (65)
ow* U

Next, Haskind-Newman approach is applied on second-order boundary condition. It starts from

following integral equations.

i{(«zﬁs‘zﬁa(‘;’—r‘r—w.“* aé jds jf(qb‘”*a'/" —y é: ]dS 0 6.7)

Provided that bottom and radiation conditions are satisfied, we can substitute second-order
boundary condition with forward speed into above integral equations. Hence, Eq. (6.7) could be

rewritten by following equations for sum-frequency variable at each boundary condition.

On the body boundary

J-J-(¢(2)+ al//I . I”’ ¢() Jd J-J‘£¢(2)+ a‘/’. |r+(a¢g:+ +QB j}s (68)

On the free-surface boundary
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aV/-H a¢(2)+ al//‘lur a¢(2)+
(2)+ i _r+ S dS — (2)+ i 'r+ S dS
Sfi(¢ — Q 90— =
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U( [ Uax = ox’ ] Vi [ “Uox T Tax? gs{{"" -
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oX 'ooX

UZ 2'(0 2)+,, r+ . 6 o a (2)+ 1 s
=— ( ¢— ¢ v TYi 2 dy — 5” ZMON
Sk

9 U X oX

If we can apply the slender ship assumption as used in linear problem, the line integral could be

ignored. Thus,
1 r+m+
~—=[[wi"Qids (6.10)
95

After substituting Eqgs. (6.8-10) into Eq. (6.7), the integral equation for the second-order boundary

condition becomes following form.
al//_l’-# a¢(2)+ 1
@ 270 4S =— ||y | 22—+ Q; dS —= | v, Q;/dS 6.11
é‘;‘[ ¢s an él.BJ. l//l ( an QB g é‘;‘[ l//l QF ( )

The right hand sides in Eq. (6.11) could be substituted into force formulation Eq. (6.4). Thus, the

second-order velocity potential force in bichromatic waves could be expressed in this form.

r+ (2)+
Fp(uzl)+ =iw" 5”. ¢S(2)+ %ds =—iw" 5”. l//iH (% + Qg ]ds __J'J‘ HQFIdS (612)
Bo Bo
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As same with zero forward speed problem, the second-order force could be obtained by evaluating
the body and free surface integral composed of several linear quantities. In the body surface
integral, there are more high-order derivatives of velocity potentials. Although the second
derivatives could be removed by using Stokes theorem, there remains a third derivative of steady
velocity potential. Thus it might be one of the most difficult problems in the consideration of
steady flow effect in second-order velocity potential force. If we ignore the effect of steady flow
on the body surface (NK assumption), the non-homogeneous of body surface become much

simpler. It is as follows:

UIB _ 1{}/1(5) #(1) .ijlm}'ﬁJr%{;jm _V¢ng>}.{(v.;l<1>)_[Vf,m]T}.ﬁ

' FO 520 970 520 570 4z (6.13)
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Here, the second derivative of unsteady & double body velocity potentials could be removed by

using Stokes theorem as same with zero forward speed problem.

[[r-[yrz?-vvg®]ds =- ﬂ pi (V-22) (VA i) dS + [[{p " (V4 - vEP)-ii}ds
SB“ o (6.14)
—H{vv/i x(V ¢,(l)xfj(l))}-ﬁdS+|;ﬂz//i”(Vﬂl)xfj“)).fdl

Sey

Thus, the non-homogeneous component could be calculated without higher-order derivative in

NK assumption. It is written by
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Next, the free-surface integral also becomes much more difficult to be solved than zero forward
speed problem. Nevertheless, rather similar approach could be applied on the free-surface
integration in case it does not have steady velocity potential. As conducted in zero forward speed
problem, the integration could also be divided into near- & far- field regions. In the near-field
region, the integration might be conducted by using numerical integration. However, there are
also several second derivatives and a third derivative of velocity potential. To conduct the
numerical integration it is better to remove these higher-order derivatives as far as possible. The

non-homogeneous terms on free-surface in NK assumption could be written by
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(6.16)

Using the 2-D Green theorem on the free-surface, the inner-field of free-surface integration is

expressed in this form.
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In the combination of same frequency components, following relation could be additionally

w

+U

applied.

)
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(6.18)

From the result of Green theorem for the third derivative, several second derivative variables
are made additionally. The equation shows that the effect of forward speed is coupled with several
derivatives of velocity potentials and it means the numerical accuracy could decrease as forward

speed increases.

In the far-field free-surface region which has infinite integral interval, the velocity potential
should be expressed by mathematical formulation. In the forward speed problem, the velocity

potential at far-field region can be also approximated by using Kochin function in this form.
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do

where each variables is defined as follows:
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In the low forward speed (Q<0.25), the ki wave component is relatively very small at the far
field region and the integration in Eq. (6.19) could be conducted by straightforward way such as

stationary phase approximation. It is expressed in this form.

¢, ~ T, (k,,0,)e" ™™ (6.20)

i H.(k,0.)k .
where Fj(kz,Hs):—LM 6, : stationary phase angle, @, (&)= X cos@+Y sind

27 J1+4Qcos6,

Using this asymptotic formulation, the far-field free-surface integration could be implemented
by numerical or semi-analytic way. However, as the forward speed increases (>0.25) the
stationary phase approximation could not be used at cusp point on free-surface and the
contribution of ki wave components also increase together. In the right of that the inner-field
region also has several derivatives of velocity potential coupled with forward speed, it is expected
that the high forward speed problems need more efficient and exact numerical scheme for the

evaluation of free-surface integration.
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Appendix A

Appendix A: Vector identity of normal vector variation on a
rigid body

The first-order term of normal vector variation in the generalized mode can be written as

follows:
O(e)=(V-79)i-[vz®] - (A1)
On a rigid body, the displacement and its derivative can be expressed in this form.

or® ot ol

o _ _ 1 £@)
Tfl) :é:l(l) +955(1)Z_é:él)y, V’z’l = ax , ay , az _(01_5 S5 ) (AZl)
or® o070 oY
0 1 1 1 @ _ _(£0 n _£@
O ZEW g0 W, Vi, = 8)2( : 8)2/ , 8; —(56 ,0,-¢; ) (A.2.2)
or® o7 or®
oD = gD | Oy Oy Vrg(l) =| =3 8 3 :(— 5(1),&1),0) (A.2.3)

x oy o
Since the divergence of displacement on a rigid body is zero, i.e. V-7® =0, the first-order
normal vector variation Eq. (A.1) becomes the following
-
T ) =
O(e)=(V-#)i-[ve® | -ii=| &0 0 —&P |-fi=af xi (A3)
_e® @) 0
5 4
where af’ = (&P, £D) is the rotational motion vector.

Next, the second-order component of normal vector variation can be written as follows:

V-(f‘z)+;7(2))ﬁ_[Vf(2)+V77(2)]T i

O(*)=1 (570 570 570 570 570 570 (A4)
+ X , X , X |
[ oy oz oz oxX  OX oy ]

In this expression, the quadratic product of linear displacement (#®) can be written in terms of

the second-order term in the expansion of Euler-angle matrix H as follows:
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The cross product term in second line of Eq. (A.4) can be calculated using Eq. (A.2) and expressed

as follows:

2
) 1) £@) 1) £@@)
(&P) &red epg
(af“) or® o7® or% o7® or®
X X

’ , y _| w0 (s 0 20
oy oz 6z ox | Ox ayj i (5) g

(l) é:(l) (1) g(l) ( 6(l)) (A'6)
SHAH +{( O) (g0 ) +(§6“))2}E
where E denotes the unit matrix having only the unit diagonal element [5”— ] .
After substituting upper two equations into Eq. (A.4), each term can be written by
V(704 70)R =V (MR = (0 ) + (&) +(&0) |7 (A7.1)
[ve@T -i=a@ xi (A.7.2)
[vy@T A=-[VHR] -A=-HT A (A7.3)

8f(1) 8f(l) a{.(l) P f(l) P f_(l) 6f(1) . , ) ,
X y X f X 'ﬁ:H-ﬁ+H .ﬁ_l_{ ® + 1) + () }ﬁ
( oy ot oz Oox Ox oy (54 ) (55 ) (56 ) (A.7.4)

After collecting all terms, we can find that second-order component of normal vector variation on

a rigid body also agrees with classical formulation, as shown below:
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N - - . ~ 2 2 2]
0(52):v.(Hx)n+aé2)><n—HT-n+H~n+HT~n+{(§f)) +(6E5(1)) +( él)) }n (A.8)
:&éz)xﬁ—FH'ﬁ
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Appendix B: Vector identity of the inertial force on a rigid body

The transformed tensor for the rotational mode shape is defined to consider the rotational
motion in the following form:

- —»(1) —
iXT(O))—(’ O —7 y IXT(l))_(’ |X(a XX)
h =| jxTOR|=| z 0 —x|, h®=|jxTO% [=| jx(a¥ x%) (B.1)
kx TOx -y x 0 kx TOX k x(c_iél) X )?)

On a rigid body, the deformation gradient tensor (T) could be written as follows:

oX, OX, OX, 10 0 0 - 56(1) 5(1)
T=| e XK Kol g 1 ofs D0 =P =TO+TO (B.2)
o 0%y OX 00 1| |—g0 £ 0
X, X, X, o
| O, OX,  OXg |

Using the transformed rotational motion tensor, the generalized linear inertial force on a rigid
body could be expressed as follows:

0 -z y\(z®

O R Y
Vo

v 70
’ -y x 0 )7
-+(1) -(1) (B?))
—17," + y2'3

:”jps 270 —xz® Vv = mps{Xx(a(l)+a(l)xx)}dV

Yo —yi® + x&®

Thus the linear inertial force for the rotational motion takes the following form:

FO ” ps(h(o) )dV j”pSXx(aT +a§’><x)dV=Ié§’+m{x xaT(l)} (B.4)

Next, the generalized second-order inertial force is written as follows:

RO = [[[ o, {h (7@ +£@)+h® .70} av (B.5)
Vo
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In the second-order inertial force, each component could also be rewritten by substituting the

rotation mode tensor into Eq. (B.5) on a rigid body assumption. The last two terms are as follows:

[[[ . {n® 2@ av =1a® +m{%, x| (B.6)
”Ips{h(l) “(1)}dV Ijjps{ a,gl)xx xa(l)+( (l)xx) (a(l)xx)}dv (B.7)

The quadratic product term could be expressed in the following form:
[[[ .{n®-7@}dv =[] p, {n® - Fix} dv (B.8)
Vb \

—(EOED + EOED 4 EPED 4 EPED ) x
0 -z y £ (1) Zj(l) +2 5(1) 5(1) cf(l) é:(l) £ é:(l) é:(l) é:(l) é:(l) cf(l) df(l) 5(1)
I L s in

y X 0 {(54(1)5(1) +2§£1)§(1) +§§1)§(1))X+(§5(1)§(1) +2§5(1)§(1) +é:5(1)§(1))
_( £ (1)é:(l) g(l)éc(l) é(c(l)é:(l) 555(1)55(1))2}

=jvjbjps{>?xﬂ>z}dv

Here, the second term in (B.7) plus (B.8) could be written with so-called quadratic inertial force

in [69] as follows:

EOED 4 EED
j j ps{ixHX}+{(&,gl> x)?)x(éél)x)?)}dv =1 EWED _£WED Lo GO 10 + aP x1af
v, Sgil) f(l) + fél) 5(1)
(B.9)
After collecting all terms, we can confirm that the second-order inertial force takes the same

expression as the classical expression on a rigid body, as shown below:
RO =[] o, (72 +£@)+h® . Z0}av
\0

2(1) £ 1) £
65()5()+§é) ®

_IozR +m{x xaT } §4 §6 §6 4(1) +*(1) I&,gl)JraS)xl&él)er{(a(l)xx) (1)}

ENED + EDED
(B.10)
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