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1. Introduction and Statements of Results

Let N be a compact Kahlerian manifold, let Ω be a Kahler class on ΛΓ,
and let Ω+ be the set of Kahler forms representing Ω. On Ω + , consider
the functional ΦΩ that assigns to a Kahler form the square of the L2-norm
of the scalar curvature. A critical point of ΦΩ is called an extremal
Kahler metric. Any Kahler metric with constant scalar curvature is
extremal. Conversely, the variational appraoch can be used to find metrics
with constant scalar curvature.

We begin with an existence theorem for extremal metrics. Recall
that a Kahler metric is called a generalized Einstein-Kahler metric if the
eigenvalues of the Ricci tensor are constant, see [27]. For example, a
product of Einstein-Kahler metrics is a generalized Einstein-Kahler
metric. If M is homogeneous under the action of a compact Lie group,
then every Kahler class on M is represented by a generalized
Einstein-Kahler metric.

Theorem 1. Let (MygM) be a generalized Einstein-Kahler manifold
with non-negative Ricci curvature, and let (L,h) be a holomorphic Hermitian
line bundle such that the eigenvalues of c^L.h) with respect to gM are constant
on M. Suppose L is a Kahlerian compactification of L° = (L\zero section),
and Ω is a Kahler class on L which is represented by a metric of 'special
type* (see Section 2). Then L admits an extremal metric representing
Ω. This metric is unique up to the action of the connected automorphism
group Aut°(L).

This may be taken as a generalization of the existence theorem of
Koiso and Sakane for Einstein-Kahler metrics, since if c1(L)>0 and the
Futaki character of c±(L) vanishes, then an extremal metric in the
anticanonical class is necessarily Einstein. We interpret vanishing of a
Futaki character as a condition that the scalar curvature of an extremal
metric be constant, rather than as a condition for extendability of a
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constant-curvature metric to L as in [20].
We note here two particular cases, emphasizing that in Corollary 1.2

the base space is not assumed to be homogeneous.

Corollary 1.1. // N is compact Kdhlerίan, and a maximal compact
subgroup KdAut°(N) acts holomorphίcally on N with real cohomogeneίty

one, then N admits an extremal metric in each Kάhler class.

Kahler manifolds with real hypersurface orbits have been extensively
studied [1,15], Any such manifold is almost-homogeneous with respect
to the complexification K? of the compact group Ky and the exceptional
set is a smooth complex submanifold with two K-homogeneous
components.

Corollary 1.2. // L is of the form P(L®\) for a line bundle L over

a product of Ricci-positive Einstein- Kahler manifolds with b2 — l, then L
admits an extremal metric in each Kahler class.

For metrics of special type, the Futaki character reduces to a single
real integral and thus yields a tractable condition for an extremal metric
to have constant scalar curvature. Sufficient conditions for the vanishing
of this integral can be expressed in terms of curvature of the bundle
L. As a first result we have the following.

Theorem 2. Let L = P(L01) be as in Corollary 1.2. If c^(L,K) is
neither definite nor semidefinίte, then L admits a Kahler metric with constant
scalar curvature.

REMARK 1.1. In fact, the proof shows that the set of Kahler classes
containing a metric with constant scalar curvature is a real-algebraic
hypersurface in the Kahler cone Hl

In Theorem 2 we need assume only the following: The base space

M is a product of Ricci-nonnegative Einstein-Kahler manifolds (Mhω ^)
whose Kahler forms are integral, the first Chern form of the line bundle
(L,Λ) is a linear combination of the pullbacks of these Kahler forms and

is indefinite.
Theorem 2 can be strengthened to apply to Kahlerian manifolds N

obtained from L by (partially) blowing down the zero and infinity sections
of L. Let DO and D^ be the images in N of the zero and infinity
sections of L (respectively), and let d0 and d^ be their complex
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codimensions. The zero and infinity sections of L are biholomorphic to
My and blowing downw: L-+N gives rise to fibrations

The restriction of L to a fibre of π0 is the tautological bundle &Pd0-ι( — 1),
and a similar assertion is true for the restriction of L"1 to a fibre of
π^. Thus Cι(L,h) has at least d0— 1 negative eigenvalues and at least
d^ — 1 positive eigenvalues.

Theorem 3. PF/ίΛ £/z£ tfδoτ e notation, assume that c^(L,h) has at
least dQ negative eigenvalues and at least d^ positive eigenvalues. Then N
admits a Kάhler metric with constant scalar curvature.

We are now ready to state the main result of this paper, which is
a partial converse to a theorem of Lichnerowicz. For convenience, we
say a Lie group G is reductive if any (finite-dimensional) representation
of G is completely reducible. If G is a complex Lie group, then G is
isogenous to ί/xAlb(G), where Alb(G) is the Albanese torus of G and
H is algebraic; G is reductive in our sense if and only if H is reductive
in the usual sense. Thus our usage is an extension of the usual concept
of reductivity to complex Lie groups which may not be algebraic.

Theorem 4. Let N be a compact almost-homogeneous Kάhlerian
manifold as in Corollary 1.1. // Aut°(ΛΓ) is reductive, then N admits a
Kάhler metric with constant positive scalar curvature.

1.1. Organization of the Paper In Section 2 we give a detailed
exposition of the construction in [20]. We introduce the concept of a
special-type metric and give various properties, especially the data needed
to construct them, their components in local coordinates, and the
components of their Ricci tensors.

In Section 3 we review the definition and elementary properties of
extremal metrics, and give a necessary and sufficient condition for a
metric of special type to be extremal. We then calculate the scalar
curvature of a special-type metric and show that a partcular choice of
defining data gives an extremal Kahler metric on L. The proof of the
last assertion characterizes functions which arise as the scalar curvature
of a special-type metric, see Proposition 3.2. In Section 4 we indicate
the proofs of the corollaries of Theorem 1.

In Section 5, we quickly review obstructions to existence of Kahler
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metrics with constant scalar curvature, due to Lichnerowicz, Calabi and
Futaki, and note the well-known fact, due to Calabi [8], that vanishing
of the Futaki character implies existence of a constant scalar curvature
metric in the presence of an extremal metric. The Futaki character
measures the amount by which the functional ΦΩ fails to achieve the
Cauchy-Schwarz lower bound for an extremal metric, see Remark
5.1. Consequently, a manifold admitting extremal metrics cannot have
a vanishing Futaki character and non-reductive automorphism group.
This observation is addressed in more detail in [16].

We prove Theorem 2, then sketch the calculations needed to prove
Theorem 3. Finally we prove Theorem 4 by linking reductivity of
Aut°(ΛO—for N almost-homogeneous—to existence of sufficiently many
positive and negative eigenvalues of the class £ι(L°, λ)> where the open
orbit of N is regarded as the total space of principal Cx-bundle L°
equipped with a /^-invariant Hermitian metric h.

ACKNOWLEDGEMENTS The author would warmly like to thank his
advisor Professor S. Kobayashi for helpful discussions and advice;
Professor A. Futaki for carefully reading the proof of Theorem 1, correcting
logical and notational errors, and making many invaluable suggestions;
Z.-D. Guan, for pointing out that Theorem 1 holds when there are
Ricci-flat factors in the base, in particular that Corollary 1.1 holds when
the group K has a torus factor; Professor J.A. Wolf for helpful discussions;
and the referee for pointing out an error in the original proof of Theorem 4.

2. Metrics of Special Type

The results of this section are primarily due to Koiso and
Sakane. When a result has previously been stated in the form given
here, we have included a citation. Results stated without a citation are
implicit in [20, 14, 19]. Some of the details do not seem to exist in
written form, particularly in the form used here, so we have included them.

Let M be a compact (connected) Kahlerian manifold, p: L -»M a
holomorphic line bundle, L° the complement of the zero section, and L
a Kahlerian compactification of L°. Let h be a Hermitian metric on L,
and let s: L°—»(0,oo) be the associated norm function. Assume that s
extends to a continuous function s: L —> [0,oo], and that L\L° is a disjoint
union of two complex submanifolds of L.

The group Cx acts naturally on L°. Let S generate the S1 -action,
so that exρ2π*S=Id, and let H=—JS.

Lemma 2.1. As functions on L°, ds(H) = s.
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Proof. The group R+ acts on L° by scalar multiplication along the
fibres. For a point zeL°, we have

d_
"dx

d
x z, Hs(z)=—

ι dx x=l
x.z\\ = \\z\\ =s(z). (1)

Q.E.D.

The map (p,s): L°-»Mx(0,oo) factors through the quotient map π:
L° -> Z/VS1, yielding a diffeomorphism Z/VS1 ~Mx (0,oo).

Fix .Re(0,oo) and let τ: (0,oo) -» (0,7?) be an increasing diffeomor-
phism. Assume that τ(s) and τ(\/s) extend smoothly over 0 and satisfy

τ'(oo) = lim—

Let g, be a one-parameter family of Riemannian metrics on M. A
Hermitian metric on L° is of special type if there exists a Riemannian metric

£(*>*) =A(,)(*) + <*τ(s)2 (2)

on L°/*S1^Mx (0,oo) such that the projection π is a Riemannian
submersion. By abuse of language, we say a metric on L is of special
type if the restriction to L° is of special type.

Put t = τ(s): L — > [0,7?], and note that t(z) is the distance from the point
zeL° to the submanifold {$ = 0} with respect to the metric.

We say a function /: L -> R depends only on s if there is a function /:
(0,oo) -+R with /=/(*).

Lemma 2.2. The function dt(H) depends only on s. If we put
dt(H) = u(t), then u'(0) = l andu'(R)=-\.

Proof. By Lemma 2.1, dt(H) = τ'(s)Hs = sτ'(s). Since t depends only
on 5, we may write dt(H) = u(t) meaningfully. To prove the assertions
about derivatives, differentiate u(t) = sτ'(s) with respect to s, obtaining

Since τ'(0)^0, w'(0) = l. To treat the case s=oo, write τ(l/r) as a Taylor
series about r = 0:
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Differentiating with respect to r at r = 0 gives

τ'O/r), (4)
r-Or

which exists and is non-zero by hypothesis. Differentiating again,

r^0r\r r

Since this limit exists, the term in parentheses must approach zero as
r —> 0. In particular,

lim —τ"(l/r)= — 21im — τ'(l/r) = 261. (5)
V Y

As in equation (3),

1 \ / ' \ / ι I \ / i= hm = hm ( + -
dt t = R . s-*ao ?'($) r-.(

Using equations (4) and (5), this equals

-,. (6)

Q.E.D.

Lemma 2.3. ([20]) ^4 metric g of special type is Kάhler if and only if
1. gt is a Kάhler metric on M for all £e(0,JR), and

2 Tt 8t= —u(i)B, where B is the 2-tensor associated to the curvature form
p = 2πc1(L,/0 of the bundle metric hy i.e. B(X,Y) =

Proof. ([20], pp. 166-7.) For a vector field X on M of type (1,0),
define the horizontal lift X by

so the horizontal lift is Cx -invariant. Let ωt and ω denote the Kahler
forms of gt and g respectively. By invariance of the horizontal lift under
the Cx -action,
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(dω)(HJH,X) = 0 = (dω)(JH,X, Y}.

For vector fields X, Y, and Z on M,

(dω)(X,Ϋ,Z) = (dωt)(X,Y,Z).

Finally, [X, Ϋ]-[X^Y] = -B(X,JY)(JH), so

(dω)(H,X, Ϋ) = H(gt(X,J Y)) + B(XyJ Y)gt(JH,JH)

dt l

Q.E.D.

REMARK 2.1. If p: L-»M is a holomorphic line bundle over a
compact Kahler manifold, then any representative p of the class 2πci(L)
is the curvature form of a Hermitian fibre metric, see for example [18].

Lemma 2.4. Let gM be a Kahler metric on M and let B be the
curvature tensor of (L,h). Define b>0 by

)= u(x)dx.
Jo

2b--

Let U: [0,R] -» [ — b,b] be the antiderίvative of u given by

Av

U(w)=-b+\ u(x)dx.
Jo

Assume gM±bB is a Kahler metric. Then the special-type metric

(7)

is Kahler on L°.

Proof. The metric gM—U(t)B + dt2 on Mx(0,oo) makes π into a
Riemannian submersion, and the conditions of Lemma 2.3 are satisfied.

Q.E.D.

Introduce the function φ:[ — byb]->R by φ(U(i)) = u2(t).

Lemma 2.5. The function φ satisfies the following properties.
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1. φ(w)>0, with equality if and only if w= ±b.
2. φ'( — 6) = 2, φ'(b)=— 2, and φ extends smoothly over ±b.
3. For any smooth function f : [ — 6,6]-»/?,

where U=U(t): L-+[-6,6].

Proof. The first statement follows at once from φ(U)=g(H,H). The
second follows from Lemma 2.2. The third follows from

Hθ= U'(τ(s))τ'(s)Hs = u(t) sτ'(s) = u2(t) = φ(U). (8)
Q.E.D.

Proposition 2.1. Let L be a compactification of L°, and let h be a
Hermitian fibre metric on L with norm function s and curvature tensor
B. Suppose the following data are given: a Kάhler metric gM on M, a
number 6 > 0 with gM ± bB positive-definite, a function φ : [ — 6,6] -> R satisfying
the first two conditions of Lemma 2.5, and a function U: L — > [ — 6,6] depending
only on s and satisfying the third condition of Lemma 2.5. Then there exists
a special-type metric of the form (7) on L°.

Proof. Given the above data, define t: L° -> (0,ί?) by

dx
*<*)= -=, (9)

and put t = τ(s) as usual. The integral is bounded because φ has simple
zeros at +6. We claim the metric

g = dt2 + (dtoj)2 +p*gM- Up*B

is Kahler. If we define U: (0,7?) -> (-6,6) by U=U(t), then it suffices
to show U' — u by Lemma 2.3, where u(t) = dt(H) = sτ'(s). Differentiating
equation (9) by the vector field H gives

sτ'(s), (10)

which implies U'(t) = ̂ /φ(U), while φ(U} = HU=U'(t) sτ'(s) by condi-
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tion 3. Combining these, Ur(t) = ̂ /φ(U) = sτr(s) = u(t). Q.E.D.

Proposition 2.2. Suppose φ: [ — b,b]-*R satisfies the first two
conditions of Lemma 2.5. Then there exists a function U: L-+[ — byb],
unique up to the action of R +

 y satisfying condition 3 of Lemma 2.5.

Proof. Let s be the norm function of a Hermitian fibre metric on
L. For re(0,oo) and ye( — b,b), the equation

dx
—- = 0 (11)

defines y as a function of r by the Implicit Function Theorem, and y:
(0,oo) -> ( — 6,δ) is an increasing diffeomorphism since the integrand is
positive on ( — b,b) and has simple poles at +b. Moreover, y extends
continuously over r = 0 and r=oo. Put U=y(s): L-+[ — byb]. We claim
that

HU=φ(U).

This follows from

dx
\ogs =

by differentiating with respect to H and using Lemma 2.1, since

Q.E.D.

In short, a special-type Kahler metric on L is determined by the
base metric gM , the fibre metric hy a number b > 0, and a smooth function
φ: [ — b,b] — > R satisfying the first two conditions of Lemma 2.5, cf.[19].

We continue with the exposition of [20]. On a trivializing
neighborhood for L, there exist local coordinates z°, -zm such that z1 , -zm

are coordinates on M and z° is a fibre coordinate with d/dz° = H—^/ — \S.
We say such a coordinate system is adapted to L. Let 5α, 0<α<m,
denote partial differentiation.

Lemma 2.6. ([20]) With respect to an adapted coordinate system,
the components of the metric g are given by
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£0o = 2u2(t), g0β = 2u(t)dβty gΛ-β = (gM)aβ- U(t)BΛβ + 28Λtdβt (12)

for l<α, β<m.

On a fibre of L° we may assume that dΛt = 0 for l<α<ra. Under
this assumption we have, on a fibre,

Lemma 2.7. ([20]) Let φ = φ(t): L° -+ R be a function depending
only on t. Then

d0d0φ=u(t)(uφfγ(t)ί d0d-βφ=oy dΛdβ$=--(uφ'χt)BΛβ. (is)

Define q = q(t) = άet(l-U(t)g~^B\ so det(g) = 2u2(t)q det£M, and put

The components of the Ricci tensor are given , on the fibre , by

Όo= -u(t)(urj(t), r0β = 09 rβ? = (rM)β? + ̂ (fir)(ί)fiβ?, (14)

where rM is the Ricci tensor of gM.

Proof. See [20], pp. 168-9. Q.E.D.

For subsequent calculations it is substantially more convenient to
express the metric and Ricci tensor in terms of the parameter U. Observe
that on MX (0,oo) ̂ L0/^1 we have

π*H=s—=u(t)— = φ(U) - .
ds dt dU

On a fibre where δαs = 0 for l<α<m,

0, ga-β = (gM)Λβ-UBXf (15)

If f=f(U): L-*R is a function depending only on C7, then (on a fibre)

. (16)

Define Q: [-b,b]^R by Q(U) = q(t) = det(l - Ug^B), and put
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The components of the Ricci tensor are given, on the fibre, by

roδ= -H(φΨ('U)), roy = 0, rβί = (rM)βJ + (φΨ')(U)flβίί. (17)

Lemma 2.8. If f=f(U): L-+R depends only on C7, then

I /dvol(sf) = 2π Vol(M,£M) \ f(x)Q(x)dx. (18)
JL J-b

Proof. Compute the iterated integral, using det(gt) = Q(t7)det(gM).
Q.E.D.

Finally, we state a result giving necessary and sufficient conditions
for extendability of special-type metrics to L. It was first proven in
[20], in the course of proving their Theorem 4.1.

Proposition 2.3. Let g = dt2 + (dt°J)2 +p*gM — Up*B be a special-type
metric on L° such that the associated function φ satisfies the first two
conditions of Lemma 2.5. Assume there exists a special-type Kάhler metric
g on L with

g\Lo = dζ2 + (dζoj)2 +p*gM - Vp'B,

where the functions 0 and V have the same range. Then there exists a
function φ: L -> R depending only on s such that

on L°, and the metric g extends to a Kάhler metric on L.

Proof. Put U= ί7(ί), P=F(ζ), and let v= F'>0, \l*(V) = v2(ζ). Note
that ζ depends only on sy and is 'increasing with respect to s' . We may
regard t as a function of ζ and U as a function of F, so that

dζ v(ζ)" dV

By Lemma 2.5, ψ(V) = 2(V + b) + O((V + b)2) near V=-b, and an
analogous equation holds for φ. Since
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'dU

U extends to a smooth function on [O,/?]. Moreover, U— V vanishes on
the submanifolds {s = 0} and {s= oo}. Thus there exists a smooth function
φ: [ — byb]— >R satisfying

<20>
Put φ = φ(V). We will prove the following assertions:

1. g + ddφ=g on £°, and
2. g + ddφ is positive-definite on L\L°.

Compute on a fibre with respect to an adapted coordinate system where
dΛs = 0. By equations (15), (16), and (17), and by the definition of φ,

To prove the second assertion, compare g=g + ddφ and g on tubular
neighborhoods of the submanifolds {$ = 0} and {s= oo}. Since φ depends
only on F, which is constant on the 'ends' of L, g and g coincide on
the tangent bundles, and differ on the normal bundles by a constant factor of

g(H,H)

g(H,H)

which converges to a non-zero value as s -> 0 or s -> oo . This completes
the proof of the proposition. Q.E.D.

We summarize the results of this section as follows.

Theorem 5. Suppose L is a compactificatίon of L°, and the natural
C x -action extends to L. Assume L admits a Kahler metric g which is of
the form
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when restricted to L°, and the range of V is [ — b,b]. Given any smooth
function φ: [ — byb]-*R satisfying the first two conditions of Lemma 2.5,
there is a Kάhler metric g on L which is of the form (7) when restricted to
L°. Moreover g(H,H) = φ(U(t))=HU(t).

Proof. By Proposition 2.2, there is a function U as in condition 3
of Lemma 2.5. By Proposition 2.1, there is a special-type metric g on
L°, of the form (7) with U=U(t), and g(H,H) = φ(U) = HU. By
Proposition 2.3, this metric extends to L. Q.E.D.

3. Extremal Metrics

We recall the definition of extremality for Kahler metrics. Let N
be a compact Kahlerian manifold of complex dimension m. For Ω a
fixed Kahler class on N, let Ω+ denote the set of Kahler forms in
Ω. Define the functional ΦΩ: Ω+->/? by

Γ ωm

= σ* —
JN ™\

where ω eΩ+ and σω is the scalar curvature of ω. After Calabi [7], we
say co is an extremal metric if co is a critical point of the functional
Φβ. By the Cauchy-Schwarz inequality,

(

"-

and this bound is achieved precisely when there exists an ω e Ω+ with
constant scalar curvature. We often write Ωm[ΛΓ] = VolΩ(ΛO

Calabi computed the Euler-Lagrange equation for the problem of
minimizing ΦΩ. To explain this, we recall that the complex gradient
(with respect to ω) of a smooth function F is the vector field of type
(1,0) associated to the (0,l)-form 5F. In local; coordinates #α, if

ω = ̂ /— lΣgaβdz" ί\dz^ and (g?Λ) is the inverse matrix of (gΛβ), then

Theorem 6. ([7]) If N is compact, a metric ωeΩ+ is extremal if and
only if the gradient field of the scalar curvature σω is holomorphic.
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3.1. Extremality of Special-Type Metrics. From now on, we
assume the following. For /=!,•••,&, (Mhω^) is a compact, Ricci-
nonnegative Einstein-Kahler manifold of complex dimension l{. Assume
(DI is indivisible and integral. There exist integers /c^O with ci(Miίωi) =
K^I. This restriction on the sign of the curvature will be necessary for
the proof of Proposition 3.1. Put M = M1x- xMkί and by abuse of
notation let ωt denote the pullback by projection on Mt. Let p: (L,h) -> M
be the holomorphic Hermitian line bundle with first Chern form
ci(Lyh)=Σίiniωί. Fix positive real numbers a{ and b with ai + bn^O, and
let gM be the Kahler metric whose Kahler form is Σ^ω,-. The eigenvalues
of rM (the Ricci tensor of gM) and B with respect to gM are constant on
MI specifically, the eigenvalues of rM are /c/fl^O, of multiplicity /,-, and
the eigenvalues of B are n Ja^ also of multiplicity lt. In other words,
the line bundle L is a tensor product of Einstein-Hermitian line
bundles. The function Q(zv) = det(I—wg~j^B) is given by

ai

Recall that Q(U) = q, as in Lemma 2.7. Introduce the function

(22)

Q and GQ are defined on all of Ry and are positive on ( — 6,6).

Lemma 3.1. Suppose g = dt2 + (dtoj)2 +p*gM- Up*B on L°. Ow L°,
ίΛ^ scalar curvature σ of g is

(23)

Proof. Choose an adapted coordinate system near z so that dat = 0
for α=l , ,m on the fibre containing z. By equation (15), g is a
block diagonal matrix

ow ίΛβ yίδr^, where gt is the Einstein-Kahler metric on Mt. By equation
(17), the Ricci tensor of g is the block-diagonal matrix
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- φ(φΨ)'(U)® 0 (κt + 5

where Ψ = log(φQ) as usual. Taking the trace of r with respect to g and
using

k n I 1
Σ —ij~^ = -OogQ'X^), (<pΨ7 + (<pΨ')(iogQ)'=—(<pQ)",

* -l ί ϊ Λ^

proves equation (23). Q.E.D.

In particular, if a special-type metric on L° extends smoothly to a
compactification L, then the right-hand side of equation (23) must converge
as U —> ±b. This is vacuously true if L\L° is of pure codimension one,
since in this case ai>\nt\.

Lemma 3.2. Suppose g is a metric of special type on L. g is extremal
if and only if the scalar curvature of g is of the form σQ + λU for some
constants σ0 and λ.

Proof. By Theorem 6, the gradient of σ = σ(U) is a global
holomorphic vector field on L. The gradient field of the function U is

H—^/~Ξ\S. Thus on L°

(24)

This extends to a holomorphic vector field on L if and only if σ'(U) is
a global holomorphic function, i.e. a constant. Q.E.D.

3.2. Proof of Theorem 1. Let Q,GQ: [-byb] -+R be defined by

equations (21) and (22).

Proposition 3.1. Given constants σ0 andλ, define φ: [ — byb]-+Rby

(φQ)(w) = 2(w + b)Q( - ft) - 2 (σ0 + λx- G(x))(w - x)Q(x)dx. (25)
J -b

For a suitable choice of σ0 and λ, this function φ satisfies the first two

conditions of Lemma 2.5.

Proof. φ( — ft) = 0 and φ'( — b) = 2 are immediate. <p(6) = 0 is equiva-

lent to
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0 = 260(-6)- (σ0 + λx-G(x))(b-x)Q(x)dx. (26)
J -b

Under this hypothesis, (φQ)'(b) = φ'(b)Q(b), so φ'(b) = — 2 is equivalent to

- 20(6) = 20( - b) - 2 (σ0 + λx - G(x))Q(x)dx. (27)
J-b

Define constants α, /?, and γ by

α= Q(x)dx9 β= xQ(x)dx, γ = x2Q(x)dx.
J -b J -b J -b

Equations (26) and (27) are rewritten as

σ0α + λβ = 0(6) + Q( - b) + G(x)Q(x)dx,
J -b

σ0β + λγ = 6(0(6) - Q( - b)} + \ xG(x)Q(x)dx.
J -b

This system always has a solution (σ0,Λ,) since αγ — /?2>0. For this choice
of σ0 and A, the function φ defined by equation (25) satisfies φ(6) = 0,

φ'(b)=-2.
It remains to show that the function φ defined by equation (25) is

positive on the open interval ( — 6,6). To preserve continuity of the
argument we defer this to Appendix A. The idea is to show that the
polynomial (φQY does not have enough roots on the interval ( — 6,6) for
φQ to become negative. Since 0>0 on ( — 6,6), so is φ. Q.E.D.

Using the function φ whose existence is guaranteed by Proposition
3.1, construct a special-type Kahler metric g as in Theorem 5. By
Lemma 3.1, the scalar curvature of g is σ0 + Λ,ϊ7, where (σ0,A) is as in
the proof of Proposition 3.1. By Lemma 3.2, g is extremal. This
completes the proof of Theorem 1. Q.E.D.

We note the following result, which seems to be of sufficient interest
to be stated separately. Our setup is as in Theorem 1.

Proposition 3.2. Given a smooth function σ: [ — 6,6]—> R, define the
function φσ: [ — 6,6]-»/? by
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2 Λv \

(w + 6)0(-*)- (σ(x)-G(x))(w-x)Q(x)dx . (28)
J-b )

Suppose the function φ = φσ satisfies the conditions
1. φ>0 on ( — 6, 6), and
2. φ(6) = 0, φ'(b)=-2.

Then σ(U) is the scalar curvature of a special-type metric on L, where the
function U: L—>[ — 6,6] is as in Proposition 2.2.

REMARK 3.1. The endpoint conditions φ(6) = 0 and φ'(b)=—2 are
equivalent to the system

b(Q(b) - Q( - 6)) = (σ(x) - G(x))xQ(x)dx,
J-b

0(6) + 0( - b) = \ (σ(x) - G(x))Q(x)dx.
J-b

The total scalar curvature of a Kahler metric depends only on the choice
of Kahler class. Computing this value for a special-type metric gives,
by Lemmas 2.8 and 3.1,

Γ ί Γ \σ dvolfe) = 2π Vol(M,#M) I Q(b) + Q( - 6) + G(x)Q(x)dx I .
JL \ J-b /

In words, the special-type metric defined by φ extends to L if and only
if the fibres 'close up', i.e. φ(b) = 0, and the total scalar curvature takes
the 'correct' value, i.e. φ(b)=—2.

Proposition 3.2. Characterizes the functions which can arise as the
scalar curvature of a special-type metric. The condition φσ>0 is an
open condition and amounts to positive-definiteness of the resulting
symmetric two-tensor.

The boundary conditions are the more interesting from a geometric
point of view. For example, if one takes σ to be a constant, then the
boundary conditions at b cannot be simultaneously satisfied unless the
Futaki character vanishes. In [14, 20] the constant is dictated by the
Kahler class, and the condition ^(H) = 0 is the integrability condition
which guarantees that φ(b) = 0. If one wants σ to be of the form a + cx
on [ — 6,6], then the choice of Kahler class determines a and c uniquely,
cf. [12], Theorem 3.3.3.
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In this sense, existence of Kahler metrics with constant scalar
curvature is overdetermined, which interprets the necessity and sufficiency
of the condition that the Futaki character vanshes. Existence of extremal
metrics is, in this sense, unobstructed.

If N is the total space of a vector bundle or disc bundle over a
product of Einstein-Kahler manifolds, there are no non-trivial boundary
conditions. Given some mildly restrictive conditions on the curvature
of N (regarded as a vector bundle), one can construct complete
Einstein-Kahler metrics of special type on N. This has been accomplished
by other techniques, see [6, 29, 31] for example.

3.3. Historical Remarks. The first examples of (non-Einstein)
extremal Kahler metrics were obtained by Calabi [7]. He solved a
differential equation for the Kahler potential of an extremal metric g on
P1 bundles over Pm. His method relies on the fact that the total space
of any (negative) holomorphic Cx-bundle over Pm is covered by Cm+1\{0},
and thus does not generalize easily.

Sakane [30] proved existence of non-homogeneous Einstein-Kahler
metrics on certain Fano manifolds of the form L, under the assumption
that the Futaki invariant vanishes. This result was generalized jointly
with Koiso [20] to include the manifolds considered in our Theorem 1.

At about the same time Koiso and Sakane announced their result,
Mabuchi [25] obtained a separate proof of existence of Einstein-Kahler
metrics on the same class of Fano manifolds. His proof comes from
symplectic geometry, and interprets the Futaki character in these
terms. It also uses the fact that every holomorphic line bundle over a
homogeneous Kahler manifold is homogeneous, so any automorphism of
the base lifts to a bundle automorphism.

In [19], Remark 2.3, Koiso claimed that L admits an extremal metric
in the antίcanonical class, provided L is Fano.

LeBrun and Simanca [22, 23] have recently obtained beautiful results
on existence of extremal metrics under small deformations of the Kahler
class and/or the complex structure. They are able to give many new
examples of extremal Kahler metrics on certain complex surfaces. Their
results also put our examples into a more general context.

In principle one could search for Einstein-Kahler metrics directly
by the present method, though the proofs of [20] and [25] are better
adapted to the Einstein case. In particular, it is convenient to let the
range of the function U and the choice of base metric gM be determined
by the anticanonical polarization ίϊ = 2πc1(M).
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4. Examples

Suppose a compact Lie group K acts on a Kahler manifold N with
real hypersurface orbits. Then N is almost-homogeneous (see [15],
Theorem 3.2), and the union L° of the principal /^-orbits is naturally a
principal Cx-bundle over a homogeneous Kahler manifold M. Each
Kahler class on N is represented by a 7^-invariant metric (by averaging),
and this metric is of special type if one chooses the fibre metric h to
be K-mvariant. The remaining hypotheses of Theorem 1 are clear since
M is /^-homogeneous. Thus N admits an extremal metric in each Kahler
class.1

If the compactification L o/L° is the associated projective line bundle,
then homogeneity of the base space is not required to prove
existence. Since there are examples (due to Siu [33], Nadel [28], and
Tian [34, 35]) of positive Einsten-Kahler manifolds with no holomorphic
vector fields, one gets extremal metrics with non-constant curvature on
manifolds with a one-dimensional space of holomorphic vector fields.

For ι = l, ••-,£, let (M^g^) be a Ricci-positive Einstein-Kahler manifold
of dimension /;, with b2(Mi) = hltl(Mi) = l. Assume further that the
Kahler form α^ is indivisible and integral. This implies that Pic(7Vfί)c±(Z
is generated by the holomorphic Hermitian line bundle with first Chern
form ωt. Define κt>0 by c1(Mhωi) = κiωi. Put M=M^ x ••• xMk, and
by abuse of notation let ωt denote the pullback under projection to
MI. Let p: (L,h) —> M be the holomorphic Hermitian line bundle with
ci(L,h) = Σniωh and put E = L®1. Let p: L = P(E)-+M, denote by τ
c= β*(E)-+L the tautological bundle, and let ζ = ci(τ)eH2(L,Z). By the
Leray-Hirsch Theorem, we have an explicit description of the cohomology
ring of L.

Lemma 4.1. As an H2(M,Z)-module, H2(L,Z) is generated by the
class ζ, subject to the single relation

C2-^c1(L)C = 0. (29)

As remarked above, extendability of a special-type metric on L° to
L is easy to verify. This follows immediately from Proposition 2.3 and
the following:

Lemma 4.2. Fix a Kahler class ω on L. There exists a special-type

1The author would like to acknowledge Z. D. Guan for pointing out that the positivity proof for
φ goes through essentially unchanged if there is a torus factor in M.



580 A.D. HWANG

Kdhler metric representing Ω, whose restriction to a fibre is the Fubini-Study
metric.

Proof. Choose an adapted local coordinate system for L°, so z°=selθ

is the fibre coordinate. It is straightforward to check that if u(t) = bsin(t/b),
then the map

z°t->(u(t)cosθ, u(t)sinθy bcos(t/b))

is an isometric embedding from the fibre to the sphere of radius b>0
in /?3, where t = τ(s) as usual.

By Lemma 4.1, a Kahler class Ω on L is determined by the Kahler
class of the metric gM = Σiaiωj and by Ω[F]=4π&>0, where F is a fibre
of L. By scaling the metric, we may assume 6 = 1. Taking

= 2tan

we get u(t) = sτ'(s) = s'mt as desired. Q.E.D.

REMARK 4.1. The restriction of a special-type metric to the closure
of a fibre of L° is an S1 -invariant metric on a two-shpere, which embeds
in R3 as a surface of revolution if and only if |w'(£)|<l for t e(QyR). To
see this, observe that the function t: L — » [0,jR] is the distance to the zero
section. The function 2nu(f) is the length of the S1-orbit of a point at
distance t from the zero section since u(t)= \\H\\ = \\S\\. If a typical fibre
embeds isometrically in /?3, then the generating curve is parametrized
by (η(t),u(t))> ίe[0,Λ], where η'(t)2 + u'(t)2 = l.

We remark that our existence proof fails for arbitrary almost-
homogeneous spaces. Even in dimension two there are equivariant
compactifications of C x x C x on which a maximal compact group has
complex hypersurface orbits. The simplest are the blowing-up of the
complex projective plane at two or three points.

Recent work of LeBrun and Simanca [22,23] shows that for any
Kahlerian manifold with fixed complex structure, the set of extremal
classes (i.e. Kahler classes containing an extremal metric) is open in the
set of all Kahler classes.

If three non-collinear points are blown up on P2, the results of [22]
imply existence of many extremal metrics since this surface admits an
Einstein-Kahler metric by a theorem of Siu [33]. In fact, LeBrun and
Simanca's results show that the set of Kahler classes containing a constant
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curvature representative is a real-analytic hypersurface in the set of
extremal classes near the anticanonical class.

For the below-up of P2 at two points or three collinear points nothing
is known; the results of [23] do not guarantee the set of extremal classes
is non-empty, and these manifolds admit no Einstein-Kahler metric. On
the other hand, it would be extremely surprising if the blow-up of P2

at two points admits no extremal metric.

5. Metrics With Constant Curvature

It is of interest to find simple necessary and sufficient conditions for
existence of Kahler metrics with constant scalar curvature on a compact
manifold N. Regarding necessity, there is a theorem due to Lichnerowicz
relating the structure of Aut°(ΛΓ) with existence of a constant curvature
metric. Recall our convention or reductivity of groups, which does not
assume the group to be algebraic.

Theorem 7. ([24]) Let N be a compact manifold admitting a Kahler
metric with constant scalar curvature. Then the connected automorphism
group Aut0(ΛΓ) is reductive.

Proof. See [8], Theorem 1, or [12], Theorem 2.3.6. Q.E.D.

There is a sharper necessary condition due to Calabi and Futaki. For
a given Kahler class Ω, there is a Lie algebra character

which vanishes if Ω contains a metric with constant scalar curvature. The
trade-off is that this character is not easily computed in general. (How-
ever, if Ω = 2π£1(ΛΓ)>0, then there is a localization formula for ̂ Ω, see[14].)

We recall the definition of 3F Ω. Fix any Kahler form ωeΩ, and let
p and Jtifp denote the Ricci form and the harmonic part of the Ricci
form respectively. There is a smooth function Fω: N— > R, unique up to
an added constant, with

. (30)

For a holomorphic vector field X, define

. (31)
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Proposition 5.1. The functional 2F Ω is independent of the choice of
ωeΩ. Thus it is invariant under the coadjoint action of Aut°(ΛΓ), i.e. is
a Lie algebra character.

Proof. See for instance [12], Theorem 3.2.1, or [14], Theorem 2.3.
Q.E.D.

Proposition 5.2. 7/Ω contains a metric with constant scalar curvature,
then ^Ω vanishes identically. Conversely, if ^Ω vanishes, then an
extremal metric in Ω has constant scalar curvature.

Proof. The first statement follows at once from Proposition 5.1,
since the scalar curvature of ω is constant if and only if p is harmonic,
if and only if Fω is constant.

To prove the second statement, it is actually easier to prove the
apparently stronger assertion: If ω is extremal with scalar curvature σ,
and e^

r

β(gradσ) = 0, then σ is constant. To see this, first observe that

by taking the trace of equation (30). Writing Fω = l

ί ωm Γ ωm

(gβΛσβFΛ)—=- (σOF)—
v m\ JN ml

ml

with equality if and only if Π^=0. This property of the Futaki character
is due to Calabi [8]. Q.E.D.

REMARK 5.1. Since the integral over N of a Laplacian vanishes,

.
Ml * "I »!Voln(JV)

In [8], Calabi poses the question of whether a sharper lower bound for
the functional ΦΩ can be found. Naturally, this bound should reduce to
the Cauchy-Schwarz bound when Ω+ contains a metric with constant
curvature. The above strongly suggests that
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(32)
m!VolΩ(ΛΓ)

is the desired bound, where XΩ is the vector field whose existence is
asserted by [13], see also [12], Theorem 3.3.3. In any case, the functional
ΦΩ has at most one critical value, which is given by equation (32).

REMARK 5.2. If N admits an extremal metric in a Kahler class with
vanishing Futaki character, then by the theorem of Lichnerowicz the
connected automorphism group of N is reductive. Together with
Theorem 1, this gives a simple proof that certain manifolds, e.g. the
blowing-up of projective space along a linear subspace, have non-vanishing
Futaki character for every Kahler class. For other consequences of this
remark, see [16].

5.1. Proofs of Theorems 2 and 3.

For the remainder of Section 5, it is convenient to work with the polynomial

By abuse of notation, we denote this polynomial by Q, also.
For a metric g of special type, the scalar curvature is constant if

and only if λ = 0. By scaling, we may assume Ω[.F]=4π, i.e. that
6 = 1. Solve equations (26) and (27) for λ to obtain the following.

Lemma 5.1. The scalar curvature of g is constant if and only if

xGQ(x)dx\\ Q(x)dx-
-1 / J - l

/ Γ \Γ
I OΠ}4-Of — 1^4- I ΓίOfrWr 1 rO(ΎWγ = 0 Π3">I ^^V -«• / 1 ^ /^\ ) ι ^ I V-Λ J^/l Λ ItC Λ' I I <Λ/\^\^tΛ> ίiΛΛ/ v/. ^ J J j

V J-l / J - l

We first prove Theorem 2 for projective line bundles over
M=M1xM2y where b2(M^ = \. Let ω£ be an indivisible, integral
Einstein-Kahler form on M{. By abuse of notation we write ωt for the
pullback to M by projection to Mt. Let (L,h) be the holomorphic line
bundle with ci(L,h) = niω1+n2ω2. Assume without loss of generality
that ni>0>n2. Put gM = α1ω1 +tf2ω2,

 ai>\ni\> and let g be the extremal
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metric guaranteed by Theorem 1.

We wish to solve equation (33). Writing ^ = £,- + 1^1, where ^>0,
we regard the left-hand side of equation (33) as a polynomial A(tl9t2) in
tt. For each fixed £>0, \(tyct) is a polynomial of degree 2l± + 2l2 — \ in
t. We will show the sign of the leading term depends on c. For the
remainder of the proof we use an ellipsis mark (•••) to denote "terms
of lower degree in t9 ' . Regarding Q and GQ as functions of x, t , and c,

where μ = κ2l2nί — κ1l1n2, V = κ1l1n2 + κ2l2n1, X = cκlll + κ2l2, c and t are
positive, and ace [ — 1,1]. The binomial theorem gives

In equation (33), the contribution from the terms

α \(i / p \ p
xGQ(x)dx\\ Q(x)dx-( GQ(x)dx\\ xQ(x)dx

-1 / J - l V J - 1 /J- l

-Q(-\))\ Q(x)dx-(Q(\) + Q(-l))\ xQ(x
J - l J - l

is of degree <2(/1 + /2 — 1) in t, so modulo lower-order terms,

)dx

(34)

Since n1 > 0 > n2, there exist positive values of c and t for which A.(t1 , t2) = 0,
tι>0. Each solution gives rise to a Kahler metric with constant scalar
curvature, and no two such metrics are homothetic since 6=1 for all of
them. This establishes Theorem 2 when b2(M) = 2.

REMARK 5.3. If both Q and G are even functions of x, then the
scalar curvature is constant. This is the case, for instance, if M1=M2,
n1 = — n2, and α± —α2 Such a restriction is not necessary: If M± =M2 =
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P1, n± = — n2 = l, then the scalar curvature is also constant if aia2 = ai + a2.
It is not difficult to see directly that λ = 0 if and only if J2Γ

β(/ί) = 0.
This also follows immeditely from Proposition 5.2.

The proof of Theorem 2 when M=M^ x ••• x Mk follows easily: For
/=!, ••-,&, let ω£ be the pullback of an Einstein-Kahler form on M{. Let
p: (L,h)—>M be the holomorphic line bundle with ci(L,h) = Σiniωh and
as above define Λ, which becomes a polynomial in k variables
1 1 , , tk. Assume for convenience that n± > 0 > n2 . Make the substitution

i = —ti if ^>0; ti = —t2 if ^<0; ί ί = =l if ^ = 0. (35)
W i

This choice of ίf ensures Q has only two real roots. The above argument
shows that the scalar curvature vanishes for appropriately chosern t± and
t2. Since Λ is a polynomial in k variables and takes both positive and
negative values, the zero set is a real hypersurface (even though we have
only explicitly shown existence of a one-parameter family of solutions).
This completes the proof of Theorem 2. Q.E.D.

We next determine what happens when the zero and infinity sections
of L are partially blown down. Let D0 and D^ be their images in TV,
of codimension d0 and d^. Under the hypotheses of Theorem 3, the
polynomial Q is given by

where k>2, and ni>0>n2 without loss of generality. The function G
is given by

^ " " y
l—x i z r i ί + lw — nx

A computation analogous to that in equation (34) shows the leading
coefficient of Λ(ί !,-•-, ίfc) takes both positive and negative values, depending
on the choice of t{. Using equation (35) it suffices to consider the case
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G(x,t,c) = -
-1) , Kji t K212

l-x

Calculation of the leading term in the left-hand side of equation (33) is
expedited by evaluating some integrals that appear repeatedly.

Lemma 5.2. For non-negative integers m and n,

* + 1n\m\
/(fi,m) = (1 +*)"(! -*)*<** = -

(w + nι+1)!

Π
J(n,m)=

-i
.

(w + m + 2)!

Proof. The formula for I(n,m) is trivial if m = 0 or w = 0. The
general case follows from the recursion

The second equation follows easily from the first together with

J(n,m) = I(n+l,m)-I(n,m). Q.E.D.

Using Lemma 5.2, expand the left-hand side of equation (33), keeping
track of the coefficients of £2/ι + 2 /2-ι ^ laborious (but otherwise
straightforward) calculation gives

1 + , (36)

where

Verification of equation (36) is best achieved by separating the cases
where the codimension of neither end, exactly one end, or both ends is
equal to one. Additionally, one should separately compute the coefficients
of t2lί + 2h and ί2iι + 2i2-ι for the terms

Λ

-O(-l))
J

XQ(x)dx
-1 -1

and
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xGQ(x)dχ}\ Q(x)dx-l GQ(x)dx\\ xQ(x)dx
-1 / J - l V J - 1 / J - l

using Lemma 5.2. Interestingly, equation (36) holds for all d^.d^^l,
though the surviving terms from equation (33) differ for the cases
d0 = d^ = 1 , d0 > d^ = 1 , and d0, d^ > 1 . This completes the proof of
Theorem 3. Q.E.D.

The (constant) scalar curvature of any of these metrics is positive. To
see this, compute the average scalar curvature JJfσ. The scalar curvature
of g is a = σ(U)y where

σ(x) = G(*) --— (φ0)''(*). (37)
2Q(x)

By Lemma 2.8, see also Remark 3.1,

(Jfσ) Q(x)dx = Q(b) + Q(-b) + G(x)Q(x)dx. (38)
J - b J -b

The right hand side is positive, as is Qy so JJfσ>Q.

5.2. Proof of Theorem 4. We recall the basic structure theorems
for Kahler manifolds with real hypersurface orbits. For details, the
reader should consult the papers of Ahiezer [1], and Huckleberry and
Snow [15].

Let N be a compact, almost-homogeneous Kahler manifold with
disconnected exceptional set. A maximal compact group K c= Aut°(ΛΓ)
acts with real cohomogeneity one. There exist a .KΓ-homogeneous Kahler
manifold M and a homogeneous C x -bundle p: L° — » M such that the
open orbit in JV is isomorphic to the total space of L°. The complement
of the open orbit is a disjoint union of two ^-homogeneous complex
submanifolds D0 and D^. Their normal bundles E0 and E^ are
homogeneous.

The blow-up of N along DQ^JD^ is the P1 -bundle L associated to
L0. The ^-action lifts to L, and the blow-down w: L — > N is
X-equivariant.

We seek to characterize reductivity of Aut°(ΛΓ) in terms of the
curvature of L°. This is accomplished by relating reductivity with
non-existence of sections of E0 and E^, then using the Borel-Weil Theorem
to relate curvature and existence of holomorphic sections.
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Lemma 5.3. Let N and L be as above. If Aυt°(ΛΓ) is reductive, then

In particular, the submanίfolds D0 and D^ are preserved by Aut°(ΛΓ).

Proof. There is a natural injective group homomorphism

Aut°(L) c; Aut°(ΛO (39)

whose image consists of automorphisms of N preserving the submanifolds
D0 and D^. If Aut°(Λ/) is reductive, then its Lie algebra is the
complexification of the Lie algebra of the compact group K. But K
preseves D0 and D^y so every element of Aut°(Λ/) must also. Thus the
map in equation (39) is surjective. Q.E.D.

Lemma 5.4. Let p: E -» M be a holomorphic vector bundle over a
compact Kάhler manifold. If H°(M,E)^Q, then the total space of E admits
a one parameter group of automorphisms which does not preserve the zero
section.

Proof. If 9 is a section of E, one may define a one-parameter group
of automorphisms of the total space of E by "adding θ in the fibre
direction/' More precisly, let 9eH°(MyE) be a non-zero section. Then
p*9 is a non-zero section of p*E. Regarding p*E as the bundle of vertical
tangent vectors of E, we have p*E c= TE. Then ®t = exp(tp*9) is a
one-parameter group of fibre-preserving automorphisms which does not
preserve the zero section of E. Q.E.D.

Lemma 5.5. // Aut°(ΛO ^ reductive, then

Proof. Suppose H°(DQ,EQ)^(). Then there is a one-parameter
group Θ, of automorphisms of E0 which do not preserve D0 by Lemma
5.4, and Θ, induces a one-parameter group of automorphisms on the
compact manifold P(£"0φl), which is nothing but the blow-up of N along
Dφ. &t also preserves the exceptional divisor of the blow-up, so it
descends to a one-parameter group of automorphisms of N. This implies
Aut°(JV) is not reductive by Lemma 5.3. A similar statement holds for
Ex. Q.E.D.

Lemma 5.6. Let (E,h) -* D be a Hermitian holomorphic vector bundle
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of rank r over a compact Kάhler manifold, π: P(E) —> D the projection, and
let (L,hf) c (π*E,π*h) be the tautological bundle equipped with the induced
Hermitian metric. Assume the eigenvalues of the first Chern forms
c±(E,h) and c±(L,h') are constant, and that c±(L,h'} has no more than r—\
negative eigenvalues. Then c^(

Proof. Assume to the contrary, that there exists a tangent vector
vpeTpD with ci(EJh)(vp9vp)<0. We will show that ^(L,/*') has a
non-vertical eigenvector with negative eigenvalue.

Let ZΛ be local coordinates on D near p, let ei be a local unitary
frame of E consisting of eigenvectors of the curvature operator of (E,h),
and let el by the dual coframe. The curvature of (E,h) is given by

and the first Chern form of (E,h) is given by

2π 2π i,α,/j

Without loss of generality, we may assume

iv ϋp) < 0.

For convenience, we let z* denote horizontal coordinates on P(E). Let
,R* denote the curvature of (π*£",π*Λ) and let 7?' denote the curvature of
(L,/*') Let q=[e1(p)]eP(Ep), and let wqeTqP(E) be a lit of vp. The
sections π*et are a local unitary frame for π*E near q, and the value of
the section π*ei at q lies in Lq. Computing the curvature of (L,h) at q,
using the principle that "curvature decreses in subbundles," see for
example [17] for a precise statement,
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^Γ~( Σ^iitfM*ΛΛ/W,,£p) <0.
2π \<α /2π

Thus c^L.h) has more than r—l negative eigenvalues. Q.E.D.

Proposition 5.3. Let N be an almost-homogeneous Kdhler manifold
with two ends DG and D^. Let E0 and E^ be the normal bundles of D0

and D^ in N, of rank d0 and d^. Blowing up N along DQvD^, we
obtain an almost-homogeneous P1-bundle L over P(E0)^P(E00)^My and
L -» P(EQ) is the blow-up of E0 along the zero section, i.e. the tautological
bundle of E0. Equip L with a K-invariant Hermitίan metric h. //Άut°(ΛΓ)
is reductive, then c^(Lyh) has at least d0 negative eigenvalues and at least
d^ positive eigenvalues.

Proof. Suppose cv(Lyh) has exactly d0 — l negative eigenvalues. The
corresponding bundle of eigenspaces is exactly the vertical tangent bundle
of P(EQ), that is, the kernel of (πo),: TP(EQ) -> 77)0. By Lemma 5.6,
c^E^^O. By the Borel-Weil Theorem, see for example [4], Theorem
24.7, H°(D0,E0)τ£Q, that is, E0 admits a non-zero holomorphic
section. Lemma 5.5 now implies Aut°(ΛΓ) is not reductive. Similarly,
ci(L,h)= —Cι(L~l,h~l) has at least d^ positive eigenvalues. Q.E.D.

Theorem 4 follows immediately from Theorem 3 and Proposition 5.3.

REMARK 5.4. A general version of Theorem 4 does not hold. There
are examples of complex surfaces with discrete automorphism group, yet
admitting no Kahler metric with constant scalar curvature; see [5,22].
Our feeling is that there must be a simple auxilliary condition,
such as rigidity of the complex structure or positivity of the first Chern
class, under which a version of Theorem 4 holds. The present
understanding of existence and obstructedness of extremal Kahler metrics
is incomplete. As in the Einstein-Kahler case, it seems likely that the
simplest obstructions are related to holomorphic vector fields. In the
absence of holomorphic vector fields, there are probably obstructions
depending in a very subtle way on the complex structure of the underlying
manifold. Fujiki and Schumacher have investigated questions of this
sort as well as moduli questions for extremal Kahler metrics, see [9,10]
and the references contained therein.
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6. Appendix A

We collect here the details of the root-counting argument in the
proof of Proposition 3.1. We also make some remarks regarding properties
of the polynomial Q in relation to the geometry of L.

6.1. Remarks on the Function Q. A special-type metric is
constructed in part from a path in the space of Riemannian metrics on
the base space M, namely

S,=SM-U(t)B (40)

in the notation of Section 2. For each ίe[0,jR], one may regard g^gt
as a smooth section of the bundle End(TM) so that

is a function on M. Under the hypotheses of Section 3, this function
is constant for each t. Expressed with respect to the function f7, we

have q(t) — Q(U). Since gt is positive-definite for all ίe(0,/?), Q is a
positive function on the open interval ( — 6,6). The roots of Q are at

Pi = aί/ni when n

Denote the submanifold {$ = 0} c L by £)0, and let dQ be its complex
codimension. Define D^ and d^ similary. Since L is obtained by
suitably identifying the normal bundles of D0 and D^, gt converges to
a Hermitian form of rank m — dQ + \ on M as t -* 0, and to a form of
rank m — d^ + \ as t — > R, where m is the complex dimension of M, cf.

[14]. Thus

where P>0 on [ — 6,6]. In particular, Q vanishes at an endpoint of the
interval [ — 6,6] precisely when the corresponding component of L\L° has

codimension (in L) greater than one. This puts restrictions on the choice
of constants ah which simply reflects the fact that a special-type metric

dt2 + (dto J)2 + (at

i = l

does not always extend to L if the submanifolds Z)0 and D^ are not divisors.
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6.2. Properties of the Function G. Let rM be the Ricci tensor
of gM, and regard g^rM as a section of End(TM) for each t. Under
the hypotheses of Section 3, the eigenvalues of this bundle endomorphism
are non-negative constants on M. It makes sense to take the trace of
this bundle endomorphism. If we define the function G: ( — 6, b) -> R by

then tr(#ί~
1rM) = G( £/(£)), where t and U are as in Section 2. It is

convenient to regard G as defined everywhere except at the roots of Qy

and to regard the polynomial GQ as being defined everywhere. Let the
roots of Q be indexed so that

pi<p2<" <pj<-b<0<b<pj+i<"'<pk.

G has a simple pole at pi = ai/ni provided K^O. We assume this is the
case unless specified otherwise.

Lemma 6.1. Assume all the κ:t have the same sign. For ί=\, •••,
k— 1, i^j, the function G maps the interval (/>£,/>$ + ι) onto the real
numbers. Moreover, G does not map (pppj+i) onto the real numbers.

Proof. Assume K j > 0 for definiteness. G is smooth on each interval

(PhPί+i)' Note that pi and nt have the same sign since aι>0, and that
ni and ni + 1 have the same sign unless i=j. Near w=ph G has a Laurent
series expansion

G(w)=- — - -- h real analytic,
pi-W

where the constants ci — κili/ni are negative for /=!,•••, j and positive for
ί=y+l, •••, k. The lemma follows by taking w\pt and wSpi + i.

Q.E.D.

The same conclusion holds for the function G— /, where / is an
arbitrary continuous function, since /is bounded on each interval^, />ί + 1).
This has a useful consequence.

Lemma 6.2. Suppose f is a linear function. Then (G— f)Q vanishes

at most twice on the open interval (pj,pj+ι).
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Proof. Fix arbitrary constants σ0 and λy and let /(^) = σ0-f λw. If
(G—f)Q has a root of order / / — I at ph and has at least one root

on (pi,Pi+ι), iφj by Lemma 6.1. Thus on the complement of
(pppj+i) 2 (-6,6), (G-/)Q has at least

roots. A similar counting holds if fc—0 for some ί, for then G—f is
smooth at ph while Q has a root of order /£. By Lemma 6.1, G—f
vanishes an even number of times on (pppj+ι)j counting multiplicity.
Since G—f vanishes at most three times on (pj,pj+ι) by the above root
count, it can vanish at most twice. Q.E.D.

6.3. Positivity of φ. It suffices to prove that the function φQ is
positive on the open interval ( — 6,6) since Q>0 there. Since φQ is a
polynomial, this may be done via analysis of the roots of the second
derivative. Differentiating equation (25) twice,

By Lemma 6.2, this vanishes at most twice on (pj,pj+ι) Ξ> ( — 6,6), i.e.
φQ has at most two inflection points on the interval ( — 6,6). This is
the first explicit use of the curvature hypotheses on the base space, but
requires only that the curvatures all have the same sign (or be zero). As
in the proof of Lemma 6.1,

lim G(w) — (σQ + λw)= lim G(w) — (σ0 + λw) = + oo,
\v\pj w/pj + 1

so (φQ)">0 near the ends of (pj,pj+1). This is the second use of the
curvature hypothesis on (MygM)y and uses non-negativity in an essential
way; if fc f<0, then the above limits are — oo.

The constants σ0 and λ are chosen so that (φQ)(b) = 0. Since φQ
is positive near the ends of ( — 6,6), convex near the ends of
(pjypj+i) Ξ2 ( — 6,6), and has at most two inflection points on (£,-,£/+ ι),
(φQ)(w)>0 for we( — b,b). This completes the proof of Proposition 3.1.
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