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1. Introduction and Results

This note is concerned with the nonlinear parabolic differential equation

(E; φ) -%-u(t)+dφ(u(t))ΞBθ , *>0 ,
at

where φ is a proper lower semi-continuous (Ί.s.c.) convex functional defined on
a real Hubert space H and Qφ denotes the subdifferential of φ. We call an if-
valued function u on (0, oo) a solution of (E; φ) if M G ^ J J ^ O , OO): H) and the
relations u{t)^3)(dφ) and —(dldt)u(t)<=dφ(u(ή) hold for a.e. t>0.

As is well known, the subdifferential dφ of a proper l.s.c. convex functional

φ o n a real Hubert space H is a maximal monotone operator in H. Hence — dφ

generates a possibly nonlinear semigroup {exp(—tdφ): t>0} on 3){dφ). In

other words, for each x^3)(dφ) the function exp(—{ )dφ)x on [0, oo) is the

unique solution of the initial value problem of (E; φ) and s-limuow(£)=tt(O)=#.
In this note, our starting position is being given a solution

Ĵ Ίoc2((0> oo): H) of (E; φ)y not being given an initial value of 3)(dφ), and our
purpose is to study the behavior of u(t) as 110. Our results are the following.

Theorem 1.1. Suppose that dimi/=oo. Then there is a proper l.s.c.
convex functional φ on H and a solution u of (E; φ) such that u(t) converges weak-
ly, but not strongly, to a point of £)(dφ) as t \ 0.

REMARK 1.1. Let v( ) be the solution of (E;<p) in Theorem 1.1. Put
x=w-\imnQv(t)^:3)(dφ). If we consider an initial value problem of (E φ)
with a generalized initial condition

= x

then we have at least two solutions v( ) and exp{—( )dφ}x> where {exp(—tdφ):
t>:0} denotes the nonlinear semigroup generated by — dφ.
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REMARK 1.2. In the case where dφ is linear, hence dφ is a nonnegative self-
adjoint operator in H by definition, then for each — τ < 0 there is a Hubert space
X-τ satisfying the dense imbedding HdX and a generator A-r such that every
solution we W]oc((0, °°)-H) of (E; φ) can be extended uniquely on (—T, «>) as
a solution of (d/dt)u-{-<Jl-.ru^0, ί>—τ> in X_τ (Arisawa [1]). However Theo-
rem 1.1 shows that in nonlinear cases this extension may be impossible. In fact,
if the solution v of Theorem 1.1 is extended on [0, o o ) t o Z continuously in X-
norm's topology for some space X satisfying the dense imbedding HdX> then
the inclusion X*dH* implies that X-s-limnov(t)==H-w-limnov(t)&<D(dφ).
Hence there is no family {S(ΐ): t>0} of single valued mappings in X such that
S(t)θ>exp(-tdφ) for t>0 and X-s-]imti0S(t)x=x for xtΞ3){dφ).

Theorem 1.2. Suppose that φ satisfies a generalised evenness condition

(1.1) φ{~cx)<φ(x) , X^3){φ)

for some positive constant c. Let u be an arbitrary solution of (E φ) such that
the orbit {u(t): *e(0, 1]} is bounded. Then u converges strongly as /J,0. In
particular, if a solution u of (E; φ) converges weakly as t \ 0, then the strong conver-
gence s-limn ou(t)^H holds.

REMARK 1.3. In Theorem 1.2, the assumption of the boundedness of the
orbit {u(t): £G(0, 1]} is essential to get the strong convergence of u(t) in H as
110. In fact, there is a functional φ such that (i) the generalized evenness con-
dition (1.1) holds; and (ii) there is a solution u of (Έ φ) with the orbit {u(t):
/e(0, 1]} unbounded (hence, u(t) does not converge strongly as £jθ). To see
this, we put, for example, H=R and ^ O * ) ^ - 1 ! * ! 3 , xtΞR. Let weJ^ίo c

2((0,l];
R) be the solution of (E;<p) satisfying u{\)=\. Then, one has u(i) f +oo as
U0.

REMARK 1.4. The generalized evenness condition (1.1) is known to be
sufficient for that all solutions of (E;<p) converge strongly as t->°o (eg. [6]).

2. Proof of Theorem 1.1

Given an infinite dimentional Hubert space H with inner product ( , ) and
norm || ||, let H—Pζ&H^ To define the aimed functional φ: i/-»(— oo, oo],
we first define a function/λ: R

2->[09 oo], λ > l , by

(2.1)

if

if ξ=0, v>0,

otherwise.

Then, for each λ > l , / λ is l.s.c. and convex on R2 (see Baillon [2; Lemma 1]).
Fix a number b>\ and put
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(2.2) x ^ j d * y , , = 1,2,....
o D—1

For each sequence a— {α, } of positive number, we define a proper l.s.c. con-
vex functional φΛ: H-*[0, +° ° ] by

ί Σ «,/*,(*„ *m). * = W -
I +°° , otherwise.

Next, let {«„}• be a sequence in Z2 defined by

«, = (1,0,0,.-.),

«* = (0,^(^,0,0,...),
(2.3)

αβ = (0, .... 0, ex P [^(J-+J-+ -+-L-)l 0, •••).

Then {tfn+0} converges to OeJϊ weakly as w—>oo, but does not converge strong-
ly, since lim^oo||αn+0||-exp(l/δ)< + oo by (2.2).

Let 6e(0, 1). To prove Theorem 1.1, we have only to see that there is a
sequence a={ai} and a solution ιιePΓj^(0, °°);H) of (E ^ J such that the
estimate

(2.4) IKτ.)-βJ |<θ", «=1,2,. ,

holds for some sequence {τn} with τnJ0 as Λ-*OO. We verify this in a num-
ber of lemmas below.

The first lemma is a direct result of the definition (2.1).

(0

Lemma 2.1.

dη

where θ=Ύan-\vlξ).

(ϋ)

We define a family {1

_ O*-1^—Xsin

— 0 λ - 1 (λ cos ^-

a/λ(f,o)9θ

?,:n=l,2, ..}

θ+θ cos (9),

f θ sin (9), | , v:

, ?:>0.

of functionals on Hby
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-<χ> , otherwise.

Then each Fn is l.s.c. and convex. Let {exρ(—tdφΛ)\ t>0} and {exp(—tandFn):

t>0}, an>0, be the semigroups generated by — dφΛ and —andFny respectively.

We note the following lemma.

L e m m a 2.2. (Baillon [2; Lemma 2]) For α n > 0 ,

s-lim^co exp (—tandFn)a t t+1 = an .

Now, for each w, we put

\dFn\ = sup{ | |3^v | | : x = {xt)^3){QFn), χn, xn+1>0}.

Then, by Lemma 2.1,

(2.5) IdFn\ = (jr/2)λ "1{λϊ+(w/2)a>1 / 2

Lemma 2.3. L ^ α = {or,} fe an arbitrary sequence. Then, for each ny

n-l

ί = l

Proof. Fix an arbitrary integer n. Put

Since (9i i ',)α1,+ 13θ for i>n+l by Lemma 2.1 (ii), the well-known equation

\\(dldt)uΛ(t)\\=mmi\\x\\: x<=dφΛ(uΛ{t))}, t>0, implies that

«.W = («..i(0. -»«-. .+i( ί ). 0, .

un{t) = (0, - , 0, «.,,(<), «.,,+!(«), 0,

Hence, one has the estimate

dt

n-l

ί = l
= aκ(-dFn(ua(t))+dFn(un(t)), uβ(t)-iφ))+ Σ (ceflFjuJt)), uΛ{t)-un

^ 0 + Σ α , |9F,.| ||β.(ί)-:

or
» - l

4τ \K(t)-un{t)\\< Σ «,-1ΘF,I, f>0 .
at ί = 1

Therefore Lemma 2.3 was proved.
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Lemma 2.4. For each £e(0,1), there is a sequence a={a£ and positive
numbers tn> n=l> 2, ••• such that

(2.6) \\εxp(-tndφΛ)att+1-an\\<εn, n = 1, 2, 3, ...,

(2.7) *„<£*, n = l , 2 , 3 , - . . .

Proof. We show the existence of the aimed sequences a and {2n} inductively.
First, by Lemma 2.2, there is Ί\>0 such that

Put tι=S. Let a be an arbitrary sequence satisfying ax=t{~ιTx. Then both
(2.6) and (2.7) hold for Λ = 1 , since exρ(—tdφΛ)a2—exp(—taιdF1)a2, t>0.

Next, let k be an arbitrary integer. Assume that there are positive num-
bers aly "'jCCk and tly •••,£* such that, for any sequence a with the first k num-
bers alf α2, •• y(Xk> estimates (2.6) and (2.7) hold for n<k. By Lemma 2.2,
let Tk+1 be a number such that

Put

ak+1 = max{£ k+1Tk+u 2TkΛ.xB
 k ι Σ <

ι = l

Then, estimate (2.7) holds for n=k+l. To verify (2.6) for n=k+l, let α
be an arbitrary sequence whose first &+1 numbers are au a2i •••, αΛ+1, respec-
tively. Lemma 2.3 implies

\\txp(-tk+1dφΛ)ak+2-exp(-tk+1ak+1dFk+1)ak+1\\

Noting that Tk+1=tk+1αk+1 in (2.8), we get (2.6) for n=k+l.
Consequently, there are sequences α and {tn} satisfying (2.6) and (2.7) for

every n.

Lemma 2.5. Fix £^(0, 1). Let α= {α, } and {tn} be as mentioned in Lem-
ma 2.4. Put

(2.9) T ^ Σ Γ — H * , , n = l , 2 , . . .

ΓA ί̂ ί^r^ M α solution u^W^((0, °°);H) of ( E ; ^ ) such that estimate (2.4)
holds.

Proof. Define functions vn& Wl£([τΛ, °o); H), n = l , 2, •••, by

(2.10) ^ W = e x p ( - ( ί - τ # ) Θ ^ K + i , ί > τ Λ , n = 1 , 2 , . . . .
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Then by (2.6) and the nonexpansivity of the semigroup {exp(—tdφΛ)}y one has

(2.11) I M ί ) - ^ W I I ^ Σ J ! . « + i ^ , ™<n, t^τm.

In particular,

(2.12) \K(rm)-am\\<6m, m<n.

Since τΛ->0 as n->oo by (2.7) and (2.9), there is a function u: (0, oo)->// such
that for each δ > 0

s-limn^^(β) vn(t) = u{t) uniformly on [δ, oo).

By (2.12), u satisfies (2.4).
Now to complete the proof of Lemma 2.5, we have only to see that u be-

longs to W ôfc((0, °°)\H) and is a solution of (E;<pΛ). To verify this, it is
enough to see that for each k=ί9 2, •••, the set {dφ(vn(τk))ι n=k-\-\, k+2, •••}
is bounded in H, since dφ is strongly-weakly continuous from H to H. Fix
arbitrary k. From Lemma 2.1 (i) and (2.12), it follows that

\\{dldt)vn{t)\\ dt<[k'Tk+1 \\{dldt){txV{-takdFk)ak+ι)}\\dt+S^c{k),
+i Jo

Since \\(djdt)vn( )\\ are decreasing,

Hence the set {dφΛ{vn(τ^j): w>&+l} is bounded, and Lemma 2.5 was proved.

REMARK 2.1. In the above example, the weak limit of the solution u(t) as
t JO happened to be a minimum point of φΛ. But we can revise the functional
φ of Theorem 1.1 such that the set of minimum point of φ is empty. In fact,
we can define the aimed functional φ as below. Put H={re0: r^R}@HQ,
where eo^H\{O}. Let φΛ\ i/0->[0, oo] and u0: [0, oo)->H0 be the functional and
the solution, respectively, obtained in the above proof of Theorem 1.1. Put

φ(pc) = (x, e0)+φΛ(T?rojHo x) , if x^2){φ) == + oo, otherwise.

Then φ does not attain the minimum in H. The H-valued function u(t)
—teo+uQ(t) on ίe(0 , oo) is a solution of (E; φ) and converges weakly to
as t \ 0, but does not converge strongly.

3. Proof of Theorem 1.2

Let «G Wίo c

2((0, oo) H) be a solution of (E; φ). Then, since
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j-φ(u(t))=-\\j-u(t)\\*, a.e. f>0,

the value ψ{u{t)) is decreasing on (0, oo). The definition of the subdifferential

and condition (1.1) yield

{-cu(t)-u{τ\ -u\τ))<φ{-cu{t))-φ{u{τ))<φ(u(t))-φ(u(τ))

< 0 , a.e. τG(0,/),

or

(_„(,), -u\r))<c-\u{τ), -U'(T)) , a.e. τG(0, t),

Hence

(3.1) IKO-^JII1 = Λ{~^Γ M*)-i<τ)\ήdτ = SI 2(u(t)-u(τ), u\r))dτ

<;/*2(1+0WT), - I I ' ( T ) ) * = (1+O{IK*)IMK*)II2}>

By (3.1) we first see that ||#( )ll2 is decreasing on (0, ©o). Hence, in the case

where {|KOII: ίe(O, 1]} is bounded, then IK*)H2 converges as t\0. There-

fore , using (3.1) again yields that u(t) converges strongly as ί | 0 .
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