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1. Introduction and Results

This note is concerned with the nonlinear parabolic differential equation
(E; ) Luy+op(u)20, >0,

where @ is a proper lower semi-continuous (l.s.c.) convex functional defined on
a real Hilbert space H and 8¢ denotes the subdifferential of . We call an H-
valued function % on (0, o) a solution of (E; @) if u& W %((0, «0): H) and the
relations u(t) € 9(0p) and —(d/dt)u(t) € dep(u(2)) hold for a.e. t>0.

As is well known, the subdifferential 8¢ of a proper l.s.c. convex functional

@ on a real Hilbert space H is a maximal monotone operator in H. Hence —0¢
generates a possibly nonlinear semigroup {exp(—t0p): >0} on D(dgp). In
other words, for each xE9)(dp) the function exp(—(+)dg)x on [0, o) is the
unique solution of the initial value problem of (E; @) and s-lim,,,u(¢)=u(0)=x.

In this note, our starting position is being given a solution u€E
WLH(0, 0): H) of (E; @), not being given an initial value of 9(8¢), and our

purpose is to study the behavior of u(t) as £ 0. Our results are the following.

Theorem 1.1. Suppose that dim H=oco. Then there is a proper ls.c.
convex functional @ on H and a solution u of (E; @) such that u(t) converges weak-
ly, but not strongly, to a point of D(d¢p) as t| 0.

ReMark 1.1. Let () be the solution of (E; @) in Theorem 1.1. Put
x=w-lim,,,v({)ED(0p). If we consider an initial value problem of (E; @)
with a generalized initial condition

w-lim, o u(t) = x,

then we have at least two solutions o(-) and exp{—(+)0¢}x, where {exp(—20p):
t>0} denotes the nonlinear semigroup generated by —0¢.
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ReMARK 1.2. In the case where 9 is linear, hence 8¢ is a nonnegative self-
adjoint operator in H by definition, then for each -—7<C0 there is a Hilbert space
X_, satisfying the dense imbedding H C X and a generator A_, such that every
solution u€ W 2((0, ): H) of (E; @) can be extended uniquely on (—, ) as
a solution of (d/dtyu+A-,u=0,1>—=, in X_, (Arisawa [1]). However Theo-
rem 1.1 shows that in nonlinear cases this extension may be impossible. In fact,
if the solution v of Theorem 1.1 is extended on [0, o) to X continuously in X-
norm’s topology for some space X satisfying the dense imbedding H C X, then
the inclusion X*CH?* implies that X-s-lim,,,v(¢)=H-w-lim,,,v(t)ED(0p).
Hence there is no family {S(z): >0} of single valued mappings in X such that
S(t) Dexp(—tdp) for >0 and X-s-lim,,,S(t)x=x for xE D (d¢p).

Theorem 1.2. Suppose that @ satisfies a generalized evenness condition
(1.1) p(—cx)<p(x), *»ED(p)

for some positive constant c. Let u be an arbitrary solution of (E; @) such that
the orbit {u(f): t<(0, 11} is bounded. Then u converges strongly as t|0. In
particular, if a solution u of (E; @) converges weakly as t| 0, then the strong conver-
gence s-lim, , (u(t) € H holds.

ReMARK 1.3. In Theorem 1.2, the assumption of the boundedness of the
orbit {u(z): t<(0, 1]} is essential to get the strong convergence of u(t) in H as
t}0. In fact, there is a functional @ such that (i) the generalized evenness con-
dition (1.1) holds; and (ii) there is a solution # of (E; ) with the orbit {u(z):
t€(0, 1]} unbounded (hence, u(¢) does not converge strongly as £} 0). To see
this, we put, for example, H=R and @(x)=3"!|x|%, x€R. Let ucW;%((0,1];
R) be the solution of (E; @) satisfying u(1)=1. Then, one has u(t) { 4 oo as
t}0.

ReMARK 1.4. The generalized evenness condition (1.1) is known to be
sufficient for that all solutions of (E; ) converge strongly as t— oo (eg. [6]).

2. Proof of Theorem 1.1

Given an infinite dimentional Hilbert space H with inner product (-, -) and
norm ||+||, let H=P@H,. To define the aimed functional @: H—>(— o0, o],
we first define a function f,: R>—[0, o], A>1, by

(E+7)" {Tan (9/E)}*,  if £>0, 2>0,
(2.1) HE 1) = { 2(27=), if £&=0, >0,
40, otherwise.

Then, for each A>1, f, is Ls.c. and convex on R? (see Baillon [2; Lemma 1]).
Fix a number 5>1 and put
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(2.2) =T

b . .
z 0 =1,2, -
8 b—1 > °

For each sequence a={a;} of positive number, we define a proper ls.c. con-
vex functional ¢, : H—>[0, 4 o] by

Dpa) = {(*)71+0EPDH,: 'z:; a; [, (%3, %;44)<oo}

2 C(,-f)".(x.-, xi+1) y X = (xg)?.1+OEQ(<p“) R

+ oo, otherwise.

Pa(x) =

Next, let {a,} be a sequence in /* defined by
a, = (1’ 0’ 0: '") )

4= (0, exp(-1), 0,0, )
(2.3) 2 ’ 8 7\'1; y Yy ’

=, 1 1 1
a, = (0, ,O,exp[g (7\'1"}‘7\2"' +7\m—1)]’0’ )
Then {a,+0} converges to 0€ H weakly as n— oo, but does not converge strong-
ly, since lim,,_,«||@,+0||=exp(1/b) <+ oo by (2.2).
Let €€(0,1). To prove Theorem 1.1, we have only to see that there is a
sequence a={a;} and a solution u€WyZ(0, 0); H) of (E; @,) such that the
estimate

(24) ”u(‘l',, '_an”<8” ’ n=1’ 2; **ty

holds for some sequence {r,} with 7,|0 as #—>oc0. We verify this in a num-

ber of lemmas below.
The first lemma is a direct result of the definition (2.1).

Lemma 2.1.

Q) ,%f?(g, n) = O*(—n sin 6+0 cos §),
aafa (,n) = 0" (A cos 0+ 0sin ), £ >0,
7
where @="Tan"}(5/§).
(i) 0f(§, 020, £=0.

We define a family {F,: n=1, 2, ---} of functionals on H by
Q(Fn) = {(xi)T-l“i'OEZz@Hl:f)‘,(xn: xn+1)<°°})
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Fo@m Xry) , &= (%)71+0E9(F,),
+o0, otherwise.

Fio) =

Then each F, is ls.c. and convex. Let {exp(—t0¢p,): =0} and {exp(—ta,0F,):
t>0}, o, >0, be the semigroups generated by —d¢p, and —a,0F,, respectively.
We note the following lemma.

Lemma 2.2. (Baillon [2; LLemma 2]) For a,>0,
s-lim,,, exp (—ta,0F,)a,, = a, .
Now, for each 7, we put
|0F,| = sup{|[oF,x||: x = (x)€DOF,), %, x>0}
Then, by Lemma 2.1,
25) |0F, | = (z/2/" N+ (z[2)} 2.
Lemma 2.3. Let a={a;} be an arbitrary sequence. Then, for each n,
lexp (—t0@)a s —exp(—t,0F Jayll <t 5 ;| 0|, £20.
Proof. Fix an arbitrary integer . Put
Uy(t) = exp(—10@,)aus;, u,(t) = exp(—ta,0F,)a,,, t=0.

Since (8F;)a,+,20 for i>n+41 by Lemma 2.1 (ii), the well-known equation
[(d/dt)uy(t)l|=min{||x||: xE0p,(%,(t))}, >0, implies that

uu(t) = (ud,l(t): °% ua,n+1(t)7 0’ "')+OEZZ®H1 ’
() = (0, -+, 0, tty o(£), Un wes(t), 0, ) +OEPDH, .

Hence, one has the estimate

1 d

> a llesa(2) —ua(®)II*

= 0 —OF,(ua(2))+0F ,(u,(2)), ta(t)—un(2))+ :X;I:(afaF.-(ua(t)), (1) —14(2))

< 0+ S5 | 0F,| llua®)—u0)l >0,
or
d =
2 )~ < F ] 0F,], £>0.

Therefore Lemma 2.3 was proved.
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Lemma 2.4. For each £€(0,1), there is a sequence a={a;} and positive
numbers t,,n=1, 2, +-- such that

(2.6) lexp(—2,0@4) apr1—a,||<E",  n=1,2,3, .,
(2.7) t,<e", n=123, .

Proof. We show the existence of the aimed sequences « and {z,} inductively.
First, by Lemma 2.2, there is 7;>>0 such that

llexp(—T\0F,)a,—ay|| <€ .

Put #,=¢&. Let o be an arbitrary sequence satisfying a,=#,"'T;. Then both
(2.6) and (2.7) hold for n=1, since exp(—td¢p,)a,=exp(—ta,0F,)a,, t>0.

Next, let £ be an arbitrary integer. Assume that there are positive num-
bers a;, -+, @; and &, «-+, t; such that, for any sequence a with the first 2 num-
bers oy, ay, ++*, o, estimates (2.6) and (2.7) hold for n<k. By Lemma 2.2,
let T,.; be a number such that '

(2.8) [1exp (— T44+10Fj41) @pso— @l <2764+,
Put

k
Oy = max{€~ 1T, 2T, ,&7*! g‘: o;|0F; |}, thn = Apur T hn

Then, estimate (2.7) holds for n=k+41. To verify (2.6) for n=k+1, let
be an arbitrary sequence whose first k41 numbers are «;, @, ***, @441, respec-
tively. Lemma 2.3 implies

|lexp (—25+100n) @pra—€XP (— 2441004410 F 1) @i ||

k
Stk.;.l 2 a;l 6F,| SZ"E"“ .
i=1

Noting that Ty =%+ in (2.8), we get (2.6) for n=k-1.
Consequently, there are sequences « and {z,} satisfying (2.6) and (2.7) for
every n.

Lemma 2.5. Fix £€(0,1). Let a={a;} and {t,} be as mentioned in Lem-
ma 2.4. Put

(2.9) Ty — ZT—”-&-I ti ) n= 1) 2’ e

Then there is a solution u€ W 2((0, ); H) of (E; @,) such that estimate (2.4)
holds.

Proof. Define functions v,& Wii([r,, «); H), n=1, 2, «-+, by

(2.10) V() = exp(—(t—74)0@s)0p11, t=7,, n=1,2,:.
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Then by (2.6) and the nonexpansivity of the semigroup {exp(—td¢p,)}, one has
(2.11) 04()— OmD| S Dtemsr1 &, m<n, t>T,.

In particular,

(2.12) Noa(Tm)—aul| <E™, m<n.

Since 7,—0 as n—>oo by (2.7) and (2.9), there is a function %: (0, co)—>H such
that for each >0

s-lim,>yp) 04(t) = u(t)  uniformly on [8, o).

By (2.12), u satisfies (2.4).

Now to complete the proof of Lemma 2.5, we have only to see that u be-
longs to Wi2((0, oo); H) and is a solution of (E;@,). To verify this, it is
enough to see that for each k=1, 2, -+, the set {0¢(v,(7s)): n=k+1, k+2, -}
is bounded in H, since d¢ is strongly-weakly continuous from H to H. Fix
arbitrary k.. From Lemma 2.1 (i) and (2.12), it follows that

S:" I djdeyon @)l dt<S:"'”“ 11(d/dt) {exp(—ta0Fy) arsr)} ||t +-E=c(E) ,
k1 n>k4-1.

Since ||(d/dt)v,(+)|| are decreasing,
lI(@/dt)vu(rl|<(Ts—Tisr) 'c(R),  n=k+1.
Hence the set {0@,(v,(T:)): n=>k+1} is bounded, and Lemma 2.5 was proved.

ReMARK 2.1. In the above example, the weak limit of the solution u(z) as
¢}0 happened to be a minimum point of @,. But we can revise the functional
@ of Theorem 1.1 such that the set of minimum point of @ is empty. In fact,
we can define the aimed functional @ as below. Put H={re,: r€ R} ©H,,
where e, H\{0}. Let @,: Hy—>[0, oo] and %,: [0, co)—H, be the functional and
the solution, respectively, obtained in the above proof of Theorem 1.1. Put

D(p) = {re,: te R} +D(p,) C {rey: re R} ©H,,
P(x) = (%, &)+ @u(Projy, x), if xED(p); = + oo, otherwise.

Then @ does not attain the minimum in H. The H-valued function u(f)=
—tey+uy(t) on tE(0, o) is a solution of (E; ) and converges weakly to 0 H
as ¢} 0, but does not converge strongly.

3. Proof of Theorem 1.2
Let u W1%((0, o0); H) be a solution of (E; @). Then, since
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2 pu(t) = _uditu(t)HZ, ac. £>0,

the value @(u(t)) is decreasing on (0, o). The definition of the subdifferential
and condition (1.1) yield

(—cult)—u(r), —u'(7)) <@(—cu(t))—p(u(r)) < p(u(t)) — @(u(t))
<0, ae. v€(0,2), >0,

(—u(t), —w'(7))<cNu(r), —u'(7)), ae 7€(0,2), t>0.
Hence
(31) O —u(IF = S|~ ) —um)IP}dr = S 20u()—u(r), w'(r)dr
<[E2(14-c) (), —u'(7))dr = (L+c7) {[lu(s)|P—[lu(®)| P} s

By (3.1) we first see that [Ju(-)|? is decreasing on (0, o). Hence, in the case
where {||u(?)||: t€(0, 1]} is bounded, then ||u(?)|]® converges as £} 0. There-
fore , using (3.1) again yields that u(#) converges strongly as ¢ 0.
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