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0. Introduction

Let G be a finite group. A finite dimensional G-CW-complex X is called
a homotopy representation of G if the H-fixed point set X# is homotopy equiva-
lent to a (dim X#)-dimensional sphere or the empty set for each subgroup H
of G. Moreover if X is G-homotopy equivalent to a finite G-CW-complex,
then X is called a finite homotopy representation of G' and if X is G-homotopy
equivalent to a unit sphere of a real representation of G, then X is called a linear
homotopy representation of G. T. tom Dieck and T. Petrie defined homo-
topy representation groups in order to study homotopy representations. Let
V*(G, k™) be the set of G-homotopy types of homotopy representations. We
define the addition on V*(G, A™) by the join and so V*(G, k) becomes a semi-
group. The Grothendieck group of V*(G, #~) is denoted by V(G, k~) and
called the homotopy representation group. A similar group V(G, k) [resp.
V(G, I)] can be defined for finite [resp. linear] homotopy representations.

Let ¢(G) denote the set of conjugacy classes of subgroups of G and C(G)
the ring of functions from ¢(G) to integers. For a homotopy representation
X, the dimension function Dim X in C(G) is defined by (Dim X)(H)=dim X#
+1. (If X¥ is empty, then we set dim X#=—1.) Then

Dim X%Y = Dim X+Dim Y

for any two homotopy representations. (‘“*”’ means the join.) Hence one
can define the homomorphism

Dim: V(G, \) = C(G) (= k=, horl)

by the natural way. The kernel of Dim is denoted by v(G, A). tom Dieck and
Petrie proved that 9(G, \) is the torsion group of V(G, A) and

(0.1) o(G, h*)=Pic AG),

where Pic Q(G) is the Picard group of the Burnside ring Q(G).
There are the natural homomorphisms
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Je: v(G, ) = o(G, k)

(02) ke: (G, h) — o(G, k7).

The homomorphisms j; and k; are injective in general and hence we often
regard v(G, /) and 9(G, h) as the subgroups of v(G, k) via these injective homo-
morphisms. We prove the following result in Section 2.

Theorem A. The homomorphism kg is an isomorphism if and only if the
Swan subgroup T(G) vanishes.

The definition and properties of the Swan subgroup are mentioned in
Section 1. The finite groups with T(G)=0 are studied by Miyata and Endo
[7]. The Swan subgroups play an important role in the computation of v
(G, h). In fact, the computation of v(G, k) for an abelian group G is com-
pletely reduced to the computation of the Swan subgroups. By computing
the Swan subgroups of some groups, we prove the following result in Section 3.

Theorem B. Suppose that G is an abelian group. Then j; is an isomor-
phism if and only if G is isomorphic to one of the following groups.

(i) C a cyclic group

(ii) G, an abelian 2-group

(iii) Gs an abelian 3-group

(iv) Z[2xG;,

(v) G:XZJ3

(vi) (Z[2)"x(2]3)"

In Section 4 we determine the finite groups with o(G, 2~)=0 by using the
results in Section 2.

Theorem C. The group (G, h™) vanishes if and only if G is isomorphic to
one of the groups:

Zn (n=1, 2, 3, 4 or 6), D(2n) (n=2, 3, 4 or 6), 4,, S,.

Here D(2n) denotes the dihedral group of order 2n and S,[A,) denotes the
symmetric [alternating] group on n symbols.

1. The Swan subgroup

In this Section, we shall summarize the well-known results on the Swan
subgroup. Let >}, be the sum of elements of G in the integral group ring
ZG and [r, 33;] be the left ideal generated by 7 and >3, where r&Z is prime
to the order |G| of G. The ideal [r, 33] is projective as a ZG-module. Hence
[r, 336] decides the element of the reduced projective class group Ko(ZG). From
[9], a homomorphism
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Ss: Z||G|* — Ry(ZG)

is defined by Sg(r)=([r, 2Js]), where Z/|G|* is the unit group of Z/|G|. We
put u(G)=(Z||G|*)/+1. Since S;(4-1)=0, S; induces

Se: u(G) - Ry(ZG),

which is called the Swan homomorphism. The image of S is called the Swan
subgroup of G and denoted by T(G).
The following results are well-known.

Theorem 1.1 ([9]). If G is a cyclic group, then T(G)=0.

Theorem 1.2 ([11)).

(1) T(G) is a quotient group of u(G). ,

(ii) Iff: G—=>G' is a surjective homomorphism, then the natural map K(ZG)
—K\(ZG") sends ([r, 2]) to ([r, 2¢]), hence T(G) onto T(G’).

(iil) The restriction map KZG)—Ky(ZH) sends ([r, 3¢)) to ([, Xul)
hence T(G) onto T(H).

(iv) The exponent of T(G) divides the Artin exponent A(G). (For the
Artin exponent, see [6].)

(v) T(D2")=0(rn>2), T(Q(2")=Z|2 (n=3) and T(SD(2")=Z|2 (n=4),
where D(2") [resp. Q(2"), SD(2")] is the dihedral [resp. quaternion, semi-dihedral]
group of order 2". These groups are called the exceptional groups.

Theorem 1.3 ([10]).

(1) If G is a non-cyclic p-group (p: an odd prime), then T(G) is the cyclic
group of order |G| [p.

(i) If G is a non-cyclic and non-exceptional 2-group, then T(G) is the cyclic
group of order |G| [4.

Let G, denote a p-Sylow subgroup of G.

Corollary 1.4. If T(G) vanishes, then G, is cyclic when p is odd and G,
is cyclic or dihedral.

2. The inclusion %k,
tom Dieck and Petrie defined the finiteness obstraction map
(2.1) p: v(G, b~) — %KO(ZWH) )

where WH=NH|H and NH is the normalizer of H in G. They proved that
the following sequence is exact.

(2.2) 0 o(G, ) % w(G, 1) B DR(ZWH).
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We recall the map p. (For details, see [3].) For any element x of v(G,
k=), there exist homotpoy representations X, Y and a G-map f: X—Y such
that x=X—Y in o(G, #~) and deg f# is prime to |G| for each subgroup H of
G. A function d€C(G) is defined by d(H)=deg f¥ for any (H) and called the
invertible degree function of x. Conversely, any d€C(G) with (d(H), |G|)
=1 for any (H) is the invertible degree function of some x in v(G, h~). The
finiteness obstraction map p is described as follows. The (H)-component pg(x)
eK(ZWH) of p(x) is equal to

(23)  SyadH)— T, axsindl” res) Sux(d(K)),
ICNEK

where K is the subgroup of G such that K/H=K and ag; are certain integers
and d is the invertible degree function of x.

Proof of Theorem A. For any r which is prime to |G|, we take the func-
tion d€C(G) such that d(1)=r and d(H)=1 for (H)=(1). By (2.3), we have
pi(%)=8¢(r) and py(x)=0 for (H)=(1), where x denotes the element of (G,
k=) represented by d. Hence T(G)=0 if p=0. Conversely if T(G) vanishes,
then Sx=0 for any subquotient group K of G by Theorem 1.2. Hence p=0
and so kg is an isomorphism.

Corollary 2.4. Let G be D(2"), Q(2") or SD(2"). Then v(G, h)=v(G, I).

Proof. In the case of D(2"), we have proved it in [8]. In the cases of
0O(2") and SD(2"), ©(G, I) is the subgroup of index 2 of v(G, A=) ([8]). On the
other hand v(G, k) is a proper subgroup of (G, h~) since T(G)=Z/2. Hence
(G, h)=v(G, I).

Remark 2.5. If G is nilpotent, then Dim V(G, I)=DimV(G, #~) ([3])
and hence V(G, k)=V(G, I) for the above groups.

Corollary 2.6. If v(G, h™) vanishes, then T(G) also vanishes.

3. The inclusion jg

Let G be an abelian group. Then o(G, I) and v(G, £~) were computed
by Kawakubo [5] and tom Dieck-Petrie [3] respectively and it is known that
the following diagram is commutative.

oG, I) —> o(G, )

(3.1) lz alz

I;Iu(G/H) C I;Iu(G/H)

G/H : cyclic
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Here u(G/H)=(Z| |G/H | *)/+1.
Furthermore, tom Dieck and Petrie showed the following commutative
diagram.

(G, k™)
(3.2) al’—% P
I «(G/H) —— ©K(Z[G/H])

G/H

Hence we obtain

Proposition 3.3. Let G be an abelian group. Then
(i) (G, h)=v(G, )X N(G),
where N(G)=1I Ker S¢5. (If G is cyclic, then we put N(G)=1.)
H

G/H ; non-cyclic

(ii) o(G, k)[o(G, H)=ST(G/H).

Proof. These are obtained from the exactness of the sequence (2.2) and
the fact that T(G/H)=0 if G/H is cyclic.

Corollary 3.4. Let G be an abelian group. Then
V(G, h)=V(G, )X N(G).
REMARK 3.5. For any finite group, one can show that
[2(G, b7)[o(G, )| 2 | DT(WH)]| .

From now we shall prove Theorem B. Theorem B is proved by the fol-
lowing lemmas.

Lemma 3.6. If N(G)=1 for a non-cyclic abelian group G, then |G|=2"-3"
(n, m=>0).

Proof. If a p-Sylow subgroup G, (p=5) is non-cyclic, then there exists
a subgroup L such that G/L is isomorphic to Z/pXx Z[p. Since Ker S¢; is
non-trivial by Theorem 1.3, G, must be cyclic. We may put G=G,X G3XC,
where C is a cyclic group with (|C|, 6)=1. We prove that C is trivial. As-
sume that C is non-trivial. Since G is non-cyclic, there exists a subgroup K
such that G/K is isomorphic to Z/qgX Z|gX Z[p (¢=2 or 3, p=5). The Artin
exponent A(G/K) is equal to ¢ and so T(G/K) is a g-group by Theorem 1.2.
On the other hand, it is easily checked that the exponent of #(G/K) is not equal
to g. Hence Ker Sg/r=1 and so N(G)#1. This is a contradiction. There-
fore C is trivial.
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Lemma 3.7. Put G=Z|2X Z|2X Z|3" (m>1). Then Ker Sg=+1if m>2
and Ker S;=1if m=1.

Proof. Since the Artin exponent A(G)=2 and |u(G)|=2-3""", the Swan
subgroup 7(G) is isomorphic to 1 or Z/2. Moreover T(Z[2X Z|2X Z|3)=Z]2
([4], [7]). Hence T(G)=ZJ2. Thus the desired result holds.

Lemma 3.8. Put G=Z[2"XZ[3X Z[3 (n=1). Then Ker Sg=*1 if n>2
and Ker Sg=1if n=1.

Proof. The proof is similar to the proof of Lemma 3.7. The details
are omitted.

Lemma 3.9. Let G, be a non-cyclic abelian group of order 2". We put
G=G,X Z|3. Then Ker S¢,=1 and Ker S;=1.

Proof. By Theorem 1.3, it is clear that Ker Sg,=1. We consider the
restriction map

R = (resg,, resg): T(G) — T(G,)®T(K),

where K is a subgroup which is isomorphic to Z/2X Z[2x Z|3. We show that
R is surjective. Take any element (a, b) in T(G,)PT(K). Then there exists
r&€ Z with (r, | G|)=1 such that resg, S¢(r)=S¢,(r)=a. Put c=resg S¢(r)=Sk(r).
If c=b, then take (2"—1)r [resp. (2"+41)r] instead of » when 7 is odd [resp.
even]. Then

res, S¢((2"£1)r) = Se,(r) = a
and
resg Sc((z"il)r) = Sg(5)+Sk(r) if nis even } _

Sx(7)+Sk(r) if nis odd

The last equality follows from the facts that T(K)=Z/2, Sx(5)=0 and Sg(7)
#0. Hence R is surjective.

The orders of T(G,) and T(K) are 2% and 2 respectively. Since |u(G)|
=2"1 |u(G)|=|T(G)|. Hence Ker S;=1.

Lemma 3.10. Let G, be a non-cyclic abelian group of order 3". We put
G=2Z[2XG;. Then Ker S;,=1 and Ker S;=1.

Proof. This follows from the comparison between the orders of u(G)
and T(G).

Lemma 3.11. We put G=G, X G; for the above G, and G;. Then Ker S;
=1.
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Proof. The restriction maps 7T(G)—T(G,x Z/3) and T(G)—T(G;) are
surjective. Since |7(G,X Z/3)|=2*" by Lemma 3.9 and |T(G;)|=3""" by
Theorem 1.3, we have | T(G)|>2""1-3»"1. Hence Ker Sg=1.

Proof of Theorem B. Assume that j; is an isomorphism (i.e. N(G)=1).
By Lemma 3.6, G=G,xX G, If both G, and G, are cyclic, then G is cyclic.
If G, is cyclic and Gj is non-cyclic, then G,=1 or Z/2 by Lemma 3.8. If G,
is non-cyclic and Gj cyclic, then G,;=1 or Z/3 by Lemma 3.7. If both G, and
G; are non-cyclic, then G=(Z/2)" X (Z/3)" by Lemmas 3.7 and 3.8. Converse-
ly, if G is one of the groups (i)-(vi), then N(G)=1 by Lemmas 3.7-3.11.

4. The finite groups G with v(G, h~)=0

In this Section we determine the finite groups with o(G, #~)=0. We
first show the following result.

Proposition 4.1. Let C be a cyclic subgroup of G. Then the restriction
map

res: v(G, h~) = ov(C, k™)
is surjective.

Proof. Let d=C(C) be an invertible degree function representing x&
v(C, h*). We can choose an integer ax such that d(K)+ax|C| is prime to
|G| for any subgroup K of C. Then d'(K)=d(K)-+ax|C]| is also an invertible
degree function representing x. (See [3].) We define e C(G) by

d'(gHg™) if G) with gHg"'cC
e(H)z{ (glg) (H)E(G) with gHg™' <

otherwise.

This is well-defined since C'is cyclic. Let y=v(G, k™) be the element represented
by e. Then res y=x since d is an invertible degree function of res y.

In the abelian case, we have

Lemma 4.2. Let G be an abelian group. Then (G, h*)=0. If and
only if G is isomorphic to 1, Z|2, Z|3, Z|4, Z|6 or D(4) (=Z[2 X Z|2).

Proof. Using the isomorphism o(G, ~~)=]Ju(G/H), one can easily see it.
H
By Lemmas 4.1 and 4.2, we have

Lemma 4.3. If v(G, h™) vanishes, then any cyclic subgroup C of G is iso-
morphic to 1, Z|2, Z|3, Z|4 or Z|6.

On the other hand, if v(G, A™) vanishes, then the Swan subgroup T(G)
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also vanishes (Corollary 2.6) and hence we have the following conclusion by
Lemma 4.3 and Corollary 1.4.

Lemma 4.4. If v(G, k™) vanishes, then a 2-Sylow subgroup G, is isomorphic
to 1, Z|2, Z[4, D(4) or D(8) and a 3-Sylow subgroup G; is isomorphic to 1, or
Z(3 and a p-Sylow subgroup G, (p=5) is trivial.

We consider a non-abelian group G. Suppose that o(G, A~) vanishes.
Then |G|=6, 8, 12 or 24 by Lemma 44. If |G|=6, then G is isomorphic
to D(6). If |G|=S8, then G is isomorphic to D(8) by Lemma 4.4. If |G|
=12, then G is isomorphic to 4,, D(12) or Q(12). In the case |G|=24, G, is
isomorphic to D(8) by Lemma 4.4. From Burnside’s book ([1] Chap. 9, 126.),
G is isomorphic to one of the groups: D(24), D(8)x Z/3, S, and K=<a, b, c|a*
=b=c*=1, bc=cb, b™'ab=a"', a'ca=c™*). However D(24) and D(8)x Z/3
are omitted by Lemma 4.3. Since K has a subgroup which is isomorphic to
Z|2xX Z|2 X Z|3, the Swan subgroup T(K) is non-trivial and K is also omitted
by Corollary 2.6. Therefore, in the non-abelian case, if v(G, k™) vanishes,
then G is isomorphic to one of the groups: D(6), D(8), D(12), O(12), 4, and S,.

We proved the following formula in [8]. (See also [2].)

Proposition 4.4. For any finite group,
(4.5) [2(G, h7)| = 27| (G)* L p(| WH ) ,

where @ is the Euler function and n is the number of conjugacy classes of subgroups
of G.

By computing |v(G, £~)| as in [8], one can see that |v(G, h”)|=1 for G
=D(6), D(8), D(12), A, or S, and |v(G, h~)|=2 for G=0Q(12). Therefore
we have

Theorem 4.6. (G, h”) vanishes if and only if G is one of the following
groups: Z[n (n=1, 2, 3, 4, 6), D(2n) (n=2, 3, 4, 6), 4, and S,.

As a remark, there exist infinitely many groups with (G, A)=0 (A=h or
). Indeed we have

Proposition 4.7. Let G be an abelian group. Then (G, I) vanishes if
and only if G=(Z|2)" X (Z|4)" or (Z|2)" X (Z[3)" (n, m=0).

Proof. One can see it by using the isomorphism (G, l)zl;[ w(G[H).
G/H : cyclic
By Proposition 4.7 and Theorem B, we have

Corollary 4.8. Let G be an abelian group. Then v(G, h) vanishes if and
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only if v(G, I) vanishes.
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