<table>
<thead>
<tr>
<th>Title</th>
<th>Homotopy representation groups and Swan subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nagasaki, Ikumitsu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 24(2) P.253-P.261</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7629</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7629</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
0. Introduction

Let G be a finite group. A finite dimensional G-CW-complex X is called a homotopy representation of G if the H-fixed point set X^H is homotopy equivalent to a $(\dim X^H)$-dimensional sphere or the empty set for each subgroup H of G. Moreover if X is G-homotopy equivalent to a finite G-CW-complex, then X is called a finite homotopy representation of G and if X is G-homotopy equivalent to a unit sphere of a real representation of G, then X is called a linear homotopy representation of G. T. tom Dieck and T. Petrie defined homotopy representation groups in order to study homotopy representations. Let $V^+(G, h^\infty)$ be the set of G-homotopy types of homotopy representations. We define the addition on $V^+(G, h^\infty)$ by the join and so $V^+(G, h^\infty)$ becomes a semigroup. The Grothendieck group of $V^+(G, h^\infty)$ is denoted by $V(G, h^\infty)$ and called the homotopy representation group. A similar group $V(G, h)$ [resp. $V(G, l)$] can be defined for finite [resp. linear] homotopy representations.

Let $\phi(G)$ denote the set of conjugacy classes of subgroups of G and $C(G)$ the ring of functions from $\phi(G)$ to integers. For a homotopy representation X, the dimension function $\dim X$ in $C(G)$ is defined by $(\dim X)(H)=\dim X^H + 1$. (If X^H is empty, then we set $\dim X^H = -1$.) Then

$$\dim X \star Y = \dim X + \dim Y$$

for any two homotopy representations. ("\star" means the join.) Hence one can define the homomorphism

$$\dim: V(G, \lambda) \to C(G) \quad (\lambda = h^\infty, h \text{ or } l)$$

by the natural way. The kernel of \dim is denoted by $\vartheta(G, \lambda)$. tom Dieck and Petrie proved that $\vartheta(G, \lambda)$ is the torsion group of $V(G, \lambda)$ and

$$\vartheta(G, h^\infty) \approx \text{Pic} \Omega(G),$$

where $\text{Pic} \Omega(G)$ is the Picard group of the Burnside ring $\Omega(G)$.

There are the natural homomorphisms.
(0.2) \quad j_G: v(G, l) \rightarrow v(G, h) \\
\quad k_G: v(G, h) \rightarrow v(G, h^*).

The homomorphisms j_G and k_G are injective in general and hence we often regard $v(G, l)$ and $v(G, h)$ as the subgroups of $v(G, h^*)$ via these injective homomorphisms. We prove the following result in Section 2.

Theorem A. The homomorphism k_G is an isomorphism if and only if the Swan subgroup $T(G)$ vanishes.

The definition and properties of the Swan subgroup are mentioned in Section 1. The finite groups with $T(G)=0$ are studied by Miyata and Endo [7]. The Swan subgroups play an important role in the computation of $v(G, h)$. In fact, the computation of $v(G, h)$ for an abelian group G is completely reduced to the computation of the Swan subgroups. By computing the Swan subgroups of some groups, we prove the following result in Section 3.

Theorem B. Suppose that G is an abelian group. Then j_G is an isomorphism if and only if G is isomorphic to one of the following groups.

(i) C a cyclic group
(ii) G_2 an abelian 2-group
(iii) G_3 an abelian 3-group
(iv) $\mathbb{Z}/2 \times G_3$
(v) $G_2 \times \mathbb{Z}/3$
(vi) $(\mathbb{Z}/2)^n \times (\mathbb{Z}/3)^m$

In Section 4 we determine the finite groups with $v(G, h^*)=0$ by using the results in Section 2.

Theorem C. The group $v(G, h^*)$ vanishes if and only if G is isomorphic to one of the groups:

\mathbb{Z}/n ($n=1, 2, 3, 4$ or 6), $D(2n)$ ($n=2, 3, 4$ or 6), A_4, S_4.

Here $D(2n)$ denotes the dihedral group of order $2n$ and $S_n[A_n]$ denotes the symmetric [alternating] group on n symbols.

1. **The Swan subgroup**

In this Section, we shall summarize the well-known results on the Swan subgroup. Let Σ_G be the sum of elements of G in the integral group ring $\mathbb{Z}G$ and $[r, \Sigma_G]$ be the left ideal generated by r and Σ_G, where $r \in \mathbb{Z}$ is prime to the order $|G|$ of G. The ideal $[r, \Sigma_G]$ is projective as a $\mathbb{Z}G$-module. Hence $[r, \Sigma_G]$ decides the element of the reduced projective class group $\mathcal{K}_G(\mathbb{Z}G)$. From [9], a homomorphism
is defined by \(S_G(r) = ([r, \Sigma_G]) \), where \(\mathbb{Z}/|G|^* \) is the unit group of \(\mathbb{Z}/|G| \). We put \(u(G) = (\mathbb{Z}/|G|^*)/\pm 1 \). Since \(S_G(\pm 1) = 0 \), \(S_G \) induces

\[
S_G: u(G) \rightarrow \tilde{K}_0(\mathbb{Z}G),
\]

which is called the Swan homomorphism. The image of \(S_G \) is called the Swan subgroup of \(G \) and denoted by \(T(G) \).

The following results are well-known.

Theorem 1.1 ([9]). If \(G \) is a cyclic group, then \(T(G) = 0 \).

Theorem 1.2 ([11]).

(i) \(T(G) \) is a quotient group of \(u(G) \).

(ii) If \(f: G \rightarrow G' \) is a surjective homomorphism, then the natural map \(\tilde{K}_0(\mathbb{Z}G) \rightarrow \tilde{K}_0(\mathbb{Z}G') \) sends \(([r, \Sigma_G]) \) to \(([r, \Sigma_{G'}]) \), hence \(T(G) \) onto \(T(G') \).

(iii) The restriction map \(\tilde{K}_0(\mathbb{Z}G) \rightarrow \tilde{K}_0(\mathbb{Z}H) \) sends \(([r, \Sigma_G]) \) to \(([r, \Sigma_H]) \), hence \(T(G) \) onto \(T(H) \).

(iv) The exponent of \(T(G) \) divides the Artin exponent \(A(G) \). (For the Artin exponent, see [5].)

(v) \(T(D(2^n)) = 0 (n \geq 2), T(Q(2^n)) = \mathbb{Z}/2 (n \geq 3) \) and \(T(SD(2^n)) = \mathbb{Z}/2 (n \geq 4) \), where \(D(2^n) \) [resp. \(Q(2^n), SD(2^n) \)] is the dihedral [resp. quaternion, semi-dihedral] group of order \(2^n \). These groups are called the exceptional groups.

Theorem 1.3 ([10]).

(i) If \(G \) is a non-cyclic \(p \)-group (\(p: \) an odd prime), then \(T(G) \) is the cyclic group of order \(|G|/p \).

(ii) If \(G \) is a non-cyclic and non-exceptional 2-group, then \(T(G) \) is the cyclic group of order \(|G|/4 \).

Let \(G_p \) denote a \(p \)-Sylow subgroup of \(G \).

Corollary 1.4. If \(T(G) \) vanishes, then \(G_p \) is cyclic when \(p \) is odd and \(G_2 \) is cyclic or dihedral.

2. **The inclusion \(k_G \)**

tom Dieck and Petrie defined the finiteness obstruction map

\[
\rho: v(G, h^o) \rightarrow \bigoplus_{\mathbb{Z}^G} \tilde{K}_0(\mathbb{Z}WH),
\]

where \(WH = NH/H \) and \(NH \) is the normalizer of \(H \) in \(G \). They proved that the following sequence is exact.

\[
0 \rightarrow v(G, h^o) \xrightarrow{k_G} v(G, h^o) \xrightarrow{\rho} \bigoplus_{\mathbb{Z}^G} \tilde{K}_0(\mathbb{Z}WH). \]
We recall the map ρ. (For details, see [3].) For any element x of $v(G, h^\omega)$, there exist homotopy representations X, Y and a G-map $f: X \to Y$ such that $x=X-Y$ in $v(G, h^\omega)$ and $\deg f^H$ is prime to $|G|$ for each subgroup H of G. A function $d \in C(G)$ is defined by $d(H)=\deg f^H$ for any (H) and called the invertible degree function of x. Conversely, any $d \in C(G)$ with $(d(H), |G|)=1$ for any (H) is the invertible degree function of some x in $v(G, h^\omega)$. The finiteness obstruction map ρ is described as follows. The (H)-component $\rho_H(x)$ of $\rho(x)$ is equal to

\begin{equation}
S_{WH}(d(H)) = \sum_{1 \leq K \leq W} a_{K,L} \ind_{L}^{W} \res_{K}^{L} S_{NK}(d(K)),
\end{equation}

where \hat{K} is the subgroup of G such that $\hat{K}/H=K$ and $a_{K,L}$ are certain integers and d is the invertible degree function of x.

Proof of Theorem A. For any r which is prime to $|G|$, we take the function $d(=C(G)$ such that $d(1)=r$ and $d(H)=1$ for $(H)\neq(1)$. By (2.3), we have $\rho_0(x)=S_0(r)$ and $\rho_H(x)=0$ for $(H)\neq(1)$, where x denotes the element of $v(G, h^\omega)$ represented by d. Hence $T(G)=0$ if $\rho=0$. Conversely if $T(G)$ vanishes, then $S_K=0$ for any subquotient group K of G by Theorem 1.2. Hence $\rho=0$ and so k_G is an isomorphism.

Corollary 2.4. Let G be $D(2^n)$, $Q(2^n)$ or $SD(2^n)$. Then $v(G, h)=v(G, l)$.

Proof. In the case of $D(2^n)$, we have proved it in [8]. In the cases of $Q(2^n)$ and $SD(2^n)$, $v(G, l)$ is the subgroup of index 2 of $v(G, h^\omega)$ ([8]). On the other hand $v(G, h)$ is a proper subgroup of $v(G, h^\omega)$ since $T(G)=\mathbb{Z}/2$. Hence $v(G, h)=v(G, l)$.

Remark 2.5. If G is nilpotent, then $\dim V(G, l)=\dim V(G, h^\omega)$ ([3]) and hence $V(G, h)=V(G, l)$ for the above groups.

Corollary 2.6. If $v(G, h^\omega)$ vanishes, then $T(G)$ also vanishes.

3. The inclusion j_0

Let G be an abelian group. Then $v(G, l)$ and $v(G, h^\omega)$ were computed by Kawakubo [5] and tom Dieck-Petrie [3] respectively and it is known that the following diagram is commutative.

\[
\begin{array}{ccc}
v(G, l) & \longrightarrow & v(G, h^\omega) \\
\downarrow \cong & \ & \downarrow \cong \\
\prod_{H \in \mathbb{H}} u(G|H) & \subset & \prod_{H \in \mathbb{H}} u(G|H) \\
\end{array}
\]

\[\theta/H: \text{cyclic}\]
Here \(u(G/H) = (\mathbb{Z}/|G/H|^*)/\pm 1 \).

Furthermore, tom Dieck and Petrie showed the following commutative diagram.

\[
\begin{array}{c}
\psi(G, h^n) \\
\cong \alpha \\
\prod_h u(G/H) \xrightarrow{\rho} \bigoplus H S_{G/H} \oplus K_5(\mathbb{Z}[G/H]) \\
\end{array}
\]

Hence we obtain

Proposition 3.3. Let \(G \) be an abelian group. Then

(i) \(\psi(G, h) \cong \psi(G, I) \times N(G) \),

where \(N(G) = \prod H \text{Ker } S_{G/H} \). (If \(G \) is cyclic, then we put \(N(G) = 1 \)).

(ii) \(\psi(G, h^n)/\psi(G, h) \cong \bigoplus H T(G/H) \).

Proof. These are obtained from the exactness of the sequence (2.2) and the fact that \(T(G/H) = 0 \) if \(G/H \) is cyclic.

Corollary 3.4. Let \(G \) be an abelian group. Then

\[V(G, h) \cong V(G, I) \times N(G) \, . \]

Remark 3.5. For any finite group, one can show that

\[|\psi(G, h^n)/\psi(G, h)| \geq |\bigoplus H T(WH)| \, . \]

From now we shall prove Theorem B. Theorem B is proved by the following lemmas.

Lemma 3.6. If \(N(G) = 1 \) for a non-cyclic abelian group \(G \), then \(|G| = 2^n \cdot 3^m \) \((n, m \geq 0)\).

Proof. If a \(p \)-Sylow subgroup \(G_p \) \((p \geq 5)\) is non-cyclic, then there exists a subgroup \(L \) such that \(G/L \) is isomorphic to \(\mathbb{Z}/p \times \mathbb{Z}/p \). Since \(\text{Ker } S_{G/L} \) is non-trivial by Theorem 1.3, \(G_p \) must be cyclic. We may put \(G = G_2 \times G_3 \times C \), where \(C \) is a cyclic group with \((|C|, 6) = 1 \). We prove that \(C \) is trivial. Assume that \(C \) is non-trivial. Since \(G \) is non-cyclic, there exists a subgroup \(K \) such that \(G/K \) is isomorphic to \(\mathbb{Z}/q \times \mathbb{Z}/q \times \mathbb{Z}/p \) \((q = 2 \text{ or } 3, p \geq 5)\). The Artin exponent \(A(G/K) \) is equal to \(q \) and so \(T(G/K) \) is a \(q \)-group by Theorem 1.2. On the other hand, it is easily checked that the exponent of \(u(G/K) \) is not equal to \(q \). Hence \(\text{Ker } S_{G/K} \neq 1 \) and so \(N(G) \neq 1 \). This is a contradiction. Therefore \(C \) is trivial.
Lemma 3.7. Put \(G = \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/3^n \) (\(m \geq 1 \)). Then \(\ker S_G \neq 1 \) if \(m \geq 2 \) and \(\ker S_G = 1 \) if \(m = 1 \).

Proof. Since the Artin exponent \(A(G) = 2 \) and \(|u(G)| = 2 \cdot 3^{m-1} \), the Swan subgroup \(T(G) \) is isomorphic to 1 or \(\mathbb{Z}/2 \). Moreover \(T(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/3) = \mathbb{Z}/2 \) ([4], [7]). Hence \(T(G) = \mathbb{Z}/2 \). Thus the desired result holds.

Lemma 3.8. Put \(G = \mathbb{Z}/2^n \times \mathbb{Z}/3 \times \mathbb{Z}/3 \) (\(n \geq 1 \)). Then \(\ker S_G \neq 1 \) if \(n \geq 2 \) and \(\ker S_G = 1 \) if \(n = 1 \).

Proof. The proof is similar to the proof of Lemma 3.7. The details are omitted.

Lemma 3.9. Let \(G_2 \) be a non-cyclic abelian group of order \(2^n \). We put \(G = G_2 \times \mathbb{Z}/3 \). Then \(\ker S_{G_2} = 1 \) and \(\ker S_G = 1 \).

Proof. By Theorem 1.3, it is clear that \(\ker S_{G_2} = 1 \). We consider the restriction map

\[R = (\text{res}_{G_2}, \text{res}_K): T(G) \to T(G_2) \oplus T(K), \]

where \(K \) is a subgroup which is isomorphic to \(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/3 \). We show that \(R \) is surjective. Take any element \((a, b)\) in \(T(G_2) \oplus T(K) \). Then there exists \(r \in \mathbb{Z} \) with \((r, |G|) = 1 \) such that \(\text{res}_{G_2} S_G(r) = S_{G_2}(r) = a \). Put \(c = \text{res}_K S_G(r) = S_K(r) \).

If \(c \neq b \), then take \((2^n - 1)r \) [resp. \((2^n + 1)r \)] instead of \(r \) when \(n \) is odd [resp. even]. Then

\[\text{res}_{G_2} S_G(2^n \pm 1)r = S_{G_2}(r) = a \]

and

\[\text{res}_K S_G(2^n \pm 1)r = \begin{cases} S_K(5) + S_K(r) & \text{if } n \text{ is even} \\ S_K(7) + S_K(r) & \text{if } n \text{ is odd} \end{cases} = b. \]

The last equality follows from the facts that \(T(K) = \mathbb{Z}/2 \), \(S_K(5) \neq 0 \) and \(S_K(7) \neq 0 \). Hence \(R \) is surjective.

The orders of \(T(G_2) \) and \(T(K) \) are \(2^{n-2} \) and 2 respectively. Since \(|u(G)| = 2^{n-2} \), \(|u(G)| = |T(G)| \). Hence \(\ker S_G = 1 \).

Lemma 3.10. Let \(G_3 \) be a non-cyclic abelian group of order \(3^n \). We put \(G = \mathbb{Z}/2 \times G_3 \). Then \(\ker S_{G_3} = 1 \) and \(\ker S_G = 1 \).

Proof. This follows from the comparison between the orders of \(u(G) \) and \(T(G) \).

Lemma 3.11. We put \(G = G_2 \times G_3 \) for the above \(G_2 \) and \(G_3 \). Then \(\ker S_G = 1 \).
Proof. The restriction maps $T(G) \to T(G_2 \times \mathbb{Z}/3)$ and $T(G) \to T(G_3)$ are surjective. Since $|T(G_2 \times \mathbb{Z}/3)| = 2^{n-1}$ by Lemma 3.9 and $|T(G_3)| = 3^{m-1}$ by Theorem 1.3, we have $|T(G)| \geq 2^{n-1} \cdot 3^{m-1}$. Hence $\text{Ker} S_G = 1$.

Proof of Theorem B. Assume that j_G is an isomorphism (i.e. $N(G)=1$). By Lemma 3.6, $G = G_2 \times G_3$. If both G_2 and G_3 are cyclic, then G is cyclic. If G_2 is cyclic and G_3 is non-cyclic, then $G_3 = 1$ or $\mathbb{Z}/2$ by Lemma 3.8. If G_2 is non-cyclic and G_3 cyclic, then $G_3 = 1$ or $\mathbb{Z}/3$ by Lemma 3.7. If both G_2 and G_3 are non-cyclic, then $G = (\mathbb{Z}/2)^n \times (\mathbb{Z}/3)^m$ by Lemmas 3.7 and 3.8. Conversely, if G is one of the groups (i)–(vi), then $N(G) = 1$ by Lemmas 3.7–3.11.

4. The finite groups G with $v(G, h^\infty) = 0$

In this Section we determine the finite groups with $v(G, h^\infty) = 0$. We first show the following result.

Proposition 4.1. Let C be a cyclic subgroup of G. Then the restriction map

$$\text{res}: v(G, h^\infty) \to v(C, h^\infty)$$

is surjective.

Proof. Let $d \in C(C)$ be an invertible degree function representing $x \in v(C, h^\infty)$. We can choose an integer a_K such that $d(K) + a_K |C|$ is prime to $|G|$ for any subgroup K of C. Then $d'(K) = d(K) + a_K |C|$ is also an invertible degree function representing x. (See [3].) We define $e \in C(G)$ by

$$e(H) = \begin{cases} d'(gHg^{-1}) & \text{if } (H) \in \phi(G) \text{ with } gHg^{-1} \subseteq C \\ 1 & \text{otherwise.} \end{cases}$$

This is well-defined since C is cyclic. Let $y \in v(G, h^\infty)$ be the element represented by e. Then $\text{res} y = x$ since d is an invertible degree function of $\text{res} y$.

In the abelian case, we have

Lemma 4.2. Let G be an abelian group. Then $v(G, h^\infty) = 0$. If and only if G is isomorphic to $1, \mathbb{Z}/2, \mathbb{Z}/3, \mathbb{Z}/4, \mathbb{Z}/6$ or $D(4)$ (= $\mathbb{Z}/2 \times \mathbb{Z}/2$).

Proof. Using the isomorphism $v(G, h^\infty) \approx \prod_H u(G/H)$, one can easily see it.

By Lemmas 4.1 and 4.2, we have

Lemma 4.3. If $v(G, h^\infty)$ vanishes, then any cyclic subgroup C of G is isomorphic to $1, \mathbb{Z}/2, \mathbb{Z}/3, \mathbb{Z}/4$ or $\mathbb{Z}/6$.

On the other hand, if $v(G, h^\infty)$ vanishes, then the Swan subgroup $T(G)$
also vanishes (Corollary 2.6) and hence we have the following conclusion by Lemma 4.3 and Corollary 1.4.

Lemma 4.4. If \(v(G, h^n) \) vanishes, then a 2-Sylow subgroup \(G_2 \) is isomorphic to 1, \(\mathbb{Z}/2, \mathbb{Z}/4, D(4) \) or \(D(8) \) and a 3-Sylow subgroup \(G_3 \) is isomorphic to 1, or \(\mathbb{Z}/3 \) and a \(p \)-Sylow subgroup \(G_p \) \((p \geq 5)\) is trivial.

We consider a non-abelian group \(G \). Suppose that \(v(G, h^n) \) vanishes. Then \(|G|=6, 8, 12\) or 24 by Lemma 4.4. If \(|G|=6\), then \(G \) is isomorphic to \(D(6) \). If \(|G|=8\), then \(G \) is isomorphic to \(D(8) \) by Lemma 4.4. If \(|G|=12\), then \(G \) is isomorphic to \(A_4, D(12) \) or \(Q(12) \). In the case \(|G|=24\), \(G \) is isomorphic to \(D(8) \) by Lemma 4.4. From Burnside's book ([1] Chap. 9, 126.), \(G \) is isomorphic to one of the groups: \(D(24), D(8) \times \mathbb{Z}/3, S_4 \) and \(K=(a \ y \ b, c\ a^{-1} \ b^{-1} \ ab=ca=c^{-1} \ b^2=c^2=1, bc=cb, b^{-1}ab=a^{-1}, a^{-1}ca=c^{-1}) \). However \(D(24) \) and \(D(8) \times \mathbb{Z}/3 \) are omitted by Lemma 4.3. Since \(K \) has a subgroup which is isomorphic to \(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/3 \), the Swan subgroup \(T(K) \) is non-trivial and \(K \) is also omitted by Corollary 2.6. Therefore, in the non-abelian case, if \(v(G, h^n) \) vanishes, then \(G \) is isomorphic to one of the groups: \(D(6), D(8), D(12), Q(12), A_4 \) and \(S_4 \).

We proved the following formula in [8]. (See also [2].)

Proposition 4.4. For any finite group,

\[
\left| v(G, h^n) \right| = 2^{-n} \left| \Omega(G)^* \right| \prod_{O(H)} \varphi(|WH|),
\]

where \(\varphi \) is the Euler function and \(n \) is the number of conjugacy classes of subgroups of \(G \).

By computing \(\left| v(G, h^n) \right| \) as in [8], one can see that \(\left| v(G, h^n) \right| = 1 \) for \(G = D(6), D(8), D(12), A_4 \) or \(S_4 \) and \(\left| v(G, h^n) \right| = 2 \) for \(G = Q(12) \). Therefore we have

Theorem 4.6. \(v(G, h^n) \) vanishes if and only if \(G \) is one of the following groups: \(\mathbb{Z}/n \) \((n=1, 2, 3, 4, 6), D(2n) \((n=2, 3, 4, 6), A_4 \) and \(S_4 \).

As a remark, there exist infinitely many groups with \(v(G, h^n) = 0 \) \((\lambda = h \) or \(l) \). Indeed we have

Proposition 4.7. Let \(G \) be an abelian group. Then \(v(G, l) \) vanishes if and only if \(G = \mathbb{Z}/2^n \times (\mathbb{Z}/4)^m \) or \((\mathbb{Z}/2)^n \times (\mathbb{Z}/3)^m \) \((n, m \geq 0)\).

Proof. One can see it by using the isomorphism \(v(G, l) \cong \prod_{H} \varphi(G/H) \).

By Proposition 4.7 and Theorem B, we have

Corollary 4.8. Let \(G \) be an abelian group. Then \(v(G, h) \) vanishes if and
only if \(v(G, l) \) vanishes.

References

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan