

Title	Homotopy representation groups and Swan subgroups
Author(s)	Nagasaki, Ikumitsu
Citation	Osaka Journal of Mathematics. 1987, 24(2), p. 253-261
Version Type	VoR
URL	https://doi.org/10.18910/7629
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nagasaki, I.
Osaka J. Math.
24 (1987), 253-261

HOMOTOPY REPRESENTATION GROUPS AND SWAN SUBGROUPS

IKUMITSU NAGASAKI

(Received January 21, 1986)

0. Introduction

Let G be a finite group. A finite dimensional G -CW-complex X is called a homotopy representation of G if the H -fixed point set X^H is homotopy equivalent to a $(\dim X^H)$ -dimensional sphere or the empty set for each subgroup H of G . Moreover if X is G -homotopy equivalent to a finite G -CW-complex, then X is called a finite homotopy representation of G and if X is G -homotopy equivalent to a unit sphere of a real representation of G , then X is called a linear homotopy representation of G . T. tom Dieck and T. Petrie defined homotopy representation groups in order to study homotopy representations. Let $V^+(G, h^\infty)$ be the set of G -homotopy types of homotopy representations. We define the addition on $V^+(G, h^\infty)$ by the join and so $V^+(G, h^\infty)$ becomes a semi-group. The Grothendieck group of $V^+(G, h^\infty)$ is denoted by $V(G, h^\infty)$ and called the homotopy representation group. A similar group $V(G, h)$ [resp. $V(G, l)$] can be defined for finite [resp. linear] homotopy representations.

Let $\phi(G)$ denote the set of conjugacy classes of subgroups of G and $C(G)$ the ring of functions from $\phi(G)$ to integers. For a homotopy representation X , the dimension function $\text{Dim } X$ in $C(G)$ is defined by $(\text{Dim } X)(H) = \dim X^H + 1$. (If X^H is empty, then we set $\dim X^H = -1$.) Then

$$\text{Dim } X * Y = \text{Dim } X + \text{Dim } Y$$

for any two homotopy representations. ("*" means the join.) Hence one can define the homomorphism

$$\text{Dim}: V(G, \lambda) \rightarrow C(G) \quad (\lambda = h^\infty, h \text{ or } l)$$

by the natural way. The kernel of Dim is denoted by $v(G, \lambda)$. tom Dieck and Petrie proved that $v(G, \lambda)$ is the torsion group of $V(G, \lambda)$ and

$$(0.1) \quad v(G, h^\infty) \cong \text{Pic } \Omega(G),$$

where $\text{Pic } \Omega(G)$ is the Picard group of the Burnside ring $\Omega(G)$.

There are the natural homomorphisms

$$(0.2) \quad \begin{aligned} j_G: v(G, l) &\rightarrow v(G, h) \\ k_G: v(G, h) &\rightarrow v(G, h^\infty). \end{aligned}$$

The homomorphisms j_G and k_G are injective in general and hence we often regard $v(G, l)$ and $v(G, h)$ as the subgroups of $v(G, h^\infty)$ via these injective homomorphisms. We prove the following result in Section 2.

Theorem A. *The homomorphism k_G is an isomorphism if and only if the Swan subgroup $T(G)$ vanishes.*

The definition and properties of the Swan subgroup are mentioned in Section 1. The finite groups with $T(G)=0$ are studied by Miyata and Endo [7]. The Swan subgroups play an important role in the computation of $v(G, h)$. In fact, the computation of $v(G, h)$ for an abelian group G is completely reduced to the computation of the Swan subgroups. By computing the Swan subgroups of some groups, we prove the following result in Section 3.

Theorem B. *Suppose that G is an abelian group. Then j_G is an isomorphism if and only if G is isomorphic to one of the following groups.*

- (i) C a cyclic group
- (ii) G_2 an abelian 2-group
- (iii) G_3 an abelian 3-group
- (iv) $\mathbf{Z}/2 \times G_3$
- (v) $G_2 \times \mathbf{Z}/3$
- (vi) $(\mathbf{Z}/2)^n \times (\mathbf{Z}/3)^m$

In Section 4 we determine the finite groups with $v(G, h^\infty)=0$ by using the results in Section 2.

Theorem C. *The group $v(G, h^\infty)$ vanishes if and only if G is isomorphic to one of the groups:*

$$\mathbf{Z}/n \ (n=1, 2, 3, 4 \text{ or } 6), D(2n) \ (n=2, 3, 4 \text{ or } 6), A_4, S_4.$$

Here $D(2n)$ denotes the dihedral group of order $2n$ and $S_n[A_n]$ denotes the symmetric [alternating] group on n symbols.

1. The Swan subgroup

In this Section, we shall summarize the well-known results on the Swan subgroup. Let Σ_G be the sum of elements of G in the integral group ring $\mathbf{Z}G$ and $[r, \Sigma_G]$ be the left ideal generated by r and Σ_G , where $r \in \mathbf{Z}$ is prime to the order $|G|$ of G . The ideal $[r, \Sigma_G]$ is projective as a $\mathbf{Z}G$ -module. Hence $[r, \Sigma_G]$ decides the element of the reduced projective class group $\tilde{K}_0(\mathbf{Z}G)$. From [9], a homomorphism

$$\tilde{S}_G: \mathbf{Z}/|G|^* \rightarrow \tilde{K}_0(\mathbf{Z}G)$$

is defined by $\tilde{S}_G(r) = ([r, \Sigma_G])$, where $\mathbf{Z}/|G|^*$ is the unit group of $\mathbf{Z}/|G|$. We put $u(G) = (\mathbf{Z}/|G|^*)/\pm 1$. Since $\tilde{S}_G(\pm 1) = 0$, \tilde{S}_G induces

$$S_G: u(G) \rightarrow \tilde{K}_0(\mathbf{Z}G),$$

which is called the Swan homomorphism. The image of S_G is called the Swan subgroup of G and denoted by $T(G)$.

The following results are well-known.

Theorem 1.1 ([9]). *If G is a cyclic group, then $T(G) = 0$.*

Theorem 1.2 ([11]).

- (i) *$T(G)$ is a quotient group of $u(G)$.*
- (ii) *If $f: G \rightarrow G'$ is a surjective homomorphism, then the natural map $\tilde{K}_0(\mathbf{Z}G) \rightarrow \tilde{K}_0(\mathbf{Z}G')$ sends $([r, \Sigma_G])$ to $([r, \Sigma_{G'}])$, hence $T(G)$ onto $T(G')$.*
- (iii) *The restriction map $\tilde{K}_0(\mathbf{Z}G) \rightarrow \tilde{K}_0(\mathbf{Z}H)$ sends $([r, \Sigma_G])$ to $([r, \Sigma_H])$, hence $T(G)$ onto $T(H)$.*
- (iv) *The exponent of $T(G)$ divides the Artin exponent $A(G)$. (For the Artin exponent, see [6].)*
- (v) *$T(D(2^n)) = 0$ ($n \geq 2$), $T(Q(2^n)) = \mathbf{Z}/2$ ($n \geq 3$) and $T(SD(2^n)) = \mathbf{Z}/2$ ($n \geq 4$), where $D(2^n)$ [resp. $Q(2^n)$, $SD(2^n)$] is the dihedral [resp. quaternion, semi-dihedral] group of order 2^n . These groups are called the exceptional groups.*

Theorem 1.3 ([10]).

- (i) *If G is a non-cyclic p -group (p : an odd prime), then $T(G)$ is the cyclic group of order $|G|/p$.*
- (ii) *If G is a non-cyclic and non-exceptional 2-group, then $T(G)$ is the cyclic group of order $|G|/4$.*

Let G_p denote a p -Sylow subgroup of G .

Corollary 1.4. *If $T(G)$ vanishes, then G_p is cyclic when p is odd and G_2 is cyclic or dihedral.*

2. The inclusion k_G

tom Dieck and Petrie defined the finiteness obstruction map

$$(2.1) \quad \rho: v(G, h^\infty) \rightarrow \bigoplus_{(H)} \tilde{K}_0(\mathbf{Z}WH),$$

where $WH = NH/H$ and NH is the normalizer of H in G . They proved that the following sequence is exact.

$$(2.2) \quad 0 \rightarrow v(G, h) \xrightarrow{k_G} v(G, h^\infty) \xrightarrow{\rho} \bigoplus_{(H)} \tilde{K}_0(\mathbf{Z}WH).$$

We recall the map ρ . (For details, see [3].) For any element x of $v(G, h^\infty)$, there exist homotopy representations X, Y and a G -map $f: X \rightarrow Y$ such that $x = X - Y$ in $v(G, h^\infty)$ and $\deg f^H$ is prime to $|G|$ for each subgroup H of G . A function $d \in C(G)$ is defined by $d(H) = \deg f^H$ for any (H) and called the invertible degree function of x . Conversely, any $d \in C(G)$ with $(d(H), |G|) = 1$ for any (H) is the invertible degree function of some x in $v(G, h^\infty)$. The finiteness obstruction map ρ is described as follows. The (H) -component $\rho_H(x) \in \tilde{K}_0(\mathbf{Z}WH)$ of $\rho(x)$ is equal to

$$(2.3) \quad S_{WH}(d(H)) - \sum_{\substack{1 \neq K \subseteq WH \\ L \subseteq NK}} a_{K,L} \text{ind}_L^{WH} \text{res}_L^{NK} S_{NK}(d(\tilde{K})),$$

where \tilde{K} is the subgroup of G such that $\tilde{K}/H = K$ and $a_{K,L}$ are certain integers and d is the invertible degree function of x .

Proof of Theorem A. For any r which is prime to $|G|$, we take the function $d \in C(G)$ such that $d(1) = r$ and $d(H) = 1$ for $(H) \neq (1)$. By (2.3), we have $\rho_1(x) = S_G(r)$ and $\rho_H(x) = 0$ for $(H) \neq (1)$, where x denotes the element of $v(G, h^\infty)$ represented by d . Hence $T(G) = 0$ if $\rho = 0$. Conversely if $T(G)$ vanishes, then $S_K = 0$ for any subquotient group K of G by Theorem 1.2. Hence $\rho = 0$ and so k_G is an isomorphism.

Corollary 2.4. *Let G be $D(2^n)$, $Q(2^n)$ or $SD(2^n)$. Then $v(G, h) = v(G, l)$.*

Proof. In the case of $D(2^n)$, we have proved it in [8]. In the cases of $Q(2^n)$ and $SD(2^n)$, $v(G, l)$ is the subgroup of index 2 of $v(G, h^\infty)$ ([8]). On the other hand $v(G, h)$ is a proper subgroup of $v(G, h^\infty)$ since $T(G) = \mathbf{Z}/2$. Hence $v(G, h) = v(G, l)$.

REMARK 2.5. If G is nilpotent, then $\text{Dim } V(G, l) = \text{Dim } V(G, h^\infty)$ ([3]) and hence $V(G, h) = V(G, l)$ for the above groups.

Corollary 2.6. *If $v(G, h^\infty)$ vanishes, then $T(G)$ also vanishes.*

3. The inclusion j_G

Let G be an abelian group. Then $v(G, l)$ and $v(G, h^\infty)$ were computed by Kawakubo [5] and tom Dieck-Petrie [3] respectively and it is known that the following diagram is commutative.

$$(3.1) \quad \begin{array}{ccc} v(G, l) & \longrightarrow & v(G, h^\infty) \\ \downarrow \cong & & \alpha \downarrow \cong \\ \prod_{\substack{H \\ G/H \text{ : cyclic}}} u(G/H) & \subset & \prod_{\substack{H}} u(G/H) \end{array}$$

Here $u(G/H) = (\mathbb{Z}/|G/H|^*)/\pm 1$.

Furthermore, tom Dieck and Petrie showed the following commutative diagram.

$$(3.2) \quad \begin{array}{ccc} v(G, h^\infty) & & \\ \alpha \downarrow \cong & \searrow \rho & \\ \prod_H u(G/H) & \longrightarrow & \bigoplus_H \tilde{K}_0(\mathbb{Z}[G/H]) \\ \prod_H S_{G/H} & & \end{array}$$

Hence we obtain

Proposition 3.3. *Let G be an abelian group. Then*

$$(i) \quad v(G, h) \cong v(G, l) \times N(G),$$

where $N(G) = \prod_H \text{Ker } S_{G/H}$. (If G is cyclic, then we put $N(G) = 1$.)

$$(ii) \quad v(G, h^\infty)/v(G, h) \cong \bigoplus_H T(G/H).$$

Proof. These are obtained from the exactness of the sequence (2.2) and the fact that $T(G/H) = 0$ if G/H is cyclic.

Corollary 3.4. *Let G be an abelian group. Then*

$$V(G, h) \cong V(G, l) \times N(G).$$

REMARK 3.5. For any finite group, one can show that

$$|v(G, h^\infty)/v(G, h)| \geq |\bigoplus_{H \in \mathcal{H}} T(WH)|.$$

From now we shall prove Theorem B. Theorem B is proved by the following lemmas.

Lemma 3.6. *If $N(G) = 1$ for a non-cyclic abelian group G , then $|G| = 2^n \cdot 3^m$ ($n, m \geq 0$).*

Proof. If a p -Sylow subgroup G_p ($p \geq 5$) is non-cyclic, then there exists a subgroup L such that G/L is isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p$. Since $\text{Ker } S_{G/L}$ is non-trivial by Theorem 1.3, G_p must be cyclic. We may put $G = G_2 \times G_3 \times C$, where C is a cyclic group with $(|C|, 6) = 1$. We prove that C is trivial. Assume that C is non-trivial. Since G is non-cyclic, there exists a subgroup K such that G/K is isomorphic to $\mathbb{Z}/q \times \mathbb{Z}/q \times \mathbb{Z}/p$ ($q = 2$ or 3 , $p \geq 5$). The Artin exponent $A(G/K)$ is equal to q and so $T(G/K)$ is a q -group by Theorem 1.2. On the other hand, it is easily checked that the exponent of $u(G/K)$ is not equal to q . Hence $\text{Ker } S_{G/K} \neq 1$ and so $N(G) \neq 1$. This is a contradiction. Therefore C is trivial.

Lemma 3.7. *Put $G=\mathbf{Z}/2 \times \mathbf{Z}/2 \times \mathbf{Z}/3^m$ ($m \geq 1$). Then $\text{Ker } S_G \neq 1$ if $m \geq 2$ and $\text{Ker } S_G = 1$ if $m = 1$.*

Proof. Since the Artin exponent $A(G) = 2$ and $|u(G)| = 2 \cdot 3^{m-1}$, the Swan subgroup $T(G)$ is isomorphic to 1 or $\mathbf{Z}/2$. Moreover $T(\mathbf{Z}/2 \times \mathbf{Z}/2 \times \mathbf{Z}/3) = \mathbf{Z}/2$ ([4], [7]). Hence $T(G) = \mathbf{Z}/2$. Thus the desired result holds.

Lemma 3.8. *Put $G=\mathbf{Z}/2^n \times \mathbf{Z}/3 \times \mathbf{Z}/3$ ($n \geq 1$). Then $\text{Ker } S_G \neq 1$ if $n \geq 2$ and $\text{Ker } S_G = 1$ if $n = 1$.*

Proof. The proof is similar to the proof of Lemma 3.7. The details are omitted.

Lemma 3.9. *Let G_2 be a non-cyclic abelian group of order 2^n . We put $G=G_2 \times \mathbf{Z}/3$. Then $\text{Ker } S_{G_2} = 1$ and $\text{Ker } S_G = 1$.*

Proof. By Theorem 1.3, it is clear that $\text{Ker } S_{G_2} = 1$. We consider the restriction map

$$R = (\text{res}_{G_2}, \text{res}_K): T(G) \rightarrow T(G_2) \oplus T(K),$$

where K is a subgroup which is isomorphic to $\mathbf{Z}/2 \times \mathbf{Z}/2 \times \mathbf{Z}/3$. We show that R is surjective. Take any element (a, b) in $T(G_2) \oplus T(K)$. Then there exists $r \in \mathbf{Z}$ with $(r, |G|) = 1$ such that $\text{res}_{G_2} S_G(r) = S_{G_2}(r) = a$. Put $c = \text{res}_K S_G(r) = S_K(r)$. If $c \neq b$, then take $(2^n - 1)r$ [resp. $(2^n + 1)r$] instead of r when n is odd [resp. even]. Then

$$\text{res}_{G_2} S_G((2^n \pm 1)r) = S_{G_2}(r) = a$$

and

$$\text{res}_K S_G((2^n \pm 1)r) = \begin{cases} S_K(5) + S_K(r) & \text{if } n \text{ is even} \\ S_K(7) + S_K(r) & \text{if } n \text{ is odd} \end{cases} = b.$$

The last equality follows from the facts that $T(K) = \mathbf{Z}/2$, $S_K(5) \neq 0$ and $S_K(7) \neq 0$. Hence R is surjective.

The orders of $T(G_2)$ and $T(K)$ are 2^{n-2} and 2 respectively. Since $|u(G)| = 2^{n-1}$, $|u(G)| = |T(G)|$. Hence $\text{Ker } S_G = 1$.

Lemma 3.10. *Let G_3 be a non-cyclic abelian group of order 3^n . We put $G=\mathbf{Z}/2 \times G_3$. Then $\text{Ker } S_{G_3} = 1$ and $\text{Ker } S_G = 1$.*

Proof. This follows from the comparison between the orders of $u(G)$ and $T(G)$.

Lemma 3.11. *We put $G=G_2 \times G_3$ for the above G_2 and G_3 . Then $\text{Ker } S_G = 1$.*

Proof. The restriction maps $T(G) \rightarrow T(G_2 \times \mathbf{Z}/3)$ and $T(G) \rightarrow T(G_3)$ are surjective. Since $|T(G_2 \times \mathbf{Z}/3)| = 2^{n-1}$ by Lemma 3.9 and $|T(G_3)| = 3^{m-1}$ by Theorem 1.3, we have $|T(G)| \geq 2^{n-1} \cdot 3^{m-1}$. Hence $\text{Ker } S_G = 1$.

Proof of Theorem B. Assume that j_G is an isomorphism (i.e. $N(G) = 1$). By Lemma 3.6, $G = G_2 \times G_3$. If both G_2 and G_3 are cyclic, then G is cyclic. If G_2 is cyclic and G_3 is non-cyclic, then $G_2 = 1$ or $\mathbf{Z}/2$ by Lemma 3.8. If G_2 is non-cyclic and G_3 cyclic, then $G_3 = 1$ or $\mathbf{Z}/3$ by Lemma 3.7. If both G_2 and G_3 are non-cyclic, then $G = (\mathbf{Z}/2)^n \times (\mathbf{Z}/3)^m$ by Lemmas 3.7 and 3.8. Conversely, if G is one of the groups (i)–(vi), then $N(G) = 1$ by Lemmas 3.7–3.11.

4. The finite groups G with $v(G, h^\infty) = 0$

In this Section we determine the finite groups with $v(G, h^\infty) = 0$. We first show the following result.

Proposition 4.1. *Let C be a cyclic subgroup of G . Then the restriction map*

$$\text{res}: v(G, h^\infty) \rightarrow v(C, h^\infty)$$

is surjective.

Proof. Let $d \in C(C)$ be an invertible degree function representing $x \in v(C, h^\infty)$. We can choose an integer a_K such that $d(K) + a_K|C|$ is prime to $|G|$ for any subgroup K of C . Then $d'(K) = d(K) + a_K|C|$ is also an invertible degree function representing x . (See [3].) We define $e \in C(G)$ by

$$e(H) = \begin{cases} d'(gHg^{-1}) & \text{if } (H) \in \phi(G) \text{ with } gHg^{-1} \subseteq C \\ 1 & \text{otherwise.} \end{cases}$$

This is well-defined since C is cyclic. Let $y \in v(G, h^\infty)$ be the element represented by e . Then $\text{res } y = x$ since d is an invertible degree function of $\text{res } y$.

In the abelian case, we have

Lemma 4.2. *Let G be an abelian group. Then $v(G, h^\infty) = 0$. If and only if G is isomorphic to $1, \mathbf{Z}/2, \mathbf{Z}/3, \mathbf{Z}/4, \mathbf{Z}/6$ or $D(4)$ ($= \mathbf{Z}/2 \times \mathbf{Z}/2$).*

Proof. Using the isomorphism $v(G, h^\infty) \cong \prod_H u(G/H)$, one can easily see it.

By Lemmas 4.1 and 4.2, we have

Lemma 4.3. *If $v(G, h^\infty)$ vanishes, then any cyclic subgroup C of G is isomorphic to $1, \mathbf{Z}/2, \mathbf{Z}/3, \mathbf{Z}/4$ or $\mathbf{Z}/6$.*

On the other hand, if $v(G, h^\infty)$ vanishes, then the Swan subgroup $T(G)$

also vanishes (Corollary 2.6) and hence we have the following conclusion by Lemma 4.3 and Corollary 1.4.

Lemma 4.4. *If $v(G, h^\infty)$ vanishes, then a 2-Sylow subgroup G_2 is isomorphic to 1, $\mathbf{Z}/2$, $\mathbf{Z}/4$, $D(4)$ or $D(8)$ and a 3-Sylow subgroup G_3 is isomorphic to 1, or $\mathbf{Z}/3$ and a p -Sylow subgroup G_p ($p \geq 5$) is trivial.*

We consider a non-abelian group G . Suppose that $v(G, h^\infty)$ vanishes. Then $|G|=6, 8, 12$ or 24 by Lemma 4.4. If $|G|=6$, then G is isomorphic to $D(6)$. If $|G|=8$, then G is isomorphic to $D(8)$ by Lemma 4.4. If $|G|=12$, then G is isomorphic to A_4 , $D(12)$ or $Q(12)$. In the case $|G|=24$, G_2 is isomorphic to $D(8)$ by Lemma 4.4. From Burnside's book ([1] Chap. 9, 126.), G is isomorphic to one of the groups: $D(24)$, $D(8) \times \mathbf{Z}/3$, S_4 and $K=\langle a, b, c \mid a^4=b^2=c^3=1, bc=cb, b^{-1}ab=a^{-1}, a^{-1}ca=c^{-1} \rangle$. However $D(24)$ and $D(8) \times \mathbf{Z}/3$ are omitted by Lemma 4.3. Since K has a subgroup which is isomorphic to $\mathbf{Z}/2 \times \mathbf{Z}/2 \times \mathbf{Z}/3$, the Swan subgroup $T(K)$ is non-trivial and K is also omitted by Corollary 2.6. Therefore, in the non-abelian case, if $v(G, h^\infty)$ vanishes, then G is isomorphic to one of the groups: $D(6)$, $D(8)$, $D(12)$, $Q(12)$, A_4 and S_4 .

We proved the following formula in [8]. (See also [2].)

Proposition 4.4. *For any finite group,*

$$(4.5) \quad |v(G, h^\infty)| = 2^{-n} |\Omega(G)^*| \prod_{H \in \Omega(G)^*} \varphi(|WH|),$$

where φ is the Euler function and n is the number of conjugacy classes of subgroups of G .

By computing $|v(G, h^\infty)|$ as in [8], one can see that $|v(G, h^\infty)|=1$ for $G=D(6)$, $D(8)$, $D(12)$, A_4 or S_4 and $|v(G, h^\infty)|=2$ for $G=Q(12)$. Therefore we have

Theorem 4.6. *$v(G, h^\infty)$ vanishes if and only if G is one of the following groups: \mathbf{Z}/n ($n=1, 2, 3, 4, 6$), $D(2n)$ ($n=2, 3, 4, 6$), A_4 and S_4 .*

As a remark, there exist infinitely many groups with $v(G, \lambda)=0$ ($\lambda=h$ or l). Indeed we have

Proposition 4.7. *Let G be an abelian group. Then $v(G, l)$ vanishes if and only if $G=(\mathbf{Z}/2)^n \times (\mathbf{Z}/4)^m$ or $(\mathbf{Z}/2)^n \times (\mathbf{Z}/3)^m$ ($n, m \geq 0$).*

Proof. One can see it by using the isomorphism $v(G, l) \cong \prod_{\substack{H \\ G/H \text{ cyclic}}} u(G/H)$.

By Proposition 4.7 and Theorem B, we have

Corollary 4.8. *Let G be an abelian group. Then $v(G, h)$ vanishes if and*

only if $v(G, l)$ vanishes.

References

- [1] W. Burnside: *Theory of groups of finite order*, Cambridge University Press, Cambridge, 1911.
- [2] T. tom Dieck: *The Picard group of the Burnside ring*, Crelles J. Reine Angew. Math. **361** (1985), 174–200.
- [3] T. tom Dieck and T. Petrie: *Homotopy representations of finite groups*, Inst. Hautes Etudes Sci. Publ. Math. **56** (1982), 129–169.
- [4] S. Endo and Y. Hironaka: *Finite groups with trivial class groups*, J. Math. Soc. Japan **31** (1979), 161–174.
- [5] K. Kawakubo: *Equivariant homotopy equivalence of group representations*, J. Math. Soc. Japan **32** (1980), 105–118.
- [6] T.Y. Lam: *Artin exponents of finite groups*, J. Algebra **9** (1968), 94–119.
- [7] T. Miyata and S. Endo: *The Swan subgroup of the class group of a finite group*, to appear
- [8] I. Nagasaki: *Homotopy representations and spheres of representations*, Osaka J. Math. **22** (1985), 895–905.
- [9] R.G. Swan: *Periodic resolutions for finite groups*, Ann. of Math. **72** (1960), 267–291.
- [10] M.J. Taylor: *Locally free class groups of groups of prime power order*, J. Algebra **50** (1978), 463–487.
- [11] S.T. Ullom: *Nontrivial lower bounds for class groups of integral group rings*, Illinois J. Math. **20** (1975), 311–330.

Department of Mathematics
 Osaka University
 Toyonaka, Osaka 560
 Japan

