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Abstract
In this paper, we study the following fourth order elliptic problem ( ):

( )

2 = in
0 in
= = 0

where is a smooth bounded domain inR4, 2 = is a biharmonic operator and
1 is any positive number.

We investigate the asymptotic behavior as of the least energy solutions
to ( ). Combining the arguments of Ren-Wei [8] and Wei [10], we show that the
least energy solutions remain bounded uniformly in , and on convex bounded do-
mains, they have one or two “peaks” away form the boundary. Ifit happens that the
only one peak point appears, we further prove that the peak point must be a critical
point of the Robin function of 2 under the Navier boundary condition.

1. Introduction.

In this paper, we study the following fourth order elliptic problem ( ):

( )

2 = in
0 in
= = 0

where is a smooth bounded domain inR4, 2 = is a biharmonic operator
and 1 is any positive number. Boundary condition imposed in () is sometimes
called the Navier boundary condition.

One of motivation to study such a problem involving biharmonic operator inR4

comes from the recent development in conformal geometry on four-manifold. See [3].
On the other hand, problem ( ) may be regarded as a natural extension to a

higher dimensional case, of the two-dimensional problem treated by Ren and Wei [8],
[9].

Ren and Wei considered the least energy soluton of the following semilinear
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problem

= in
0 in
= 0

where is a bounded smooth domainR2. They studied the asymptotic behavior of
as the nonlinear exponent , and they proved that the least energy solutions

remain bounded in -norm regardless of . On the shape of solutions, they showed
that the least energy solutions must develop one “peak” in the interior of , that is
the graph of is becoming like a single spike as . Moreover they showed
that this peak point must be a critical point of the Robin function of the domain.

Now, in this paper we investigate that whether the analoguesof the results of Ren
and Wei would hold to the higher dimensional fourth order problem ( ).

Since the complete structure of solution set of the simple-looking problem ( )
is widely open, so we restrict our attention, as Ren and Wei did, to the least energy
solution constructed as follows.

Let us consider the constrained minimization problem:

(1.1) 2 := inf 2 : 2 1
0 ( ) +1 = 1

Since the Sobolev imbedding 2 1
0 ( ) +1( ) is compact for any 1,

we have at least one minimizer for the problem (1.1), where 2 1
0 ( ),

+1 = 1.
Without losing generality, we may assume 0. Indeed, let solves

= in
= 0

Then the maximum principle implies , so we have

2 =
2

+1 2 ( +1)

2

+1 2 ( +1)

that is, the positive function also minimizes2.
Set

(1.2) := 2 ( 1)

then solves ( ) and = 2 +1. Standard regularity argument implies
that any weak solution 2 1

0 ( ) satisfies 2 1
0 ( ) ( 1) (for

example, see [4]). Therefore is smooth and = = 0 on .
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We call theleast energy solutionto ( ).
Our first result is the same as the one in Ren and Wei.

Theorem 1.1. Let be a least energy solution to( ). Then there exist 1 2

(independent of ), such that

0 1 2

for large enough.

To state further results, we need some definitions. Set

(1.3) :=

For a sequence of , we define theblow up set of as usual:

:= : a subsequence such that

and ( )

We also define apeak point for to be a point in such that does not vanish
in the norm in any small neighborhood of as . It turns out laterthat
the set of peak points of is contained in the blow up set of .

Theorem 1.2. Let R4 be a smooth convex bounded domain. Then for any
sequence of with , there exists a subsequence(still denoted by )
such that the blow up set of this subsequence is contained in and has the prop-
erty 1 card( ) 2.

If card( ) = 1 and = 0 (one point blow up), then:

:= =
1

0(1)

in the sense of Radon measures of .
(2) 4( 0) in 4

loc( 0 ) where 4( ) denotes the Green function of
2 under the Navier boundary condition:

2
4( ) = ( )

4( ) = 4( ) = 0

(3) 0 is a critical point of the Robin function 4( ) = 4( ), where

4( ) := 4( ) +
1

4 4
log
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denotes the regular part of 4 and 4 = 2 2 is the volume of the unit sphere3 in R4.

REMARK 1.3. (1) In Theorem 1.2, the convexity assumption of is needed to
derive a uniform boundary estimate of solutions to ( ) by the use of Method of
Moving Planes (MMP).

In case, MMP still works well for non-convex domains through the applica-
tion of Kelvin transformations, and leads to a uniform boundary estimate. However in
our 2 case, Kelvin transformation does not work well simply because Laplacian of
a Kelvin transformed function is not 0 on the boundary. It is unclear that actually the
boundary blow-up can occur if is not convex.
(2) We conjecture that card( ) = 1 at least for any convex domain. If the following
upper bound

:= lim sup ( )

holds true, then we can prove the conjecture affirmatively.
Further we believe that in this case the blow up point0 is not only a critical point,
but the maximum point of Robin function. In 2-dimensional case, this is already
proved by Flucher and Wei [5].

2. Estimates for Cp

First we recall D. Adams’ version of higher order Trudinger-Moser inequality [1].
This is a key ingredient in our analysis.

Theorem ([1]). Let R2 be a bounded domain and define := ( )
: ( ) 1

0 ( ) = 0 1 [( 1) 2] . Then there exists 0 = 0( ) such
that

exp 2

2( )

( ) 2 2
2( )

0

Here, 2 = 22 1 ! ( 1)! 2 , 2 is the volume of 2 1 and is the Lebesgue
measure of .

In R4 ( = 2), we have

exp 4

2( )
2

2( )
0

2 1
0 ( )

where 4 = 16 4 = 32 2.

Using this, we derive the following refined Sobolev imbedding. Though the proof
is the same as in [8], we state here for reader’s convenience.
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Lemma 2.1 (refinement of the Sobolev imbedding).For any 2, there exists
0 such that for any 2 1

0 ( ),

( )
1 2

2( )

holds true. Furthermore, we have

lim = (32 4 ) 1 2

Proof. Let 2 1
0 ( ). Elementary inequality says that ( + 1) for

0, 0, where ( ) is the function.
By Adams’ version Trudinger-Moser inequality, we have

1

(( 2) + 1)

=
1

(( 2) + 1)
4

2

2
2( )

2
2

4 2( )

exp 4

2( )
2

2( )

2
4 2( )

0
2

4 2( )

Set

:=
2

+ 1
1

1
0

1 1 2
4

1 2

Then we have

( )
1 2

2( )

Stirling’s formula says that ( (( 2) + 1))1 ( (2 ))1 2 as . So we have

lim =
1

2 4

1 2

which is a desired result.

Recall defined in (1.1). Using the above Lemma and energy comparison, we
get the following.

Lemma 2.2 (asymptotics for ). We have

lim 1 2 = (32 4 )1 2
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Proof. Lower bound (324 )1 2 lim inf 1 2 is a direct consequence of
Lemma 2.1 and the fact = 2 +1 for least energy solutions .

Therefore we must prove only the upper bound: lim sup 1 2 (32 4 )1 2.
We will do this by constructing a suitable test function for the value .

We may assume 0 and (0) . For 0 , consider Moser function

( ) :=

0

1
log

0

where 2 = log( ) and = 4 4 = 2 2 .
Note that the Moser function 1

0 ( ) but not in 2( ). So we cannot test
the value by directly.

Define

( ) :=

0 0

1 2
2

0

Then 2( ) and 2( ) = 1 by our choice of .
Take the unique solution 1

0 ( ), ˜ 1
0 ( ) to the problem

= in
= 0

and

˜ = in
˜ = 0

respectively.
By elliptic regularity, we have 2 1

0 ( ). On the other hand, if extended
by 0, ˜ can be regarded as in 1

0 ( ), but not in 2 1
0 ( ). Also note that˜ is a

radial function which is explicitly calculate by the formula

˜( ) = ˜(0) +
=

=0

3
=

=0

3 ( )

for 0 = . Indeed, by definition of , we calculate

˜( ) = ˜(0) (0 )
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˜ ( ) = ˜(0) +
1 1

2

1

2

2

2
+ log ( )(2.1)

Here, ˜ (0) is determined by the boundary condition˜( ) = 0:

(2.2) ˜ (0) =
1 1

2

2

2

1

2
+ log

Maximum principle implies that 2 1
0 ( ) satisfies ˜ in . Therefore

+1( ) ˜ +1( ) ˜ +1( (0)). Also 2( ) = 2( ) = 1.
Now, we test the value with 2 1

0 ( ). Then

2( )

+1( )

1

˜ +1( (0))
= ˜(0) 1 (0) 1 ( +1)

Setting = exp( ( + 1) 8), multiplying 1 2 and letting in the above
inequality, we have, by using (2.2), lim sup 1 2 (32 4 )1 2. This proves
Lemma.

Since

=
2

+1

and

2 = +1

we have

2 = 1
+1

+1
+1 = 2 4 ( 1)

Therefore Lemma 2.2 implies

Corollary 2.3.

lim +1 = 32 4 lim 2 = 32 4

3. Proof of Theorem 1.1

First, we show that a uniform lower bound of norm exists for any solution
to ( ).

Indeed, let 1 0 be the first eigenvalue of acting on1
0 ( ) and 1 0 be

a first eigenfunction corresponding to1.
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Then, Green’s formula implies

0 = ( 2
1 1

2 ) = ( 2
1 1 1 )

that is,

1( 2
1

1) = 0

Hence 2
1

1 must change the sign on , which leads to

1
( )

2
1

To obtain a uniform upper bound of ( ), we use an argument with the
coarea formula and the isoperimetric inequality inR4.

Set

:= max ( ) := : ( ) A := :
2

( )

By Lemma 2.1 and Corollary 2.3, we have

4
1 (4 )

4 (4 )1 2
2( )

where is independent of if large. From this and the Chevyshevinequality we
have

(3.1)
2

4
A 4

On the other hand, denote = . Integration by parts leads to

=

Coarea formula says

=

Then Schwartz inequality implies

= 2

Note that the isoperimetric inequality inR4

4 1 4
4

3 4
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where R4 is a Caccioppoli set and4 = 4 = 3 4 = 2 2 is four dimensional
volume of the unit ball. Applying = , we have

16 1 2
4

3 2

Define ( ) such that = 4
4( ). Then

= 4 4
3( ) ( )

Note that ( ) 0. Hence we have:

1

4 4
3( )

1

( )
1

4 4
3( )

1

4 4
3( )

sup = sup
4

Integrating the last inequality from = 0 to =0, we have

(0) ( 0)
1

8
sup 2

0

Choose 0 such that (0) = 2, that is, A = 2 = 4
4
0 . Then the above in-

equality implies

1

4
sup 2

0

As = satisfies

= in
= 0

we know, by elliptic estimate

sup sup

where = ( ) (see [6] Theorem 3.7). Thus we have

(3.2)
4

2
0 =

4

1

4
A

1 2

By (3.1) and (3.2), we have

2

4

2 1

4

2 2 4
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which implies

2

16 4

1 (2 +2)

(2 )2 ( +1)

Therefore we conclude that there exists 0 (independent of ) such that
for large.

From Theorem 1.1, we have the following consequence.

Corollary 3.1. There exist 1, 2 0 independent of large such that

1 2

holds true.

Proof. By Corollary 2.3 and Theorem 1.1, we have

+1
( )

where is a positive constant independent of .
On the other hand, Ḧolder inequality implies

+1
( +1)

1 ( +1) 1 ( +1)

Note that as , RHS of the above inequality is bounded from Corollary 2.3.
This proves the conclusion.

4. Proof of Theorem 1.2

Set

:= = :=

and

( ) :=
( )

By our assumption of the convexity of and the Method of Moving Plane, it is
standard by now to derive the uniform boundary estimate of which leads to the
fact that the blow up set of is contained in the interior of ; sowe omit the
proof of this fact.
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At this stage, we recall a useful lemma proved by Wei ([10] Lemma 2.3).

Lemma 4.1 (Brezis-Merle type 1 estimate for 2). Let be a 4 solution of

2 = ( ) in R4

= = 0

where 1( ) 0. Then for any (0 16 4), there holds

exp
(16 4 ) ( )

1

16 2
4

Later we need a variant of ([10] Corollary 2.4) with no boundary condition.

Corollary 4.2. Let be a sequence of4 solutions of 2 = in R4

with no boundary condition. Assume for some (1 ),
(1) ( ) 1,
(2) +

1( ) 2 where + = max 0 ,
(3) 0 16 4

where is a Ḧolder conjugate exponent of . Then, + is uniformly bounded in

loc( ).

The proof of Corollary 4.2 is done along the line of the proof of Corollary 4
in [2], so we omit it here.

From now on, let , , , denote , , , respectively. First, we
remark that the blow up set of the sequence satisfies = . Indeed,

sup ( )

by Theorem 1.1 and the fact that = (1 ) 0 as by Corollary 3.1.
This also shows that the set of peak points of is contained in the blow up

set of .
Note that

( ) =
( ) 1( ) 0 = 1

Then there exists a subsequence (still denoted by ) such that

( ) 1

in the sense of Radon measures of .
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Now we define an important quantity

(4.1) 0 :=
lim sup

From a little bit more precise estimate in the proof of Theorem 1.1 and Ḧolder in-
equality, we know that 0 satisfies 1 0 32 4.

For any 0, we call a point 0 a -regular point of if there exists

0( ), 0 1 with 1 near 0 such that

16 4

0 + 2

Further we define for 0, -irregular set of a sequence as

( ) := 0 : 0 is not a -regular point

Note that

0 ( ) ( 0)
16 4

0 + 2

The next result is a key lemma in the proof of Theorem 1.2.

Lemma 4.3 (smallness of implies boundedness).Let 0 be a -regular point
of a sequence , then is bounded in ( 0( 0)) for some 0 0.

Proof. Let 0 be a -regular point. Then there exists 0 such that

( 0)

16 4

0 +

for sufficiently large.
Split = 1 + 2 , where 1 is a solution of

2
1 = in ( 0)

1 ( 0) = 1 ( 0) = 0

and 2 is a solution of

2
2 = 0 in ( 0)

2 ( 0) = ( 0)

2 ( 0) = ( 0)

Note that 1 0, 2 0 in ( 0) by the maximum principle.
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First, we will show that 2 is uniformly bounded near0. Indeed, by the mean
value theorem for biharmonic function, we know

2 ( 2( 0)) 1( ( 0)) 1( )

holds true. Here the last inequality follows by Lemma 4.1.
So we need only to derive the boundedness of2 .
For this purpose, choose 1 such as = ( 1) =0 + ( 2). Note that the

fact 0 1 permits the existence of such 1. Then we have

( 0)

16 4

0 +

16 4

Brezis-Merle type 1-estimate (Lemma 4.1) implies

(4.2)
( 0)

exp( 1 ( ))

where = ( ) as 0.
By an elementary inequality log for 0, we have

log = log = log 1 1

0 + ( 3)
1 =

( 6)
1 ( )

here, the second inequality follows by definition of0:

0 +
3

for large, and the third inequality follows from the fact

lim 1 = 1

which in turn follows from = (1 ) (Corollary 3.1).
Thus, we get a pointwise estimate

( ) exp ( )

which implies

(4.3) ( 1 ) 1

on 2( 0), because 2 is bounded uniformly on 2( 0).
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Rewrite the equation satisfied by1 as

2
1 = 1 ( )

( )

1 in ( 0)

1 ( 0) = 1 ( 0) = 0

Now, we check the assumptions of Corollary 4.2.
(1) = 1 is uniformly bounded in ( 2( 0)) by (4.2) and (4.3).
(2) 1 1( 2( 0)) by Lemma 4.1.
(3)

2

1 =
2

0 16 4 by the definition of .
Therefore by applying Corollary 4.2 to 1 on 2( 0), we conclude that 1

is uniformly bounded in ( 4( 0)).

Lemma 4.4. = ( ) for any 0.

Proof. ( ) is clear from Lemma 4.3.
On the other hand, suppose0 ( ) and ( 0 ( 0)) for some inde-

pendent of . Then = 1 0 uniformly on 0( 0), which implies 0 is a
-regular point; 0 ( ).

This contradiction shows that for every 0,

lim ( ( 0)) =

holds at least for a subsequence. So0 .

By this Lemma, we obtain

1 ( )
16 4

0 + 2
card ( ) =

16 4

0 + 2
card( )

Combining with the estimate 0 32 4, we have

card( ) 0 + 2

16 4

32 4 + 2

16 4

hence

1 card( ) 2

From now on, we prove the latter half of Theorem 1.2, so assumecard( ) = 1 and
= 0 , 0 .

Then ( ) on any compact set 0 , which implies 0 compact
uniformly on 0 .
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Take 0( ). For given 0, first we choose 0 so small and then
, we have

( 0) ( ) ( 0)

( 0)
( ) ( 0) +

( 0)
( ) ( 0)

Therefore

(4.4) 0

in the sense of Radon measures of . Thus Theorem 1.2 (1) is proved.
Set ˜ := . Then

˜ = in
˜ = 0

and 0 uniformly on any compact 0 .
By elliptic regularity, there is a subsequence ˜ (still denoted by the same

symbols) and a function such that

in 4 ( ) ˜ in 2 ( )

in 1( ) ˜ in 1( )

since 1 ( ) boundedness of , ˜ (1 4 3) and the compactness of the
imbedding 1 ( ) 1( ).

By integration by parts and (4.4), we see =4( 0). So Theorem 1.2 (2) is
proved.

Finally, to prove the characterization of blow up point, we need the famous

Lemma 4.5 (Pohozaev identity). Let be a 4-solution of 2 = ( ) in .
Then we have for any R4,

4 ( ) = ( + ) ( ) +
1

2
2( + ) + 2

+ ( + ) + ( + )

( )( + )

In particular, we have

( ) +
1

2
2 + + ( ) =~0
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Here, ( ) = 0 ( ) , = and ( ) is the unit outer normal vector at
.

More genaral version of this formula can be seen, for example,in [7]. In our case,
integrating the identity on

div ( + ) + ( + ) ( )( + )

= ( + ) + ( + ) 2( )

for 2( ), = , and noting that

div ( + ) ( ) = ( )( + ) + 4 ( )

and

div
1

2
2( + ) + 2 = ( + ) + 2( )

if = , we get the desired formula.
Take 0 so small that (0) . First, apply the Pohozaev identity

to on . Note that solves 2 = = 1 in . So ( ) =
( 1 ( + 1)) +1 in the following identity.

( ) +
1

2
( )2 +

( )
+ ( )

( ( ))

=~0

Since = = 0 on , we have

( )
+ ( ) ( ) =~0

Now we know that

4( 0) in 4
loc( 0 ) 2( 0) in 2

loc( 0 )

as . Therefore letting , we have:

(4.5) 2
4 + 4

2 ( 4 2) =~0

On the other hand, apply the Pohozaev identity to4( 0) on ( 0). Note
that 4( 0) solves 2

4 = 0 in ( 0) and 4 = 2 = 0 on . Therefore we
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have

1

2 ( ( 0))

2
2 +

( ( 0))

2
4 + 4

2 ( 4 2) =~0

that is,

1

2 ( 0)

2
2 +

( 0)

2
4 + 4

2 ( 4 2)

= 2
4 + 4

2 ( 4 2)(4.6)

From (4.5) and (4.6), we have:

~0 =
1

2 ( 0)

2
2

[ ]

+
( 0)

2
4

[ ]

+
( 0)

4
2

[ ]

( 0)
( 4 2)

[ ]

(4.7)

Substituting

4( 0) = 4( 0)
1

4 4
log 0

2( 0) = 4( 0) = 2( 0) +
1

2 4

1

0
2

in the above identity (4.7), we compute:

Estimate of [ ]

( 0)

2
2 =

( 0)

1

2 4 0
2

+ (1)
2

= ( )

Note that = ( 0) 0 on ( 0) and

( 0)
( ) =~0

for any function ( ), = 0 .

Estimate of [ ]

( 0)

2
4
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=
( 0)

2
1

4 0
3 4

1

4 4

0

0
2

=
1

4
3

( 0)
4( 0) + ( 2)

= 4( 0) + ( 2)

where ( 0). The last equality comes from the mean value theorem of inte-
gral.

Estimate of [ ]

( 0)

4
2

=
( 0)

4
1

4 4 0
2

1

4

0

0
4

=
1

4
3

( 0)
( 4 ) + ( 2)

Estimate of [ ]

( 0)
( 4 2)

=
( 0)

4
1

4 4

0
2 2

1

4

0
4

=
1

4
3

( 0)
( 4 ) + ( 2)

Letting 0 and noting that 0, we have

~0 = 4( 0 0)

This proves Theorem 1.2 (3)
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NOTE ADDED IN THE PROOF. Recently, we have succeeded to confirm the conjecture
in Remark 1.3 (2) affirmatively. Please refer to “Single-point condensation phenomena
for a four-dimensional biharmonic Ren-Wei problem” (preprint).
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