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Abstract
In this paper, we study the following fourth order elliptic ptem (E,):

A%y =u? in Q,
(E))Ju>0 ing,
ulpge = Aulye =0

whereQ is a smooth bounded domainRA, A? = AA is a biharmonic operator and
p > 1is any positive number.

We investigate the asymptotic behavior g@s> oo of the least gnsofutions
to (E,). Combining the arguments of Ren-Wei [8] and Wei [10], we shbat the
least energy solutions remain bounded uniformlypin , and emvex bounded do-
mains, they have one or two “peaks” away form the boundari. Heppens that the
only one peak point appears, we further prove that the peait pmist be a critical
point of the Robin function ofA? under the Navier boundary condition.

1. Introduction.

In this paper, we study the following fourth order ellipticoplem &, ):

A2y =u? in Q,
E)lu>0 inq
ulag = Aulpe =0

where Q@ is a smooth bounded domain Rf, A2 = AA is a biharmonic operator
and p > 1 is any positive number. Boundary condition imposedHp) (Is sometimes
called the Navier boundary condition.

One of motivation to study such a problem involving biharicooperator inR*
comes from the recent development in conformal geometryoon-anifold. See [3].

On the other hand, problemEf ) may be regarded as a naturahsioteto a
higher dimensional case, of the two-dimensional problesated by Ren and Wei [8],
[9].

Ren and Wei considered the least energy solutgn of the foltpwgemilinear

2000 Mathematics Subject ClassificatiorB5B40, 35335, 35J60.



634 F. TAKAHASHI

problem
—Au=u? in Q,
u>0 ingQ,
ulso =0

where Q is a bounded smooth domainR?. They studied the asymptotic behavior of
u, as the nonlinear exponemt — oo , and they proved that the leasgyeselutions
remain bounded ir.*® -norm regardless @f . On the shape of eokjtithey showed
that the least energy solutions must develop one “peak” énitterior of 2, that is
the graph ofu, is becoming like a single spike as— oo . Moreover theywsd
that this peak point must be a critical point of the Robin tiot of the domain.

Now, in this paper we investigate that whether the analogtigke results of Ren
and Wei would hold to the higher dimensional fourth orderbtem (£, ).

Since the complete structure of solution set of the simptééhg problem £, )
is widely open, so we restrict our attention, as Ren and Waj tii the least energy
solution constructed as follows.

Let us consider the constrained minimization problem:

(1.1) C? = inf {/ |Au?dx: u e H*NHFKQ), |ulp+1= 1} )
Q

Since the Sobolev imbedding/? N H3(Q) < L’*YQ) is compact for anyp > 1,
we have at least one minimizer, for the problem (1.1), whera, € H? N Hy(<),
”Zp”[ﬁl =1

Without losing generality, we may assumg > 0. Indeed, letv  solves

{ —Av=|Au,| inQ,
U|3Q =0.

Then the maximum principle implies > |u |, so we have

Jo 1Au, P dx fo 1AV dx

Cﬁz 2/(p+1 = 2/(p+1)’
(o P37 = (g w07

that is, the positive function also minimizegz,.
Set

—2/(p—
1.2) up .—Cp/(p ”gp,

thenu, solvesk, ) and’, H#Aupllr2/llu,lL-+. Standard regularity argument implies
that any weak solutiom € H2N HE () satisfiesAu € W27 N W () (Yo > 1) (for
example, see [4]). Therefore, is smooth and Am, = 006D
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We callu,, theleast energy solutioto (E,).
Our first result is the same as the one in Ren and Wei.

Theorem 1.1. Letu, be a least energy solution {&,). Then there exisCi, C»
(independent of), such that

0<C1<luplipe < Ca2< 00
for p large enough.

To state further results, we need some definitions. Set

Up

(13) wp, ::m.
olp

For a sequence,, ab, , we define thiow up setS of {w,,} as usual:
S={xeQ:3a subsequence;p;,, I{x,} € & such that

x, — x and W,y @, )— oo}.

We also define geak pointP for u, to be a point inQ such thatu, does not vanish
in the L* norm in any small neighborhood &f @s— oo . It turns out ldatext
the set of peak points ofx,} is contained in the blow up sefwof}

Theorem 1.2. Let @ c R* be a smooth convex bounded domain. Then for any
sequencew,, ofv, witlp, — oo, there exists a subsequen(still denoted byw,,)
such that the blow up sef of this subsequence is containged imd has the prop-
erty 1 < card(S) < 2.

If card(S) =1 and S = {xg} (one point blow ujp then

DPn pn—1

Q) Jn = L uln dx wh 5§

n-= f Pr g - Pn Pn Xo
o Up, X Q

in the sense of Radon measures<of
(2) wp, = Gal(-, x0) In C,‘})c(ﬁ\ {xo}) where G4(x, y) denotes the Green function of
A? under the Navier boundary condition

{ A2G4(x, y) =8,(x), x € ,
Ga(x, y)lrean = AGa(x, y)lrean = 0.

(3) xo is a critical point of the Robin functioR4(x) = Ha(x, x), where

1
Ha(x, y) := Galx, y) + — log|x —
a(x, y) 4(x,y) o glx —yl
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denotes the regular part afi, and o4 = 272 is the volume of the unit sphef in R%.

Remark 1.3. (1) In Theorem 1.2, the convexity assumption$®f is ndetbe
derive a uniform boundary estimate of solutions ®,( ) by tis® wf Method of
Moving Planes (MMP).

In A case, MMP still works well for non-convex domains througle tapplica-
tion of Kelvin transformations, and leads to a uniform boanydestimate. However in
our A? case, Kelvin transformation does not work well simply beealaplacian of
a Kelvin transformed function is not 0 on the boundary. It iclear that actually the
boundary blow-up can occur ® is not convex.

(2) We conjecture that carfi( ) = 1 at least for any convex domkithe following
upper bound

M = limsupllupllre@) < e,
p—>00
holds true, then we can prove the conjecture affirmatively.
Further we believe that in this case the blow up poigtis not only a critical point,
but the maximum point of Robin function. In 2-dimensional seathis is already
proved by Flucher and Wei [5].

2. Estimates for C,

First we recall D. Adams’ version of higher order Trudindgdoser inequality [1].
This is a key ingredient in our analysis.

Theorem ([1]). Let @ ¢ R? be a bounded domain and define := H"(Q) N
(u: (~A)u € Hol(sz),j =0,1...,[(n—1)/2}. Then there exist€y = Co(n) such
that

”(_A)”/Zu ”iZ(Q)

2
/ exp(az,,u—(x)) dx < Co|Q|, Vu e X.
Q

Here, ay, = 22 Inl(n — 1)! 02, 02, is the volume ofs?"~1 and || is the Lebesgue
measure of2 .
In R* (n = 2), we have

2
exp a4“—(x) dx < Co|Q|, Vu e H?>N HXQ)
2 0

wherew, = 1604 = 3272

Using this, we derive the following refined Sobolev imbedgdiihough the proof
is the same as in [8], we state here for reader’'s convenience.
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Lemma 2.1 (refinement of the Sobolev imbedding)For any ¢ > 2, there exists
D, > 0 such that for any: € H? N Hi(Q),

lullz @) < Dit?) Aull iz
holds true. Furthermorewe have

lim D, = (3204¢) V2.
=00

Proof. Letu € H*N HY(R). Elementary inequality says that/I" s ( +&)e*  for
Vx >0, Vs > 0, wherel’ { ) is thd™ function.
By Adams’ version Trudinger-Moser inequality, we have

1 t
uwa+n£“““

1 P 1/2

— u —1/2 t

= g——— dx x o [| Au||
IWQHDL(HMV ) ! e

L2(Q)
</exp aa u’(x) dx x a; | Aul’
= - .5 2
o NI ¢ H@)

—t/2
< Col Qo Aull) gy

Set

/ 1/t

Then we have
lullLiey < DitY?)| Aull 2.

Stirling’s formula says thatl{ {{ 2)+ 1)y ~ (t/(2¢))? ast — oo . So we have

: 1\Y?
lim D, = ,
t—oc 2004e

which is a desired result. O

Recall C, defined in (1.1). Using the above Lemma and energy adsgn, we
get the following.

Lemma 2.2 (asymptotics forC, ). We have

lim pY/2C, = (3204¢)"2

p—>00
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Proof. Lower bound (32e)Y? < liminf,_., p/2C, is a direct consequence of
Lemma 2.1 and the fadf, Aupllz2/llu,llL,+1 for least energy solutions,

Therefore we must prove only the upper bound: limsup p/2C,, < (3204¢)"/2.
We will do this by constructing a suitable test function foetvalueC, .

We may assume 8 Q2 and; (@) . For<0l <L , consider Moser function

A
) 0§|x|§la
o
=4 (2 Yiog L 1 < 1wl < 1,
oA x| SIS
0 QN (L < lx)

where A2 = log(L/!) ando =404 = 2/2x.
Note that the Moser functiom; € H}(2) but not in H?(Q). So we cannot test
the valueC, bym, directly.

Define
0, 0<|x| =<1,
=t ()2 <<t
gl X Lo O'A |x|27 — X _ 3
0, QN{L < |x|}.

Theng, € L?(Q) and llgillz2() = 1 by our choice ofr .
Take the unique solution € Hy (), @ € H}(B.) to the problem

alae =0
and
—Aa=lg| in B,
{ alap, =0
respectively.

By elliptic regularity, we havex € H? N H}(2). On the other hand, if extended
by 0, a can be regarded as iH}($2), but not in H? N H(). Also note thata is a
radial function which is explicitly calculate by the fornaul

a(r)=a(0)+ /_’: 13 (/j: —5312:(s)] ds) dt

for 0 <r =|x| < L. Indeed, by definition o, , we calculate

a(r)=a(0), (O=<r=<li)
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(2.1) a(r)=a(0)+ (i) <% - % (i—z) +log (é)) . (I=<r=<l)

Here, a(0) is determined by the boundary conditia(L) = O:

(2.2) a(0) = (i) (% (g) -1 |og(§>) |

Maximum principle implies that: € H2 N H}(Q) satisfiesa > a in Q. Therefore

lallLre) = lldllLrie) = llallLrs o) Also |Aallze) = llgillze) = 1.
Now, we test the valu€, witkh € H2N H}(Q). Then

C. < |Aall L2

p < < = = |a(0)| *|B,(0) MY
lallLryey — llal - o)

Setting! =L exp{ p +1) 8), multiplyingp’/? and lettingp — oo in the above
inequality, we have, by using (2.2), limsup,, p*/2C, < (3204¢)"/?. This proves

Lemma. O
Since
C. = ”AM])”L2
p
llpll oo
and
/|Aup|2dx=/ uP*ldx,
p
Q Q
we have

2 _ p-1 p+l _ 2 ~4/(p—1
C2=upls.  plluylhiy = pCiCy =Y.

Therefore Lemma 2.2 implies

Corollary 2.3.

lim p/ uﬁ*ldx =3204e, Ilim p/ |Au,,|2dx = 320e.
Q p—>00 Q

p—>00

3. Proof of Theorem 1.1

First, we show that a uniform lower bound &f°  norm exists foy aolution u
to (Ep).

Indeed, letA; > O be the first eigenvalue of A  acting diy(2) and ¢, > 0 be
a first eigenfunction corresponding 1q.
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Then, Green’s formula implies

0= / A1 — p1A%u) dx = f (uridr — pru’) dx,
Q Q
that is,
/ u¢>1()»§ —uP™dx =0.
Q
Hencei? — u”~! must change the sign o , which leads to
<y = 22.

To obtain a uniform upper bound dfu,|l1~@), we use an argument with the
coarea formula and the isoperimetric inequalityRA.
Set

Yp = maxu,(x), 2 ={xeQ:t<uy(x)}, A= {x eQ: Yp < u,,(x)}.
XEQ 2

By Lemma 2.1 and Corollary 2.3, we have

1/(4p)
( / uyy dx) < Dy (4p)2|Aupll ) < M
Q

where M is independent g ip large. From this and the Chevysheguality we
have

4p
(3.1) (%) " 141 < mor.
On the other hand, denotg, —=Au, . Integration by parts leads to

f |Vu,,|da:/ v, dx.
ifo} :

d do
~ g = .
dt 99, |Vup|

Then Schwartz inequality implies

d d
——|sz,|/ v,,dx:/ |Vu,,|do/ 7>
dt o PIe3 a, V]

Note that the isoperimetric inequality R*

Coarea formula says

0E| > 4wy Y| E¥/*
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where E ¢ R* is a Caccioppoli set and, = |B*| = |S%|/4 =72/2 is four dimensional
volume of the unit ball. Applying £, , we have

d
— 19 [ vpdx = 180} A0
Definer ¢) such that,;| war*(r). Then
L 19,1 = dour ()
dr' ' 4 '

Note thatr’ ( )< 0. Hence we have:

1 /‘ dx > 1
—— | vydx > ——,
4wgr3(t) Jo, )
dt 1 1 r
R ydx < ———(supv, )|2;| =( sup, )-.
dr = daar3() /Q Up 4x = 4w4r3(t)< Qp”')' /| ( A p")4

Integrating the last inequality from =0 to 5, we have
1 2
t(0) — t(ro) < é(sgpvp)ro.

Chooserp such thatr fo) = y,/2, that is, |A| = |, 2| = a)4r(‘)‘. Then the above in-
equality implies

1 2
Yp < —(supvp)ro.
4\ g
As v, = —Au, satisfies

—Av, =uj, in Q,
U1)|BQ = 07

we know, by elliptic estimate

supy, < C supth < Cy?
Q Q )z P

whereC =C ) (see [6] Theorem 3.7). Thus we have

C C 1/2
(3.2) Yo S ZVpT0= 4V (w—4|A|> :

By (3.1) and (3.2), we have

y2 < ¢ ’ 1 y2 2M\ "
P=\4 w4 P Yp
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which implies

C2 1/(2p+2) 2/ (r41)
y < ( ) (ZM) p/(p+ )
p 16w,

Therefore we conclude that there exigis> 0 (independent ofuch shaty, < C
for p large. L]

From Theorem 1.1, we have the following consequence.

Corollary 3.1. There existC1, C2 > 0 independent op large such that

g</ul7dx§2
o’ p

p

holds true.
Proof. By Corollary 2.3 and Theorem 1.1, we have
C < p/ u§;+ldx < llupllre@) x p/ ugdx < C’p/ u%dx
Q Q Q

whereC, C’ is a positive constant independentpof
On the other hand, &lder inequality implies

p/(p+1)
p/ uﬁdx < (p/ u£+ldx) X pl/(17+1)|§2|l/(p+1).
Q Q

Note that asp — co , RHS of the above inequality is bounded from IGoy02.3.
This proves the conclusion. Ll

4. Proof of Theorem 1.2

Set
—  Up Up ._f .
w, =————=—" Xx,:= [ uldx,
P fqupdx T T Jg T
and
p

. up(x)

x) = ————.

fo(¥) Jqupdx

By our assumption of the convexity @ and the Method of Movingrie), it is
standard by now to derive the uniform boundary estimatgugf} iclvkeads to the
fact that the blow up set ofw,} is contained in the interior @f ;we omit the
proof of this fact.
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At this stage, we recall a useful lemma proved by Wei ([10] beam2.3).
Lemma 4.1 (Brezis-Merle typeL! estimate forA?). Letu be aC#* solution of

{ A%u = f(x) in QcR4
ulpe = Aulyg =0,

where f € LY(Q), f > 0. Then for anye € (0, 1604), there holds

(1604 — &)[u(x) 160%
/Qexp( T )dx 2

Later we need a variant of ([10] Corollary 2.4) with no bourydaondition.

Corollary 4.2. Letu, be a sequence @ solutions of A% = V,¢* in Q c R*
with no boundary condition. Assume for some (1, co),
Q) IVallzr@) < Ca,
(@) luylizye) < C2 whereu, = maxXu, § ,
(©) fQ |Valet dx < Jeg < 1604/ p’
where p’ is a Hlder conjugate exponent gf . Thefu)} is uniformly bounded in
Ioc(Q)

The proof of Corollary 4.2 is done along the line of the prodf@orollary 4
n [2], so we omit it here.

From now on, letu, w, A, .f, denote, w, A, fp  respectively. First, we
remark that the blow up sef of the sequeriag} satisfigsp = . Indeed

C
supw,(x) > — — oo
xeQ An

by Theorem 1.1 and the factthaf & /@, - 0O0ms> o by Corollary 3.1.

This also shows that the set of peak points{of} is containechénblow up
set of {w,} .
Note that
ur' ()

fulx) = e LYQ), f, >0, / faodx =1
Q

Jouirdx

Then there exists a subsequence (still denoted,by ) such that

in the sense of Radon measuresSdf
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Now we define an important quantity

_limsup,_, (p Jqupdx)
. .

(4.1) Lo:

From a little bit more precise estimate in the proof of Theorg.1 and Hblder in-
equality, we know thaiLq satisfies 1< Lo < 3204.

For any§ > 0, we call a poinky € © a é-regular point of {u,} if there exists
@ € Co(R2), 0< ¢ < 1 with ¢ = 1 nearxp such that

/ 4 1604
< .
Q $an Lo+ 2§
Further we define fos > 0§-irregular set of a sequencg:,} as
3(8) :={xo € 2 : xg iS not aé -regular point

Note that

604
(6 > .
xo € 2(8) = ulxo) > Lo+ 2

The next result is a key lemma in the proof of Theorem 1.2.

Lemma 4.3 (smallness ofu implies boundedness).et xo be a § -regular point
of a sequencéu,}, then{w,} is bounded inL*(Bg,(x0)) for someR, > 0.

Proof. Letxy be aé -regular point. Then there exifts> 0 such that

160.
/ fodx < —2
Bg(xo) Lo+$

for n sufficiently large.
Split w, = w1, + wy,, Wherewsy, is a solution of

{ Azwln = fn in BR(xo),
W1nl9Br(ro) = AW laBr(ro) = 0,

and wy, is a solution of

Azwz,, =0 in B (xo),
w2n|BBR(xo) = Wy |8BR(x0)a
Awzn 9B (o) = AWn|aB(xo)-

Note thatwj, > 0, wz, > 0 in Bg(xo) by the maximum principle.
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First, we will show thatwy, is uniformly bounded neax,. Indeed, by the mean
value theorem for biharmonic function, we know

lwanll Lo Brjatro)) < CllWallLr(Br(xo)) < Cllwnllzyg) < C

holds true. Here the last inequality follows by Lemma 4.1.

So we need only to derive the boundednessvgf.

For this purpose, choose> 1 such#s ¢/ —( 1L+ (5/2). Note that the
fact Ly > 1 permits the existence of sueh> 1. Then we have

160, 160,
/ fodx < ‘< - 2.
Bg(xo) Lo+é !

Brezis-Merle typeL!-estimate (Lemma 4.1) implies

(4.2) /B ( )exp@’wln(x))dx <C,

whereC =C § )— o0 as§ — 0.
By an elementary inequality log< x/e for > 0, we have

Pn

log f, = log tn_ — p, log M p .
n DT = P T,
Lo+ (8/3) Up _ t— (8/6) Up ,
S l/p - l/p o S t w/z(x)’
An A" A" An

here, the second inequality follows by definition b§:

A
pl’l IZ<LO+§
3

for n large, and the third inequality follows from the fact
lim VP =1
n—o00

which in turn follows fromx, =0 (¥p, ) (Corollary 3.1).
Thus, we get a pointwise estimate

fa(x) < exp(t'w, ()
which implies
(4.3) (fae ™) < Ce'™»

on By 2(xo), becausew,, is bounded uniformly omBg 2(xo).
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Rewrite the equation satisfied hy;, as

A2wln = fneiwl”(x) e’ in BR(-XO)a
—_—

Vi (x)
W1nl9Be (o) = AW 9B, (o) = O.

Now, we check the assumptions of Corollary 4.2.
(1) V, = fue > is uniformly bounded inL’ Bg,2(xo)) by (4.2) and (4.3).
(2) ||U)]J1||L1(BR/Z(XO)) <C by Lemma 4.1.
(3) fBM VeV dx = fBR/Z frdx < 3Jeg < 1604/t by the definition oft .
Therefore by applying Corollary 4.2 twy, on Bgj2(xo), we conclude thajwa,}
is uniformly bounded inL> Bg,a(xo)). L]

Lemma 4.4. S=X(8) for anys > 0.

Proof. ScC X ¢) is clear from Lemma 4.3.

On the other hand, supposg € £(§) and lwall (B, o)) < € for someC inde-
pendent ofn . Thenf, 22w/ — 0 uniformly on Bg,(x0), which impliesxg is a
8-regular point;xg ¢ X(8).

This contradiction shows that for evely > 0,

n'LITWOO lwa |l L= (Br(xe)) = O
holds at least for a subsequence. o= S. O

By this Lemma, we obtain

1604

604
Lo+ 2 card(S)

Ly 5 o= 0 -

1> p(Q)>

Combining with the estimaté.q < 3204, we have

Lo+ 26 - 3204 + 25

card(S )< ,
6)= 1604 — 1604

hence
1< cardf)< 2

From now on, we prove the latter half of Theorem 1.2, so asscemé ) =1 and
S = {XO}, Xxp € Q2.

Thenw, & )< C on any compact sé& C Q\ {xo}, which implies f, — 0 compact
uniformly on €\ {xo}.
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Take ¢ € Co(R2). For givene > O, first we choose > 0 so small and then
n — oo, we have

‘ / fupdx — pxo)| < / Fulo(x) = p(xo)] dx
Q Q

< / Julo(x) — @(xo)| dx +/ fulo(x) — @(x0) dx < e.
B, (x0) Q\ B, (x0)

Therefore

(4.4) fo = 8

in the sense of Radon measuresdf . Thus Theorem 1.2 (1) igghrov
Setw, =—Aw, . Then

{—Aﬂ;n =f, inQ,
a)n|6ﬂ = 0’

and f, — 0 uniformly on any compadt C Q \ {xo}.
By elliptic regularity, there is a subsequenge,}, {w,}~ (still dedoby the same
symbols) and a functioG  such that

w, = G in C**(K), 1, - —AG in C>%(K),
w, = G in LYQ), W, > —AG in LY(Q)
since W14(Q) boundedness ofv, w,” (k ¢ < /4 3) and the compactness of the
imbedding Wt4(Q) — LY(Q).
By integration by parts and (4.4), we s€ée& Gu(-, xp). SO Theorem 1.2 (2) is

proved.
Finally, to prove the characterization of blow up point, weed the famous

Lemma 4.5 (Pohozaev identity). Let u be aC*-solution of A% = f(u) in Q.
Then we have for any € R4,

1 0
4/ F(u)dx=/ (x +y,vV)Fu)do +—f v2(x+y,v)do+2/ M v do
Q Bl 2 Jse a0 OV
0 d
+/ —v(x+y,Vu)+—u(x+y,Vv)dU
a0 av av
— [ (Vu,Vu)(x +y,v)do.
a0

In particular, we have

1 ad ) o
/ vF(u)dc7+—/ vvdo +/ {—vVu+—qu—(Vu,Vv)v} do =0.
99 2 Jye s L OV v
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Here, F(u) = [y f(s)ds, v = —Au and v(x) is the unit outer normal vector at €
012.

More genaral version of this formula can be seen, for examplg/]. In our case,
integrating the identity orf2

div((x +y, Vo)Vu + (x +y, Vu)Vv — (Vu, Vu)(x +y))
=(x+y, Vv)Au +(x +y, Vu)Av — 2(Vu, Vv)

for u,v € C¥(Q), V = V,, and noting that
div((x + y)F(u)) = f(u)(x +y, Vu) +4F ()

and
(1,
div 5V (x+y)+2vVu | =v(Vv,x +y)+2WVu, Vo)

if v=—Au, we get the desired formula.

Take r > 0 so small thatB, xf) C <. First, apply the Pohozaev identity
to wy on Q. Note thatw, solvesA?w, = f, = AP wl in Q. So Fw,) =
0L/ (pa + L))w? ™ in the following identity.

(—A n el n
/ VF(w,)do + = / (Aw,)?vdo +/ wan +lV(—Awn) do
aQ av av

f (Vw,, V(—Aw"))v}do
=0.

Sincew, =Aw, =0 ondQ2 , we have

(—Aw, 8wn
/{%V V(= A - (Vw"’v(‘Aw"))”}d“

I
ol

Now we know that
Wy, —> G4('a xO) in Clzcl)c(ﬁ\ {-xO})a _Awn - G2('a xO) in le)c(ﬁ\ {xO})

asn — oo . Therefore lettingg — oo , we have:

3G 3G
(4.5) / {a—zvm + a—“vcz — (VGa, vc;z)u} do = 0.
v

On the other hand, apply the Pohozaev identityGg(-, xg) on 2 \ B, (xg). Note
that G4(, xo) solvesA2G4 =0 in Q\ B,(xo) and G4 = G, = 0 on 9. Therefore we
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have

1 3G 3G .
- / G do +/ {—ZVG4 + 22V G, — (VGa, VGZ)U} do =0,
2 Jo(@\B, (xo)) B(@Q\B,(xo)) | OV v

that is,

1 9G 3G
—/ G2 do +/ {—ZVG4+ 249G, — (VGa, VGz)v} do
9B, (x0) 9B, (xo) v

2 ov
G G

(4.6) = / 29G4+ 22V Gy — (VGa, VG b do.
aQ av av

From (4.5) and (4.6), we have:

- 1 0G
0=—/ G%vd0+/ “2YGydo
2 Jap,(x0) 9B,(x) OV

[4] (8]
3G
(4.7) +/ —4VG2dG—/ (VGa, VGo)vdo .
3B,(x0) OV 9B, (xo)
[c] (D]

Substituting

1
Ga(x, x0) = Ha(x, x0) — dos log |x — xol,

1

Ga(x, xg) = —AGa4(x, x0) = Ho(x, xo) + ST
204 |x — xo|

in the above identity (4.7), we compute:

o Estimate of [A]

1 2
/ Gvdo = f <72 + 0(1)> vdo = O(r).
9B, (xo) 9B.(xo) \ 204X — Xol

Note thatv = § — x¢)/|x — xo| on 9B, (xo) and

/ h(r)vdo = 0
9B, (xo)

for any functioni ¢ ),r =x — xol.

e Estimate of [B]

G
f —ZVG4 do
0B,(x0) OV
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1 1 x—xo
VH2~U—73 VH4——72 do
9B, (x0) o4lx — xol 4oyg |x — xol

1
-—— V Ha(x, x0)do + O(r?)
41~ J3 B, (xo)

—V Hy(x*, xo) + 0(r2)

where 3x* € 9B, (o). The last equality comes from the mean value theorem of inte
gral.

e Estimate of [C]

3G
/ 4G, do
9B, (xo) v

1 1 x—xo
VHyv———— ) (VH, - = 2= ) do
3B, (x0) 4o4lx — xo| 04 |x — xo

1
=—— v(VHys - v)do + 0O@).
04ar= JaB,(xo)

e Estimate of [D]

/ (VG4, VGz)l) do
9B, (xo)

1 x—xg 1x—1x0
VHy— ———,VH, — — vdo
40, 2 4
9B, (x0) 4 T o4 1

1
=——7 / v(VHy - v)do + O@?).
U4r aB,(xo)

Letting » — 0 and noting that* — xo, we have
6 = —VH4(X0, xo).
This proves Theorem 1.2 (3) ]
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NoTE ADDED IN THE PROOEF Recently, we have succeeded to confirm the conjecture
in Remark 1.3 (2) affirmatively. Please refer to “Singlefgatondensation phenomena
for a four-dimensional biharmonic Ren-Wei problem” (pliepr
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