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0. Introduction

This paper studies equivariant fixed point theory of G-complexes with cellu-
lar methods. We introduce the universal Lefschetz ring UL(G) and the Lefschetz
ring L(G) of a compact Lie group G. They are both quotients of the set of
G-endomorphisms of finite G-complexes by an equivalence relation based on
Lefschetz numbers of the induced maps on XHIWH0 and Xs. The ring L(G)
bears a similar relation to UL(G) as the Burnside ring A(G) to the universal
additive invariant U(G). There is a commutative square of ring homomorphisms

UL(G) * L(G)

U(G) A(G)

where the horizontal arrows are quotient maps and the vertical arrows are
inclusions sending a finite G-complex X to id: X->X.

The groups UL(G) and U(G) are in fact defined for arbitrary topological
groups G by certain universal properties. This universal property is mainly
used for constructing homomorphisms with UL(G) as source.

Let Con G be the set of conjugacy classes of subgroups {(if) | H < G} and
con G be the set of conjugacy classes of elements {ζgy\g^G}. Denote by
Cl(ZG) the free abelian group generated by con G or, equivalently, the group
of class functions G—>Z with finite support. Under a mild technical condition
which is satisfied for compact or discrete G we can define the universal
Lefschetz class

UL(f)(Ξ θ Cl(Zπ0WH)
CBXΞConβ

of a G-endomorphism / of a finite G-complex by applying the Hattori-
Stallings trace to the induced chain map on the cellular Zπ0WH-chain complex
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C{X", X>a) for (H) ε Con G. We can use UL(f) to define the universal Euler
class UX(X)<=®Z. Denote by r(w): G\H-*G\H for w^WH the G-map

gH-+gwH. Let /(#) for # e G always denote left multiplication withg.

Theorem A. Suppose for G that any G-map G/H-* G/H is a G-homeomor-
phism (This holds for compact G). Then UL(f) and UX(X) induce isomorphisms

UL(G)^®Cl(Zπ0WH) and ( )
Cff) CH)

where the sums run over Con G. A Z-base for UL(G) is {[r(w)]\ζwy^con π0WH,
(H)ZΞCon G} and i[G/H]\(H)^Con G} is a Z-base for U(G).

The groups UL(G) and U(G) give rise to a general method of constructing
homotopy invariants of G-maps/: X—>X (resp. spaces X): assign to the basis
elements [r(w)] (resp. [G/H]) arbitrary values in an abelian group. This frame-
work covers Brown's equivariant Euler characteristics of discrete group actions
[3, Ch. IX. 7] and torn Dieck's Burnside ring of a compact Lie group [6, Ch. IV].
Indeed, the first one is obtained by mapping [G/H] to the Euler characteristic
of H in the sense of group cohomology, whereas the second one results by con-
sidering the Euler characteristics of the spaces G/H and their fixed point sets.

For the rest of the introduction, let G be a compact Lie group. If/: X->X
is a self-map of a finite G-complex X and H<G then the Lefschetz numbers

(0.1) LH{f)(w) = L(X*IWH0, l{w-ι)ofBjWHQ)y w(Ξπ0WH

define a class function LH(f) on π0WH=WH[WH0. The universal Lefschetz
ring UL(G) is obtained by identifying fx and /2 when LHr(/1)=ίjHΓ(f2) for each
H<G. The homomorphisms LH define an injective group homomorphism

L: UL(G)-*TlCl(Zπ0WH)

which is a ring homomorphism only for finite groups. To get an invariant more
accessible to computations, consider the class functions LH(f): π0WH-*Z de-
fined by

(0.2) LH(f)(w) = L(XH, l(w~ι)of% w(Ξ WH

If /i and f2 are identified when LH(f^=LH(f2) for each H<G the result is the
Lefschetz ring L(G). It admits a ring embedding L: L(G)->ΐl Cl(Zπ0WH).

Cff)

For finite groups G the rings UL(G) and L(G) coincide. In general, the class
of r(w): GjH-^GjH in UL(G) maps to zero in L(G) if w has infinite centralizer
in WH, and the remaining generators form a basis of L(G):
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where Clφ(Zπ0WH) is the free abelian group on those conjugacy classes ζτόy
of π0WH for which CWH(w) is finite. The ring UL(G) is of theoretical interest
whereas L(G) is adequate for explicit computations.

The quotient set of G-maps under the coarse relation based on the Lefschetz
numbers L{XHJH) turns out to be the Burnside ring A(G). The fact that A(G)
is also the quotient of the same relation on spaces has important consequences
and has no counterpart for UL(G) and U(G).

So far the spaces have been finite G-complexes. Next we apply homologi-
cal algebra in the category of modules over the orbit category to weaken the
finiteness assumption. The idea is to approximate the cellular chain complexes
of all fixed point sets simultaneously by finite projective complexes, replacing
thus the arguments based on induction over orbit types. This approach was
used in the context of finiteness obstructions of finite groups by torn Dieck [5],

We are ready to state the main results. Let X be a Z-homology finite G-
complex, i.e. H*(XH; Z) is finitely generated for each H<G. Then we prove
that H*(XHIWHOy Z) is also finitely generated for each H<G, so that the class
functions LH(f) and LH(f) from (0.1) and (0.2) are defined for all G-maps
/: X->X. Recall that LH and LH define homomorphisms UL(G)^Cl(Zπ0WH).

Theorem B. Let G be a compact Lie group and let Xbea finite-dimensional
Z-homology finite G-complex of finite orbit type. Then every G-map f: X-+X
has an equivariant Lefschetz class [/] in UL(G) such that LH(f)=LH([f]) and
L»(f)=LH([f])for each subgroup H<G.

Thus the relations between LH{f) or LH(f) for various H are the same as
those that occur for the maps r(w): G/K-^G/K. In particular

Corollary C. With the assumptions of theorem B the Lefschetz numbers
L(fH) satisfy the Burnside ring congruences: let H<L be closed subgroups of G.

i) If LIH is finite then

L(f") = -Σiφ(\K!H\)L(fX)mod \L/H\

summed over those K<L which correspond to non-trivial cyclic subgroups of LjH.
ii) If L\n is a torus then L(fH)=L(fL).

Corollary D. (Lefschetz fixed point formula). With the assumptions of
theorem B, L(g)=X(Xg) for each element g^G.

Verdier [18] and Brown [4] have proved versions of Corollary D for finite
groups.

Section 1 contains the definition of UL{G) for topological groups G and the
proof of Theorem A. In section 2 we relate it to ordinary Lefschetz numbers,
when G is a compact Lie group, and prove the main results in the special case
of finite G-complexes. Section 3 deals with homological algebra over the orbit
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category. In section 4 we give axioms for Lefschetz invariants of chain map-
pings. In section 5 we apply the algebra to G-complexes and prove Theorem
B and Corollaries C and D in slightly more general form allowing arbitrary coef-
ficients. Section 6 is devoted to homotopy representations which formed the
authors' original motivation for constructing Lefschetz classes in A(G) for finite
G-complexes in [11] and [12].

The paper was written while the first author was visiting Sonderforschungs-
bereich 170, Geometrie und Analysis, at Gϋttingen. He wishes to thank SFB
for its hospitality.

1. The universal Lefschetz group of a topological group

Let G be a topological group. Topological groups as well as G-spaces are
supposed to be Hausdorίf. For a general discussion of G-complexes we refer
to [6, II. 1+2]. We call a G-complex pointed if we have chosen a base point,
i.e. a G-fixed point in the zero-skeleton Xo. A G-map is pointed if it preserves
the base point. Given a G-map /: X—> Y, let X+ and Y+ be the pointed
G-spaces X+ = XJi{G/G} and Y + = FjJ_{G/G} with base point GjG and

/+: X+-+Y+ be the pointed G-map/Jiid. Denote by [X, Yf (resp. [X, Y]°)
the set of (pointed) G-homotopy classes of (pointed) G-maps from X to Y.
If S" has trivial G-action and V: Sn->SnVSn denotes the pinch map then
ίf] + [g]=[fVg°V] defines a group structure on [S"ΛX, S"ΛX](i for n>\
which is abelian when n>2.

A Lefschetz invariant for G consists of an abelian group A and a function
assigning to a pointed G-endomorphism /: X ^X of a pointed finite G-complex
an element L(f)^A satisfying

i) Homotopy invariance

Iff, g: X-^X are pointed G-homotopic then L(f)=L(g).
ii) Commutatίvity

Iff: X-* Y and g: Y-+X are pointed G-maps then L(gof)=L(fog).
iii) Addίtivίty

Consider the commutative diagram of pointed finite G-complexes with i the
inclusion of such G-complexes

A

f

A

Then L(f)-L(g)+L(h)=0.
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iv) Linearity
For f,g: S1ΛX-+S1ΛX we have L(f+g) = L(f)+L(g). (This makes sense
because of i).

Remark 1.1. Notice that homotopy invariance and commutativity imply
that L(f)=L(g) if there is a G-homotopy commutative square

y / , y
Λ. *~Λ.

g

with a pointed G-homotopy equivalence h.

Example 1.2. Consider the function assigning to a pointed G-endomor-
phism /: X->X of a pointed finite G-complex the ordinary reduced Lefschetz
number oίf/G: X/G-^X/G in Z. This is a Lefschetz invariant for G.

In the sequel we need the following condition (0) on G which is satisfied for
all abelian or compact or discrete groups G

(0) The Weyl group WH=NH/H= {g^G\g-ιHg = H}jH is open in
GIHH=igeΞG\g~1Hgc:H}IH for any H<G.

Notice that WH is always closed in GjHH as if < G is closed, Hence GjHH

is the topological sum WH\\jGjH>H. Therefore the G-complex structure on X
induces a relative WΉ-complex structure on (XH, X>H). If R is a commutative
ring and H* denotes singular homology with ^-coefficients define the cellular
chain complex CC(XH, X>H) with jR-coefficients by

")n, (X",

where An is the boundary operator of the corresponding triple. By naturality
and homotopy invariance CC(XH>, XH) is a i?7r0WΉ'-chain complex. It is finite
free becasue of HU((XS, X>H)ny (XH, X>B)n_ι)<* ®Hn(WHx (D\ S"-1))^
Q)H0(WH) where the sum runs over the n-dimensional WΉ-cells in XH\X>H.
A cellular G-map /: X-+X induces C\fH

yf>
H): CC{XH, X>H)-+CC{XH, X>H).

We make the convention that for a pointed G-complex X with base point x X>G

is {x}. Then we have CC(XH

} X>H)=C\XIί> X>H) for a G-complex X and
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we can treat in the sequel the unpointed and pointed case simultaneously.

Let K be a group. Denote by Cl(RK) the free ϋ-module generated by

the conjugacy classes ζk> of elements k^K. There is a canonical epimor-

phism of i?-modules

(1.3) T:RK->Cl(RK)

with the group ring RK as source. It is bijective if and only if K is abelian.

Consider an endomorphism / : P->P of a finitely generated projective RK-

module. In [8], [17] and [1] there is defined a trace Tr^(/) £Ξ Cl{RK) as follows.

Choose a finitely generated RK-module Q and an isomorphism h:

from the based free l?i£-module of rank n. The endomorphism

of RKn is given by a {ny «)-matrix A=(aiJ). Then the Hattorί-Stallings trace

off is

(1.4) Tr (f) = 2 T(a )€ΞCl(RK).
ι = l

Consider a finitely generated projective i?i£-chain complex C and a RK-chain

map/: C-+C. Define

(1.5) LRK{f)<=Cl{RK).
CO

by Σ (—lyTijHf(/,-). This is a Lefschetz invariant in the sense of section 4,
ί = 0

i.e. homotopy invariance, additivity, linearity and commutativity are satisfied.

Consider a (pointed) G-endomorphism / : X->X of a (pointed) finite

G-complex. Let ULff(f)<=Cl(Zπ0WH) be Lz«oWH{C\XH, X>H), Cc(g)) for any

cellular G-map g with f^g. Define the universal Lefschetz class

(1.6) UL(f)tΞ®Cl(Zπ0WH)
Cff)

by the collection {ULH(f)} where (H) runs over the set Con G of conjugacy

classes (H) of subgroups H < G . This makes sense as ULH(f) depends only on

(H) and is different from zero only for H e l s o X One easily checks using the

remarks above that the universal Lefschetz class defines a Lefschetz invariant

for G. In particular we get from remark 1.1 that UL(f) does not depend on

the G-complex structure on X. We will see that UL is the most general

Lefschetz invariant.

We call a Lefschetz invariant (A, L) universal if for any Lefschetz invariant

(A',Lf) there is exactly one homomorphism φ: A-»A' such that φ(L(f))=

L\f) holds for any pointed G-endomorphism / of a pointed finite G-complex.

Up to unique isomorphism there is only one universal Lefschetz invariant.

One can construct a model by introducing on the abelian group generated by the

isomorphism classes of pointed G-endomorphisms of pointed finite G-complexes

the necessary relations corresponding to the axioms.
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DEFINITION 1.7. Let UL(G) together with the function/->[/]

be the universal Lefschetz invariant of the topological group G. We call

TJL(G) the universal Lefschetz group of G.

Notice that we obtain by the universal Lefschetz class UL(f) and the uni-

versal property UL(G) a homomorphism

(1.8) UL: UL(G)->®Cl(Zπ0WH)

uniquely determined by UL{[f])=UL{f). We can define a homomorphism

(1.9) ψ: ®Cl(Zπ0WH)->UL(G)

by sending the base element ζwy^Cl(Zπ0WH) represented by w^π0WH

to [V(w)+] where r{w):GjH^-GjH sends gH togwH. This is independent of

the choice of w by homotopy invariance and commutativity since any path from

w to w' in WH induces a G-homotopy between r(w) and r(w') and r(w)or(v)=

r(vw) holds. One checks directly that ULoψ is the identity. Now assume

that G satisfies the condition

(El) Any G-endomorphism of a homogeneous G-space is a G-homeomor-

phism.

This is equivalent to G/HH=WH so that (El) implies (0). If G is compact

(El) is satisfied. Now we can prove Theorem A of the introduction.

Theorem 1.10. IfG satisfies (El) then UL and ψ are inverse isomorphisms.

Proof. It remains to prove that ψ is surjective. We write (H)<(K) if

H<K holds for appropriate representatives H and K. This is equivalent to

the existence of a G-map G/H-^G/K. We get from condition (El) that

(H)<(K) and (K)<(H) implies (H)=(K). Consider a pointed G-map/: X->X

of a pointed finite G-complex. Numerate {(H)\H<=Iso X} = i(H1), (H2), •••,

(Hr)} such that (Hi)<(Hj) implies i>j. Then X(k)= Uί-i X{H^ is a G-sub-

complex of X and / induces by restriction/(&): X(k)^» X(k). We obtain from

additivity

Similarly we obtain from the skeletal filtration

[/] = Σ3 [/•„//„-J
» = 0

Hence it suffices to show [/]e image -ψ> under the assumption X= V/=i GjH+/\

Sn for n>0. By additivity and homotopy invariance [»SίlΛ/]= — [/] holds as
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we have the cofibration X->I /\X->Sι/\X and I/\X is contractible. There-
fore we can also suppose n>2. If Mr(Zπ0WH) is the ring of (r, r)-matrices
over Zπ0WH we next construct an isomorphism of abelian groups

F:Mr(Zπ0WH)->[X,X]G

+.

Let X be a space. One shows inductively for n>2 that SnΛX+ is (n— ^-con-
nected and the Hurewicz homomorphism πn(Sn AX+)->Sn(Sn AX+) is bijective.
In the start n=2 use the theorem of Seifert-van Kampen. Hence we obtain
an isomorphism of abelian groups for n>2

) -=> αn(x+) -> [S\S*ΛX+]+ .

We define F as the compostion

Mr(Zπ0WH) = 0 0 H0(WH) = 0 i?0(V G/Hξ)
ί=iy=i *=i y=i

= θ [Sn, V G/i/f ΛS"]+ = 0 [G/H+ASn, V
»=i y=i ι=i y=i

= [V GIH+ΛS", V G/H+ΛSn]° = [X, X]ί .
l > 1

Let -4eMr(Z7r0ϊΓfl") be given. Let δ u be the Kronecker symbol: δ ί > y =0
for/Φy and δ ί f f = l, The matrix £"(/, j)=(δi,i' δjj')i'j' has always 0 as entry
except at (z, j) where it is 1. We get

= ΣF(αu E(i,j)).

Applying additivity to

V G/H+AS" VG/H+AS* GίH+ΛSn

V G/H+AS" -* GIH+ASn

and linearity to 0 + 0 = 0 yields

Hence it remains to show for α^Zπ0WH that [F(^)]Gimψ holds for F(ά):

GIH+ΛSn->GIH+ΛSn. Since we can write α—^Σi αw w we can assume α=w.

But [-F(α>)] is ("l) n [ r (^)+] a n < ί [ K ^ ) + ] e i m Ψ is obvious. •
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Let U(G) be the universal additive invariant for pointed finite G-complexes
(see [6, IV. 1.]). It is universal with respect to homotopy invariance and additi-
vity. By the universal property we obtain unique homomorphisms

(1.11) /: U(G) -+ UL{G), [X] -* [id: X-+X\.

Let β(X, H, n) be the number of cells of type GjHxDn in (X, x). Define
UXH(X)£ΞZ by Σ ^ o (—l)*iS(-X", H, n). Suppose that G satisfies (0). Since
ΎrZiίo(Wff)(Zπ0WH,id)^Cl(Zπ0WH) is the base element given by the unit
e(Ξ WH we have ULa(id: X-+X)= UX*(X)-[e]. Hence we get a well-defined
homomorphism

(1.12) UX: U(G) - θ Z, [X] -> {UX«{X)\H)

such that the map i: ®Z-^Cl{ZπQWH) sending (nH&Z)(H) to (nH [e]^
CH)

Cl(Zπ0WH))(H) makes the following diagram commute

UL
UL{G) ^ θ Cl(Zπ0WH)

(1.13)

U(G) — ^ θ Z

If G satisfies (El) the map UX is an isomorphism. We call UX(X) the universal
Euler characteristic. The possibility of defining equivariant Euler characteri-
stics for general groups was suggested to us by Sϋren Illman.

If one drops in the definition of the Lefschetz invariants the linearity
axiom one is led to larger universal groups (see Dold [7], Okonek [15]).

2. Lefschetz invariants for compact Lie groups

In this section G is always a compact Lie group. We continue the study of
UL{G) and U(G) and the universal Lefschetz class UL. Next we show how to
compute UL by ordinary Lefschetz numbers. This is based on the following
observation for a finite G-complex X.

There is a relative π0WH=WHlWH0-complex structure on (X*, X>H)/WH0.
Let CC((XH, X>H)IWH0) be its cellular Zπ0 WH-chήn complex.

Lemma 2.1. The canonical projection pr: C\XH, X>H)->C\{XH, X>H)j
WH0) is a base preserving Zπ0WH-chain isomorphism.

Proof. If 0 runs over the cells of type G/HxD" we can write prΛ as the
composition of isomorphisms
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, X>»)n, {X*, X>B)n-y) = @Hn(WHx{D", S- 1))

θ#o(WHlWH0)^®Hn(WHIWH0x (IT, S*-1))

, X>»)nIWH0, (X«, X>t),_x\WH0). Q

Denote by LZ((Y, B)>f) the ordinary Lefschetz number of an endomor-
phism /: (Y,B)-*(Y, B) of a finite relative CW-complex. If Ύxz denotes the
ordinary trace of an endomorphism of a finitely generated abelian group we have
for any cellular approximation g of/

(2.2) Lz(f) = Σ (-1)" Tr,(Cί(*)) = Σ (-1)" Trz(Hn(f)).
«=0 »=0

Consider the (pointed) endomorphism of a (pointed) finite G-complex
/: X-+X. Given H<G, let <w> be the conjugacy class of w^π0WH. Write
UL*(J) as Σ ULH(f)ζwy^wy in Cl(Zπ0WH). Let /(w;"1) be the map given

by left multiplication with w~ι and C*oWH(w)= {v^π0WH \vw=wv}be the cen-
tralizer of w in τr0WΉ". Let c be | CtfoTΓ^(^) |. Denote by (fH

3 f>H) the map
(fHJ>H)IWH0: {XH, X>»)IWH0->(X»} X>H)IWHQ.

Theorem 2.3.

> = -±--Lz{X», X>»)/WH0, l{w~ι)o(p} />*)) .

Proof. By Lemma 2.1 and the definitions of LZηtQWH and Lz it suffices to
prove for an endomorphism φ: Zπ0WH->Zπ0WH

Given w, wo^ZπoWH let /(tt;"1)©^^) be the endomorphism ZπQWH->ZπQWH,
One easily computes

/ r\ Λ\ m / ! / —1\ / w I '

This proves the claim. •

The coefficients L2((XE, X>H)IWH0, l{w"ι)o{fH J>H)) are rather difficult
to compute in practice since even in the case of a linear representation sphere
X=SV of a finite group G the singular set X>H in XH is a union of subspheres
whose intersections form a complicated combinatorial object. We shall therefore
study the following absolute numbers

(2.5) L«(f)<w> = Lz(XηWHa, / ( O o / * )
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(2.6) L*(f) = Σ La(f)<w>'<w><=Cl(ZπoWH)
<w>

and their collection {L*(f)\(H)eCon G} denoted by

(2.7) L(f)<EU Cl(Zπ0WH).

Since X-*XH/WH0 is compatible with equivariant homotopy and inclu-
sions of equivariant CJF-complexes and (S1AX)HIWH°=S1A(XHIWH0) holds,
L is a Lefschetz invariant. Hence we get a homomorphism

(2.8) L: UL(G) -> Π Cl(Zπ0WH), [/] -> £(/) .

Theorem 2.9. Z ώ injective.

Proof. By Theorem 1.10 it suffices to show that the composition

0 Cl(Zπ0WH) - ^ UL(G) > Π Cl(Zπ0WH)

is injective. Consider a tf=Σ #(#) with a(H)^Cl(ZπΌWH) in the kernel of
Cff)Cff)

L°yjr. Suppose that a is not zero. Then choose (H) maximal with a(
Since G/KH±0 implies (H)<(K) LHoψ(a) is LHoψ(a(H)). Write α ( i ϊ ) =
Σ Mtv'^™)- As GjH>H is empty we get from Theorem 2.3 and 2.4
<>

This is a contradiction to | Crf()TΓjff(zϋ) | > 0 . •

Now we show that the universal property of UL(G) induces the structure of
a commutative ring with unit. Let /: JY*-> X be a pointed G-endomorphism of
a pointed finite G-complex. If g: Y-+Y is another such map over'G'/Λ^:
XΛY^>XΛY is a pointed GxG'-endomorphism of a pointed finite GxG'-
complex and defines [/Λ g] e ί7L(G X G'). One easily checks that g-> [/Λ ^] G
UL(GxG') is a Lefschetz invariant for Gr, so that there is a unique
homomorphism φ(f): UL(G')-»UL(GxG')[g]-+lfΛg\. Now/->φ(/)e
Horn(UL(G')->UL(GxG')) is a Lefschetz invariant for G. The induced
homomorphism UL(G) -> Horn (UL(G')-> UL(G X G')) can be viewed as a pairing

(2.10) P(G, G'): UL(G)®UL{Gr) -> UL(G®Gf)

uniquely determined by the property P(G, G') ([f]®[g])=[f Λg].
Let ί: H->G be a subgroup. Consider the pointed endomorphism /: X-+X

of the pointed finite G-complex X. It follows from the triangulation theorem
that there is a pointed finite //"-complex and a pointed ίf-homotopy equivalence
h: y-^resX, see [9, Th. A] or [13]. We get [res f]tΞUL(H) by [h'^foh].
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This is independent of the choice of h, hΓι and Y by homotopy invariance and
commutativity. We leave it to the reader to check that /—>[res/]e UL(H) is
a Lefschetz invariant for G. Hence we get a homomorphism

(2.11) **: UL(G)->UL(H)

sending [/] to [res/]. If Δ: G->GxG is the diagonal map we get from 2.10
and 2.11.

Theorem 2.12. The composition Δ*oP(G, G): UL(G)®UL(G)->UL(G)
induces the structure of an associative commutative ring with unit [id+: G/G+ —»
G\G+] on UL(G).

One should compare this with [14, section 6]. Because of Theorem 2.9 and
2.12 we can also define UL(G) as the set of equivalence classes [/] of pointed
G-endomorphisms of pointed finite G-complexes under the equivalence relation
fr^g<=>L(f)=L(g). The ring structure is induced from V and Λ. Given
/: X-+X> an inverse of [/] under addition is given by [/Λidr] for any finite
CW-complex Y with trivial G-action and ordinary Euler characteristi %(Y)= — l.

The evaluation of the product in UL(G) is in practice very difficult when
dim G > 0 so we study a weaker equivalence relation. Call two pointed G endo-
morphisms/: X ^>X andg: Y-+Y of pointed finite G-complexes equivalent if
we have for any HdG and w^π0WH that Lz(l(w-1)ofI£)=Lz(l(w-1)ogH) holds.
Let L(G) be the set of equivalence classes. It becomes a commutative ring with
unit [id+: G/G+->GIG+] by V and Λ. We call L(G) the Lefschetz ring of G.
Let LH(f)e Cl(Zπ0WH) be the element Σ Lz{l(w~ι)ofH).<«;>. The collection

{LH(f) I (H)eCon G} defines an inductive ring homomorphism

(2.13) L: L(G) -* Π Cl(Zπ0WH)
Off)

if the equip Cl(Zπ0WH) with the ring structure induced by Cl(Zπ0WH) =
H Z. The advantage of L(G) is that L is a ring homomorphism which is not

true for L from (2.8) when G is infinite.
One easily checks that the funct ion/->L(/)GΠ Cl(Zπ0WH) is a Lefschetz

CZΓ)

invariant of G. By 2.13 and the universal property we get a ring homomorphism

(2.14) P:UL{G)^L(G), [ / ] - [ / ] .

Theorem 2.15. Let conφ(π0WH) be the set of conjugacy classes ζwWHoy of
elements wWH0<=WH/WH0=π0WH such that CWH(w) is finite. Then a Z-base
for L(G) is given by

B = {[r(w)]\<wWH0>(Ξconφ(π0(WH))y (H)eίCon G} .
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Proof. Consider w(Ξ WH and v&WK. Then l{v~ι)or{w)κ: GjHκ-+GIHκ

is a CWH(w)-map under the right CWH(w)-2LCtion. If CWH{w) is infinite it contains
a circle so that L z{l(v~ι)°r(w)κ) vanishes by Lemma 2.16 below. Suppose K=H
and CWH{w) to be finite. If <vWHoy*<wWHo> then l(Ό'ι)or(w)H has no fixed
points so that L z{l(v~ι)or(w)H) vanishes by the Lefschetz fixed point theorem.
If ζvWHoy=ζwWHoy holds we can suppose v=w by remark 1.1. Then we
obtain from the Lefschetz fixed point formula 2.18 below Lz(l(w~ι)or(w)H)=

This shows that the condition "CWH(w) is finite'' depends only on ζwWHoy.
By Theorem 1.10 and the epimorphism 2.14 the set B generates L(G). Suppose
that α = Σ a(H, w) [r(w)] is zero where the sum runs over B. Assume that
not all a(H,w) vanish. Choose (H) maximal with a(H,w)Φθ for some w.
Then LH(a)ζwy equals | CWH(w) |, a contradiction. •

Lemma 2.16. Let f: X->X be a G-endomorphism of a finite free G-corn-
plex. If G is S1 we have Lz(f)=X(X)=0. If G is a finite group Lz(f) = X(X)
= 0 m o d | G | .

Proof. Obviously it suffices to show for finite G that Lz(f) = 0 mod | G \
is valid since S1 contains Z/p as a subgroup for all prime numbers p and L z(id)=
X(X) holds. If / is cellular then LZG(Cc(f))<EΞCl (ZG) is defined. The homo-
morphism

Cl(ZG) - Z, Σ «<*>'<£> -* I G| a<e>

maps it to Lz(f). •

REMARK 2.17. Theorem 2.15 implies that the property "CWH(w) is finite"
depends only on the conjugacy class <wWHoy of wWHQ^WHIWH0=π0(WH).
This can be seen directly as follows. Choose a Cartan subgroup SdWH
containing w such that wSQ generates π0S—SIS0. Then S is finite if and only
if CWH(w) is finite and the conjugacy class ζwWHoy determines the conjugacy
class of S in WH,

Proposition 2.18. (Lefschetz fixed point formula.) We have for a finite
G-complex X an

Proof. Let C be the closed subgroup of G generated by g. Choose a
finite C-complex Y and a C-homotopy equivalence Y-*X. Then LZ{X, l(g))
=LZ{Y} l(g)) and X(Xg)=X(Yg), so we may suppose that X=Y and G=C is
topologically generated by g. By additivity we can even suppose Y=CjH.
If HΦC then l(g): Y->Y is fixed point free so that Lγ(l(g))=0=X(Yg) holds.
If H=C then Y is a point, /(^)=id and clearly Lz(l(g)) = l=X(Yg). •
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Now we look at the ring L\G) defined analogously to L(G) but using the
equivalence relation f~g<?>L{fH)=L(gH) for all HdG. The Burnside ring
A(G) is the set of equivalence classes [X] of pointed finite G-complexes under
the relation X~Y*>χ(χx, x)=X(Yff,y) for all HdG. There is a natural
ring homomorphism

/': A(G) -> L\G) [X] -* [id: X-+ X].

Let pr: L(G)->L'(G) be the obvious epimorphism [/]->[/]. Condider a base
element [r(w): GjH-^GjH]. If <wWHQ>* <eWH0> then r(w) has no fixed
points so that L(r(w)κ: GjHκ->GjHκ) is zero for all KdH by the Lefschetz
fixed point theorem. Since CWH{w) is assumed to be finite WH is finite in
the case w=eH. Hence a set of generators in L'(G) is given by {[id: GjH->
GjH] \(H)^ Con G, WH finite}. This set is also linearly independent. Suppose
that Σ\n(H) [id: GJH-+GJH] is zero but not all n(H) vanish. Choose (H)
maximal with n(H)4z0. Then the homomorphism L'(G)-+Z, [fY+L^f3) maps
this sum to n(H) -\WH\ a contradiction. As {[GjH] \ (H) £Ξ Con G, WH finite}
is a Z-base for A{G) we have

Theorem 2.19. / ' : A{G)-+L\G) is a ring isomorphism.

This implies in particular that the Burnside ring relations of Corollary C
in the introduction are valid for the Lefschetz numbers L{fH) if/: X->X is a
(pointed) G-endomorphism of a (pointed) finite G-complex. This includes the
case of a compact smooth G-manifold.

The authors constructed Lefschetz classes [/] in A(G) for finite G-com-
plexes in [11] for finite and in [12] for compact Lie groups. If/: L(G)-+A(G)
is (/')~ l oP r they are the images of the present classes [/]G UL(G) under

UL(G) ~^-+ L(G) -^-> A(G).

We have already constructed a homomorphism /: U(G)->UL(G), [X]-+
[id: X->X] in section 1. The same formula defines /: A(G)->L(G). There
is a ring homomorphism P: U(G)^>A(G) sending [X] to [X]. Hence we obtain
a commutative diagram of ring homomorphisms

UL(G) ^ L(G)

(2.20) j

U(G) * A(G)

The splitting/: L(G)-*A(G) sends explicitly the class of r(w): G/H-+GIH to
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[G/H] when w represents e^π0WH and to 0 otherwise. It is a ring homo-
morphism and satisfies

(2.21) ΦH(J[f]) = L(fB), H^G,

where φH[X]=X(XH). Of course one can define a splitting of abelian groups
UL(G)->U(G) similarly but the analogue of (2.21) is no more valid. For general
infinite G it cannot be satisfied by any map UL(G)^> U(G).

Indeed, let UL\G) denote the set of equivalence classes of endomorphisms
of finite G-complexes under the equivalence relation

f~g~L(f»IWH0) = L{gηWHa), H<G.

The inclusion / ' : C/(G)-> £/L'(G) is usually not surjective, so that the projec-
tion UL(G)-+ UL\G) cannot factor through it.

EXAMPLE 2.22. Regard G=O(2) as ϋ-automorphism of C. The complex
conjugation c£θ(2) has normalizer N=ζc, —1> in G. Let X=GI(cy^S1 and
let/: X-+X be multiplication by -1 . Then L(fff/WH0)=l for H=\ and 0 for
ffΦl. However, if Y is any finite G-complex with X(Y*IWH0)=Q for ί f φ l
then the class of Y in U(G) is a multiple of [G] and X(Y/SO(2)) is divisible by
X(O(2)/SO(2))=2. Thus [/]e UL'(O(2)) does not lie in the image of C/(O(2)).

3. Homological algebra over the orbit category

The purpose of this section is to reformulate the technique of induction
over orbit types in the language of modules over the orbit category. Given a
G-space X, each G-map GlH->GjK gives rise to a map XK->XH so that Xcan
be regarded as a functor from the orbit category consisting of homogenous spaces
G\H to the category of spaces. The cellular chain complexes C*(XH) of a G-
complex X, and the singular chain complexes C*(XH) of a general G-space X,
form similar functors from the orbit category to the category of chain complexes.
Our aim is to give conditions on X which guarantee that the complexes C*(XH)
can simultaneously be replaced by finite projective complexes, since these are the
ones where Lefschetz numbers can be computed on chain level. Some syste-
matic approach is needed for compact Lie groups G since then the category of
modules over the orbit category is not Noetherian. To simplify notation, we
shall work with general functor categories. For more details and other appli-
cations, see torn Dieck 6, [Ch. I. 11] and Luck [13].

Let Γ be a small category and let R be a commutative ring with unit. An
RT-module is a contravariant functor M: T->M0D — R from Γ to the category of
i?-modules. A homoniorphism between RT -modules is a natural transformation.
Let MOD-RΓ denote the category of RΓ-modules.
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EXAMPLE 3.1. Any group G can be considered as a category with a single
object and one morphism for each group element. Contravariant functors
M: G->MOD—R are equivalent to right modules over the group ring RG.

The category MOD—RT inherits a structure of abelian category from
MOD — R. For example, a sequence of i?Γ-modules is exact if its value at
each object of Γ is exact. An RT-module P is projective, if it has the following
lifting property:

w /

0

if v is a morphism and u is an epimorphism, there exists a morphism w such
that uw=v. Projective modules are related to free modules in the usual way,
once free modules are defined as adjoints to suitable forgetting functors as follows.

A T-set is a family (Bx) of sets Bx indexed by Ob(T). A Y-map between
two Γ-sets (Bx) and (Cx) is a family (fx: Bx-+Cx) of maps. If | Γ | denotes the
category having the same objects as Γ and only identities as morphisms, we can
interpret Γ-sets as functors | Γ | ->Set. Each i?Γ-module M has an underlying
Γ-set, also denoted by M. It is essential that we forget not only the i?-module
structure but also the non-identity morphisms in Γ.

An i?Γ-module F is free with Γ-set ficFas basis if each Γ-map h: B-> M
into an i?Γ-module M has a unique extension to an i?Γ-homomorphism
H: F->M. A free module F with basis B is unique up to isomorphism by the
universal property. It is constructed as follows. Let RS denote the free i?-
module with basis S. For each object x of Γ the RT -module

RT(x) = R Rom (}, x)

is free with basis ΊdxEΐR Horn (x} x) by the Yoneda Lemma. The free module
over a Γ-set B=(BX) is now defined as

RΓ(B)= 0 ®KΓ(x).
χς=ObT Bx

It is clear that every i?Γ-module M is a quotient of the free module RT(M),
and that projective jRΓ-modules are precisely the direct summands of free ones.

Let M be an i?Γ-module and let E c M b e a Γ-subset. The submodule
generated by E is the smallest i?Γ-submodule of M containing E, i.e. the image
of the i?Γ-homomorphism ϋΓ(£)-> M extending the inclusion. An RT -module
is finitely generated if it is generated by a finite Γ-subset or equivalently, if it is
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a quotient of some finitely generated free i?Γ-module.
The chain complexes over the abelian category MOD — RT form an abelian

category. We shall always assume that chain complexes C are positive, i.e.
Cn=0 for n<0. We call C free (resp. projective), if each Cn is free (resp. pro-
jective), and finite-dimensional if Cn=0 for ra>0. A finite projective jRΓ-chain
complex is a finite-dimensional projective i?Γ-chain complex C such that each
Cn is finitely generated. A chain map /: C-+D between jRΓ-chain complexes
is a weak equivalence if fx: C(x) —> D(x) induces an isomorphism in homology for
each object x of Γ. We can now state the

PROBLEM When is a i?Γ-chain complex C weakly equivalent to a finite
projective complex P?

Its relevance to topology becomes clear in the following example.

EXAMPLE 3.2. i) Let G be a topological group and let X be a G-space.
The orbit category Or G has the homogeneous spaces GjH as objects and
G-maps as morphisms. The natural bijection MapG(GjH, X)->XH sending
/: GJH-+X to f(eH)^XH gives rise to a contravariant functor from the orbit
category to the category of topological spaces

X : O r G - > T o p , X(G/H) = XH .

Explicitly, if /: GIK^G/H is a G-map with f(eK)=gH then g^KgczH and
X(f) is the composite map

X(f): XHdX8~lκ*-^l Xκ.

Let G be a compact Lie group. The discrete orbit category Orrf G is the
homotopy category of OrG: it has the same objects but homotopy classes of
maps as morphisms. Since GjHκ is a disjoint union of finitely many WK-
orbits [2, II. 5.7] the space G\HK\WK^ is discrete. We get an identification

\G\K, G/H]G = πo((G!H)κ) = {GjHYJWK, = Map G (G/^ GIH)IWK0.

Hence a G-space X gives rise to a contravariant functor

X: Or, G -> Top G/H -> XH/WH0.

Composing X with the functor singular chain complex with jR-coeίϊicients gives
an R Or, G-chain complex CS(X), called the singular R Or, G-chain complex of X

ii) Let G be a compact Lie group. If X is a G-complex then X can be
regarded as a functor from Or, G to CίF-complexes. Indeed, X(G/H) =
XH/WH0 is a 7τ0WPΉ"-complex, and hence an ordinary CW-complex with skele-
tons X%IWH0. The quotient XH/WH0 is the largest quotient of XH with a
natural CPF-structure. The cellular R Or, {Gychaίn complex C\X) of X is the
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composite of X and the functor cellular chain complex with i?-coefficients.
If Jn is the set of ^-dimensional equivariant cells of X> choose a charac-

teristic map φj: G\Hj X (Dn, S"'1)-* (Xny Xn^) for each j e Jn. By restriction to
eHj X Dn and composition with the projection it induces

ψ y : {If, S--1) - {XH

njWH0,

The image under ψj of a generator w^Hn(D", S""1; iϊ) is an element

bj^C°n(X)(GIH) = Hn(XξlWH0, XLilWH0; R).

The set B Λ = {δy | j^Jn} forms a basis for the 2? Orrf G module Cl{X), since

C'.(X)(GIH) = Hn(XξlWK0, Xξ

and (GIHj)H/WH0 is precisely the Horn-set [G/ίf,
The cellular chain complex CC(X) is thus a free R Orrf G-chain complex,

which is finite-dimensional (resp. finite) if X is finite-dimensional (resp. finite).

REMARK 3.3. The Bredon-Illman equivariant cohomology of a G-complex
X with coefficients in an R Ovd G-module M is obtained from the cellular chain
complex C\X) by setting

H%X, M) = H*(Hom(Cc(X), M)),

where Horn means homomorphism of R Or^ G-modules.

For arbitrary G-spaces X we can difine an equivariant cohomology theory
by

H%{X\ M) = H*(Hom(Cs(X), M)).

If G is finite, it agrees with Illman's equivariant singular cohomology. We
conjecture that this holds for compact Lie groups, too. Equivariant homology
theories H%(X\ M) are constructed similarly using tensor product of R Orrf (G)-
modules, see [6, Ch. II. 9].

To compare the cellular and singular chain complexes of a G-complex we
first recall the following standard lemma (see eg. [10, Ch. I]).

Lemma 3.4. Let P be a projective RT-chain complex. Any weak equi-
valence f: C-+D of RT-chain complexes induces an isomorphism

There is a functor D from CW-complexes to chain complexes over Z and
natural transformations i: D—>CS andj : D-^CC such that i{X) and j(X) are
homology equivalences for any CPF-complex X, see Wall [19, Lemma 1]. If X
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is a G-complex, the composite functor ΌoX gives rise to a third Z Orrf G-chain

complex D(X) together with natural weak equivalences i(X): D(X)->CS(X),

j(X): D(X)->Ce(X). Since C\X) is free (Example 3.2ii), applying Lemma 3.4

twice yields

Proposition 3.5. Let G be a compact Lie group and let X be a G-complex.

There is a weak equivalence of Z Ovd G-chain complexes CC(X)-^CS(X) which is

natural in X up to chain homotopy.

(In the derived category of MOD — RY where weak equivalences are formally
inverted, i and j define directly a natural isomorphism CC(X)->CS(X), cf. [10,
Ch. IX].)

The orbit categories Or G and Orrf G of a compact Lie group G have the

property that each endomorphism is an isomorphism. A small category Γ

having this property is called an El-category. If Γ is an E7-category, we can

define a partial order on the set Is(Γ) of isomorphism classes x of objects

^ E θ b (Γ) by setting x< y<z>YLom(x, jy)Φ0. For the orbit categories this means

that G/H< G/K if and only if H is subconjugate to K.

Let Γ be an Z?/-categroy. In the sequel R[x] stands for the group ring

i?[Aut (x)] and MOD — R[x] is the category of right R[x]-modules. For each

object x of Y we introduce a splitting functor

(3.6) Sx: MOD-RY -* M0D-R[x]

and an extension functor

(3.7) Ex: M0D-R[x] -+ MOD-RY

as follows. Given an RY-module M, let Ms(x) be the i?-submodule of M(x)

generated by the images of M{f): M(y)->M(x) where/: x->y runs through the

morphisms with xΦy. Then Ms(x) is an i?[^]-submodule of M(x), and we set

SxM=M(x)IMs(x). If N is a right i2[#]-module, we define an RY -module

ExN=N®RHom(ΐ, x).

The functors Sx and Ex are right exact and additive. They are easily seen

to preserve the properties freeness and finite generation. In particular, the

image of a finitely generated projective module under Sx and Ex is again a

finitely generated projective module.

EXAMPLE 3.8. Let G be a compact Lie group. The automorphism group

of G/H in Orrf G is (π0WH)op and so right R[GjH]-modules correspond to left

i?7T0PF7/-modules. Let Z b e a G-complex with cellular R Or^ G chain complex

C\X). Then SG/HCC(X) is isomorphic to Ce(XEIWH0, X>HjWHQ) as a complex

of left ^TΓoPFίf-modules. If X is a single cell G/K, this equals Rπ0WH if

GjK^GIH and 0 otherwise. On the other hand, EG/H maps Rπ0WH to

Cc(GjH).
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Let F C Is (Γ) be a subset. An RΓ-module M is of type F if it is generated
by a Γ-subset E such that Ex=0 when x&F. An i?Γ-chain complex C* is
of type F if each Cn has type F. A module or chain complex has finite type, if
it is of type F for some finite F. This should not be confused with finite genera-
tion. For example, Is (Or^ G) can be identified with the set of conjugacy classes
(H) of closed subgroups of G. If X is a G-complex then C\X) is of type
F= i(H) IH e Iso X}, and it finite type if and only if X has finite orbit type.

Let F c I s ( Γ ) be a finite family. Choose a maximal element x^F, i.e.
y^F, x<y implies x=y. Let Mbe an RΓ-module of type F. Then M(y)=0
for x<yy so that Ms(x)=0 and S*M=M(#). We define a natural transfor-
mation Ix: EχoSx-+ Id of functors on the category of modules of type F by the
formula

IXM: M(x) ® R Horn(?,*)-> M( ?), m®/-> M(f)(m) .

The cokernel of IXM is denoted by CokΛM. It is an RT-module of type
F\{x}. Let Pr,M: M-+CokxM be the projection. The result is an exact
sequence

IXM Prx M
EXSXM • M > Cok, Λf-» 0

which is natural in M.
So far M has been an arbitrary module of type F. For projective modules

we can say more.

Theorem 3.9. Let Γ be an El-category. If P be a projective RΓ-module
of finite type F and XEΞF is maximal, then EXSXP is projective of type {x} and
CokΛ P is projective of type F\ {x}. The sequence

IXP VrxP
-^U P -ϊ-* Cok. P -> 0

is exact and splits.

Proof. Since the sequence above is compatible with direct sums, we may
assume that P is free, and has the typical form R=RT[y]. If x=y> then IX(P)
is an isomorphism and CokΛP=0. Otherwise EXSXP=O and Cokx P=P.

Theorem 3.9 implies by induction a splitting P^ © EXSXP, see [6, Th.
x<=F

11.18 p. 83]. However, this splitting is not natural. Since we study Lefschetz
invariants of mappings/: P-+P, we shall have to use the naturality properties of
Ix and PrΛ. If X is a G-complex with finite orbit type and x—GIH is an orbit
of maximal type, the sequences of 3.9 for P=Cc

n(X) take the familiar form

0 -* Cc

n(XW) -> Ce

u(X) - * Cc

n(X, X(H>) -> 0 .
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We are now ready to handle the problem of approximating complexes by
finite projective ones. The induction step will use

Lemma 3.10. Let Γ be a small category. Assume that two members of the
exact sequence

of RT-chain complexes are weakly equivalent to finite projective complexes. Then
so is the third one, and there exists a commutative diagram

* 0

with exact rows where Plf P and P2 are finite projective complexes and hl3 h and h2

are weak equivalences.

Proof. Standard manipulation with the cone and cylinder functors, see
[10, Prop. I 6.10] for a proof of the dual statement about injective complexes.

Theorem 3.11. Let Γ be an El-category with finite Horn-sets. Let R be
a Noetherian ring. If C is a finite-dimensional projective RT-chain complex of
finite type F and H*(C(x)) is finitely generated over Rfor x&F, then C is homotopy
equivalent to a finite projective RY-chain complex.

Proof. We use induction over the cardinality of F. If | F\ = 0 then C=0
and the claim holds trivially. In the induction step, let x^F be maximal.
Then SxC=C(x) is a finite-dimensional projective chain complex over the
Noetherian ring R[x]. Since its homology is finitely generated, SXC is homo-
topy equivalent to a finite projective i?[#]-chain complex P [3, Lemma IX 5.4].
Then EXSXC is homotopy equivalent to the finite projective i?Γ-chain complex
EXP. Theorem 3.9 gives an exact sequence

0-+ExSxC-*C-+CoksC-*0.

If }/GF then H*(C(y)) is finitely generated by assumption and H*(ExSxC(y))
£*H*(ExP(y)) is finitely generated since Horn {y, x) is finite, Since R is
Noetherian, H*(CόkxP(y)) is a finitely generated i?-module. As CokxC has
type ,F\{#}, it is homotopy equivalent to a finite projective complex by the
induction assumption. Lemma 3.10 implies that C is weakly equivalent to a
finite projective i?Γ-chain complex. But a weak equivalence between projective
complexes is a homotopy equivalence by Lemma 3.4.
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Corollary 3.12. Let G be a compact Lie group and let X be a finite-dimen-

sional G-complex of finite orbit type. If R is a Noetherίan ring and H*{XHj WH0 R)

is a finitely generated R-module for each H e l s o (X)} then the cellular R Orrf G-

chain complex CC(X) is homotopy equivalent to a finite protective R OrdG-complex.

Proof. The Horn-sets [G/K, GIH]G=π,{{GjH)κ) are finite and C\X) has

finite type F= {(H)\H(Ξlso(X)}. •

4. Trace and Lefschetz invariants

We give axioms for trace invariants of i?Γ-module homomorphisms and

Lefschetz invariants of RΓ-chain mappings. We show how the trace invariants

for finitely generated projective modules determine the Lefschetz invariants for

finite projective complexes and how they extend uniquely to complexes having a

finite projective approximation. The universal trace and Lefschetz invariants

are computed for E7-categories. If G is a compact Lie group, the universal in-

variant group relevant to cellular chain complexes turns out to be the universal

Lefschetz group UL(G).

Let Γ be a small category and let R be a commutative ring. We fix first

notation for some subcategories of the category MOD — RT of RT-modules and

the category C — RT of i?Γ-chain complexes. Considering a module as a chain

complex concentrated in dimension zero, we have following inclusions of full

subcategories

P-RT czHP-RT (ZMOD-RT

n n n
C(P)-RTdHC(P)-RTczC-RT .

Here P — RT consists of finitely generated projective modules and HP —RT of

modules having a finite projective resolution. Similarly, C(P) — RT stands for

finite projective complexes and HC(P) — RT for complexes C having a finite

projective approximation, i.e. a weak equivalence P-+C with finite projective P.

DEFINITION 4.1. A trace invariant {A, T) for P —RT is an abelian group A

together with a function T assigning an element T(f)^A to each endomorphism

/ : M->M in P — RT such that axioms a, b and c hold.

(a) Additivity. If the following diagram commutes and has exact rows,

0 +Mγ •Λf *M2 ^ 0



EQUIVARIANT LEFSCHETZ CLASSES 513

then 2)'

(b) Linearity. Iff, g^End(M), then T(f+g)=T(f)+T(g).

(c) Commutativity. If/: M-^ N, g: N-+M, then T(fg)= T(gf).

A trace invariant (A, T) is universal, if for any trace invariant (A', T') there is

a unique homomorphism φ: A->Af such that T'(f)=φ(T(f)).

A universal trace invariant is unique and can be constructed by taking as

generators all isomorphism classes of endomorphisms and introducing the rela-

tions that follow from a, b and c.

EXAMPLE 4.2. Let Γ be a group G considered as a category as in example

3.1. The universal trace invariant for finitely generated projective i?G-modules

was determined by Hattori [8] and Stallings [17]. Namely, it is the Hattori-

Stallings trace ΎrRG(f)<=Cl(RG) of 1.4.

The axioms of trace invariants make sense also for chain complexes and

chain mappings. Each trace invariant (A, T) for P—RT defines an invariant

(Ay Lτ) for chain maps in C(P)—PT by

It is clear that Lτ satisfies again the axioms, and that is extends T from the sub-

category P—RT. We would like to show that Lτ is the unique extension. For

this we have to require homotopy invariance.

DEFINITION 4.4. A Lefschetz invariant (B, L) for C(P)—RT is an abelian

group B together with a function L assigning an element L(f)^B to each chain

map/: C->C in C(P)—RT such that L satisfies axioms a, b, c and

(d) Homotopy invariance. If f—g then L(f)=L(g).

Proposition 4.5. If (A, T) is a trace invariant for P—RT, then (A, Lτ) is

its unique extension to a Lefschetz invariant for C(P)—RT.

Proof. Homotopy invariance for Lτ follows easily from the linearity and

commutativity of T. Hence Lτ is a Lefschetz invariant extending T. If L is

another extension, additivity implies by induction that L(f*)=yΣϊn:>0L(fn), where

fn: Cn-+Cn is considered as a chain map concentrated in dimension w. Hence

we have to prove L(fn)=(—\)nT(fn). If M is any module, the mapping cone

Cone(M) of id: M-+M is contractible and the diagram

0 - M -Cone (M) M[l] 0

/[I]

Cone (M) ^ M[l] • 0



514 E. LAITINEN AND W. LUCK

implies that L(f[ί])=— L(f) by additivity and homotopy invariance. Hence
L{f[n])={-l)*L{f)={-\γT{f). D

In particular, the universal Lefschetz invariant for C(P)—RΓ has the same
value group as the universal trace invariant for P—RΓ.

Next we want to extend a Lefschetz invariant {B, L) to complexes having
a finite projective approximation. Let C be an i?Γ-chain complex, P a finite
projective i?Γ-chain complex and k: P->C a weak equivalence. If/: C->C is
a chain map, it follows from Lemma 3.4 that the diagram

h

can be filled to a homotopy commutative square by a lift g which is unique up
to homotopy. Thus Lh(f)=L(g) depends only on / and h. For other choice
hr: P'->C of a projective approximation and lift g': P'-*-P\ we may construct
similarly a weak equivalence k: P-^Pr such that g'kc^kg. Then k is a homotopy
equivalence with inverse k~ι

£*'(/) = HE1) = Likgk-1) = L(g) = Lh(f)

by the homotopy invariance and commutativity of L. Hence L(f)—L(g) depends
only on /.

Proposition 4.6. If (B, L) is a Lefschetz invariant for C(P)—RT, then
(B, L) is its unique extension to HC(P)—RT which satisfies axioms a to d and

(e) Homology invariance. Given a homotopy commutative square with a
weak equivalence h

h
D

g
v
f

h
D •C

then L(f)=L(g).
The pair (B, L) is called a Lefschetz invariant for HC(P)—RT if it satisfies
axioms a to e.

Proof. Axiom (e) is designed to guarantee the uniqueness of the exten-
sion. We have to show that L satisfies all axioms. Only the verification of
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additivity is non-trivial. It follows from the next lemma.

Lemma 4.7. Let Γ be a small category. Let

be a short exact sequence of complexes in HC(P)—RT. Let f: C->C be a chain

map which preserves Cx and denote by /,•: C, ->(?,• the induced maps. For any

finite protective approximation

0

as in Lemma 3.10 there exists a lift g: P-*Poff such that g preserves Px and that
the induced maps£f ; Pi-^Pi are lifts of fiy ί = l , 2.

Proof. A chain map g1: P1-+P1 together with a chain homotopy φλ: Pi—^Q
between fι°hx and hχogγ is equivalent to a commutative square of chain complexes

Cone (Px)

— Cone

The canonical inclusion P1

c-*Cone(P1) has a projective cokernel and is therefore
a coίibration. As Cone (Ax) is acyclic, an extension (gv φx) exists.

Next we want to extend gx to a lift g: P-+P of/. We must construct an
arrow which makes the following diagram commutative.

Cone

Cone

C

Cone (P)
I
I

I
Cone (h)

The sequence Cone (PX)©P-^ Cone (P) is exact and the image of the
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last map is a direct summand with projective complement. Since Cone (h) is

acyclic, the dotted arrow exists and yields a map g: P->P with a homotopy

φ: fohc^hog extending £x and φv The last map g2: P2->P2 and the homotopy

Φ2: Λ ° ̂ 2 — 2̂ °Sz a r e induced uniquely. •

The modules having a finite projective resolution can be considered as a

subcategory of HC(P)—RΓ. Let M^HP—RT and let P be a finite projective

complex with a weak equivalence h: P—>M. Each homomorphism / : M—>M

can be lifted to a chain map g: P-+P such that

h

P h . M

is a strictly commutative square. If (A, T) is a trace invariant for P—RΓ then

coincides with the Lefschetz invariant Lτ(f), and is therefore a trace invariant.

An easy argument based on additivity shows

Proposition 4.8. // (A, T) is a trace invariant for P—RT then (A, T) is

its unique extension to a trace invariant for HP—RΓ. •

Propositions 4.5, 4.6 and 4.8 imply

Corollary 4.9. Let Γ be a small category. A universal trace invariant

{A, T) for finitely generated projective RY-modules determines the universal trace

invariant T for HP—RT and the universal Lefschetz invariants Lτfor C(P)—RT

and Lτfor HC(P)—RΓ. They all have the same value group A.

From now on, let Γ be an E7-category. We are going to compute the

universal invariants. By Corollary 4.9 it suffices to consider finitely generated

projective RT-modules P. Let / : P->P be a homomorphism. Using the

splitting functor Sx (3.6) we get endomorphisms Sxf: SXP^>SXP of finitely

generated modules over the group ring R[x] for each object Λ Gθb(Γ). By ex-

ample 4.2 their universal trace invariants are the Hattori-Stallings traces Tr^^.

Choose for each isomorphism class ^ e Ι s ( Γ ) a representative Λ E θ b ( Γ )

and define a trace invariant (A, T)by

(4.10) A = £^Cl(R[x]), T(f) =

For a finitely generated module P we have SxP=0 for almost all x e Ι s ( Γ ) so
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that T(f) lies in the direct sum A.

Theorem 4.11. Let Γ be an El-category. Then {A, T) is the universal
trace invariant for finitely generated projective RT-modules.

Proof. Let (A'> 7") be a universal trace invariant for P—RT. Since
(A, T) is clearly a trace invariant, there is a unique homomorphism a: A'->A
satisfying

For each #eOb(Γ) the assignment f-> T'(Exf) defines a trace invariant for
P—R[x] where Ex is the extension functor (3.7). Since T r ^ ] is universal among
such trace invariants there exists a unique homomorphism βx\ Cl(R[x])->A'
such that

T'(EJ) = βx{ΎrRίx,f).

A direct sum of the homomoprhism βx over # e I s ( Γ ) defines a homomorphism
β: A-+A1 in the other direction. We claim that a and β are inverse isomor-
phisms.

Each element a^Cl(R[x]) can be represented as the trace of some endo-
morphism/: R[x]-^R[x], Then

aβ{a) = aβx(Ύΐgίxlf) = a(TΈxf) = T(Exf) =

equals a since SxEx=iά and SyEx=0 for yΦx. Hence aβ=id.
To show that βa=id we have to proceed inductively since EXSx=id only

on modules of type {x}. We claim that T'(f)=β(T(f)) for each endomor-
phism /: P^>P of a finitely generated projective RT -module P. Choose a finite
subset F C Is (Γ) such that P has type F. We prove the claim by induction on
n=\F\. The case n=0 is trivial since then P—0. If n=ί and P has type
{x}y then SyP=0 for yφx so that (T(f))-y=0 when yφx. Thus

β(T(f)) = βx τrRίxl(Sxf) = T\ExSxf) = T'(f).

For the induction step choose a maximal 5c€ίF. Theorem 3.9 gives a com-
mutative diagram with exact rows

0 • Cok.P 0

EsSxf f CoKf

EXSXP • P Cok.P ^ 0
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where EXSXP has type {#}, CokxP has type F\{x}, and all modules are projec-
tive. By the induction hypothesis the claim T'(h)=β(T(h)) holds both for
h=ExSxf and h=Cokxf. Hence it holds for/by additivity.

EXAMPLE 4.12. Let G be a compact Lie group. The automorphism
group oϊG/H in the discrete orbit category Orrf G is πo(WH)°p. The universal
Lefschetz invariant for Z Orrf G-chain complexes takes values in the universal
Lefschetz group

UL(G) = θ Cl(Zπ0WH).
CED

If C is the cellular chain complex of a finite G-complex X and/*: C-+C is
induced by a G-map/: Jf-»X, then the universal Lefschetz invariant L(f^)^
UL(G) agrees with the universal Lefschetz class UL(f) of 1.6 (cf. Ex. 3.8).

5. The equivariant Lefschetz class

This section contains a proof of Theorem B and Corollaries C and D.
Let G be a compact Lie group. Homology will mean singular homology

with coefficients in a fixed principal ideal domain R. If X is a G-space and
/: X->X is a G-map, we define class functions Zf(/) and £?(/) as in (2.6) and
(2.13) using homology with i?-coefficients, provided the homology is finitely
generated over i?. Denote the universal Lefschetz invariant group for R Orrf G-
modules

(5.1) UL{G, R) = UL(G)®R = 0 Cl(Rπ0WH).
Z CEQ

The homomorphisms LH

y LH: UL{G)-^Cl(Zπ0WH) extend linearly to homo-
morphisms UL(G, R)^>Cl(Rπ0WH) which we again denote by LH and LH.
They are characterized by LH\W\=LIR{T{W)) and LH[w]=LR(r(w)) for each gen-
erator [w] given by aiG WH.

A G-complex Y is called an R-homology approximation to the G-space X
if there exists a G-map Y—>X which induces an isomorphism

0; R) - ^ > H*(X*IWH0; R)

for each H<G.

Theorem 5.2. Let X be a G-space which admits a finite-dimensional R-
homology approximation of finite orbit type. Assume that H*(XHIWH0; R) is
finitely generated over R for each H<G. Then every G-map /: X-* X has an
equivariant Lefschetz class [f]R^UL(G, R) such that L^(f)=LH([f]R) for each
H<G.

Proof. Let Y->X be an JR-homology approximation by a finite-dimensional
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G-complex Y of finite orbit type. It induces a weak equivalence CS(Y)-*CS(X)
between the singular R 0rrf G-chain complexes. For any G-complex Y there
is a weak equivalence CC(Y)->CS(Y) between the cellular and singular R Orrf G-
chain complexes by Proposition 3.5. The finiteness assumptions made on X
and Y guarantee that CC(Y) is homotopy equivalent to a finite projective com-
plex P by Corollary 3.12. Composing these equivalences we get a finite pro-
jective approximation h: P->C\X). Using Proposition 4.6 we can construct a
universal Lefschetz invariant UL(f%) e UL(G, R) for each chain map /#: Cs(X)->
C\X).

A G-map /: X-+X induces a chain map /*: CS(X)->CS(X), and we define
the equivariant Lefschetz class of/ to be [/]*= UL(f*)e UL(Gy R). The class
functions Zf(/) can be defined in terms of the R Oxd G-complex C=C\X) by

If (

where LR is the ordinary Lefschetz number. The right hand side defines a
Lefschetz invariant £!(/*) eC7(τr0WΉ*) for every chain map /*: C-+C in
HC(P)—R Oτd G. Hence there is a unique homomorphism φH: UL(G, i?)—>
Cl(π0WH) such that lH

R{U)=φH{UL{f*)). We claim that φH=LH. It is
enough to check this on the generators [r(w)], to: GjH->GjHy but then the claim
is simply the definition of LH.

The theorem holds in particular if X itself is a finite-dimensional
G-complex of finite orbit type. If G is finite, we have proved Theorem B since
WΉ0=ί and LH=LH for each H<G. For a general compact Lie group, we
have to compare the assumptions on H*(XHjWH^ and H*(XH) and to
strengthen the conclusion from LH to LH. We start with a result which might
have independent interest.

Proposition 5.3. Let G be a compact Lie group and let X be a finite-dimen-
sional G-complex of finite orbit type. Let R be a principal ideal domain. If
H*(X; R) is finitely generated over R} then H*{XjG\R) is finitely generated over R.

Proof. If G is a finite group or a torus and R=Z or Zp this is a well-known
consequence of P.A. Smith theory and the existence of transfer for finite group
actions, see [2, Ch. III]. It is not hard to extend the proof to arbitrary coef-
ficients R. We are going to reduce the theorem to these special cases by using
Oliver's transfer for compact Lie groups [16].

First, since jy/G=(X/G0)/(G/G0) we may assume that G is connected.
Let N be a normalizer of a maximal torus T in G. The transfer

tc*:H*{XlG)-+H*{XlN)

the property that its composition with the projection p*: H*(XIN)-+
X/G) is multiplication by X{GjN). Since %(G/JV)=1, it suffices to prove

has p
H*(X/G) is
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the claim for the group N. Notice that the ΛΓ-space X is homotopy-equivalent
to a finite-dimensional iV-complex Y, and that the orbit structure remains finite
[9, Th. A].

The group N is an extension of T by the finite Weyl group W. Hence
XjN^={XjT)lW and we are reduced to the classical cases.

Theorem 5.4. Let G be a compact Lie group and let X be a finite dimen-
sional G-complex of finite orbit type. Then the following conditions are equivalent

(a) H*{XH\ R) is finitely generated overRfor each H<G
(b) H*(XH R) is finitely generated over R for each H <Ξ Iso (X)
(c) H*(XHI WH0 R) is finitely generated over R for each H <G
(d) H*{XHI WH0 R) is finitely generated over R for each H <Ξ Iso (X)

for any principal ideal domain R.

Proof. The implication (a)=#(b) is trivial and (b)=#(d) follows from Pro-
position 5.3. Similarly (a)=φ(c)=Φ>(d). Hence it suffices to show that (a)
follows from (d). We shall use the Atiyah-Hirzebruch spectral sequence for
the equivariant homology theory X-+H*(XH\ R) with a fixed H<G. If M%
is the coefficient system

it takes the form

where H% is the Bredon-Illman homology H%{X\ M)=: H*(CC(X) ® M). If
ordσ

(d) holds then C\X) is homotopy-equivalent as an R Or^ G-complex to a finite
projective complex P by Corollary 3.12. Then the £2-term H%{X; M*) =
H*(P®M*) is finitely generated over R since M* is finitely generated. It
follows that the jB^-term is also finitely generated.

A finite-dimensional G-complex X of finite orbit type which satisfies the
conditions of Theorem 5.4 is called R-homology finite.

Theorem B. Let G be a compact Lie group, X be a finite-dimensional G-
complex of finite orbit type and R be a principal ideal domain. If X is R-homology
finite then each G-map f: X->X has an equivariant Lefschetz class [/]#£Ξ UL(G, R)
such that

for each H<G.

Proof. It follows from Theorem 5.4 that Zf (/) and £f(/) are defined for
each H<G. The existence of [f]R and the equation for Zf was shown in
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Theorem 5.2. We compute LR(f) from cohomology using the Atiyah-

Hirzebruch spectral sequence

Hp

G(X; Mq

H) =§> H*+*{XH\ R), M$(GjK) = H*(GIK)* , R).

The £2-term HP

G(X\ Mq

H)=: Hp(UomOIdG{Cc{X), Mq

H)) is finitely generated

since C\X) is homotopy equivalent to a finite projective complex. By the

Hopf trace formula LR(f) can be determined from the 2^-term. Now we define

for any R Ord G-chain complex C and a chain map / # : C->C in HC(P) a

Lefschetz invariant

mU) = LB(H*(HomOtdG(C, M|)),/*).

It factors through the universal Lefschetz invariant [f]R^ UL(G, R). To show

that Lκ(f*)=LH([f]R), it suffices to check the generators C=Cc(GIK)i f=r(w),

w<EΞ WK. But then Hom0ldG(Cy Mt)=M%{GIK)=H%{GjK)H\ R) and L*([w])

=LR(ZU) by the definition of LH.

Corollary C. With the assumptions of Theorem B the Lefschetz numbers

LR{fH) satisfy the Burnside ring congruences modi?: let H<\L be closed subgroups

ofG.
i) If L\H is finite, then

LR{fH) =-Σφ(\KIH\)LR{fκ) mod\LjH\R

where φ denotes the Euler function and the summation is over non-trivial cyclic

subgroups K/H of L/H.

ii) //LjH is a torus, then LR(fH)=LR{fL).

Proof. Since all occuring Lefschetz numbers can be computed from

[ / ] G C / L ( G , i?), this is a question about the relations between the homomor-

phisms

φE = L*(e): UL(G,R)->R.

They are i?-linear extensions of the corresponding integral homomorphisms

φH: UL(G)->Zy which factor through the projection/: UL(G)->A(G) (see 2.21).

The relations between φH: A(G)-+Z are determined in torn Dieck [6, Ch. IV 5].

Given a compact Lie group G, torn Dieck has shown that there exists a

finite upper bound for the numbers \π0WH\ over all closed subgroups H of G

[6, Th. IV 6.9]. Hence they have a least common multiple

(5.5) o(G) = lc.m.{\π0WH\ \ H<G}.

If G is finite the number o(G) is simply the order of G.
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Corollary D. With the assumptions of Theorem B

for each £€Ξ G, provided char R~0 and no prime factor of o(G) is invertίble

in R.

Proof. Let C be the closed subgroup generated by g. Write

in UL(G,R). We claim that the relation Le([X]R)(g)=Lc([X]R)(e) holds for

each X. By Proposition 2.18 it is valid on the image of /: U(G)-+ UL(G, R)

so it is enough to show that [X]R belongs to this image. The .//-component

of [X]R is the rank r(P) = L(id,) e Cl(Rπ0WH) of some finite projective

i?7r0WΉ"-complex P. Now π0WH is a finite group and no prime factor of its

order is invertible in R. A theorem of Swan implies that the rank of every

finitely generated projective Rπ0WH-moάule is an integral multiple of [e], see

Bass [1, Th. 4.1]. Hence the ίf-component of [X]R has the form n[e]=I{n[GjH])

for some integer n and their sum [X]R lies in Im /.

REMARK 5.6. Let p and q be different primes. Conner and Floyd have

constructed a simplicial action of the cyclic group ZPq on Rn with (Rn)zρ<ι=0,

see [2, Ch. I 8. B]. The other fixed point sets are Moore spaces

where k and / are such that kp-\-lq= — l. This shows that the conditions on

X and i? are necessary in Corollary D.

6. Homotopy representations

We shall study elementary homological properties of homotopy representa-

tions of compact Lie groups [6, Ch. II 10]. For these purposes the following

weaker notion suffices. Let R be a principal ideal domain.

DEFINITION 6.1. An R-homology representation of a compact Lie group G

is a finite-dimensional G-complex of finite orbit type such that for each H<G

the fixed point set XH is an i?-homology sphere.

Let n(H) denote the unique integer for which H*(XH; R)^H*(Sn(H)-ι;R).

If XH is empty, then n(H)=0. The dimension function of X is the integral-

valued function Dim(X) defined on the conjugacy classes of closed subgroups

of Gby

(6.2) Dim (X)(H) = n(H).

Let CX denote the cone on X. For each H<G we have Hn(s)(CXs, XH, R)

The action of WH on this homology group defines a homomorphism
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(6.3) eXtff: WH-> Aut(R) = Rx

called the orientation behaviour of X at H. By homotopy invariance it actually
factors through π0WH. If R is suitably restricted, the dimension function
determines the orientation behavior. Recall the number o(G) from (5.5).

Proposition 6.4. Let X be an R-homology representation of a compact Lie
group G. Assume that charR=0 and that no prime divisor of o(G) is invertible
in R. Then

t() ( ) W<=WH,

where C is the inverse image in NH of the closed subgroup generated by w in WH.

Proof. We begin with the case H=l. The Lefschetz fixed point for-
mula applied to the element w^G gives

l-(-l) D i m ( ' ) ( 1 ) έ? X i l (w) = LR{w) = XR{XC) = l - ( — l ) D i m W ( c )

whence the claim for H—l. The general case reduces to this by considering
the WH-space XH, once we show that o(WH) divides o{G).

Let K< WH have normalizer L in WH. Denote by K and L their inverse
images in NH. Then L=NNH(K). The normalizer NK of K in G may be
larger than L, but we claim that they have the same identity component.
Indeed, if g^(NK)0 choose a pathp from g to e in (NK)0. Let cg: K->Kbe
conjugation by g. Then cg is homotopic to identity via p, and hence it is an
inner automorphism of K [6, Ex. I 5.18.1]. In particular, cg preserves H and
g e NH. Since L=NH Π NK we have g e Lo. The inclusion L -> NK induces
thus injective homomorphisms πo(L)->πo(NK) and πo(LIK)->πQ(NKIK). As
πo(LjK)^πo(LIK)y o(WH) divides o(G).

Proposition 6.4 holds in particular for homotopy representations, since they
are Z-homology representations.

We denote the Euler characteristic [X]^L(G, R) of an jR-homology repre-
sentation X as the class of Ίάx in the Lefschetz ring. It is determined by the
class functions LH[X], which are now

LH[X](w) = l-(-l)Όim(ff)eXtH(w),

If R is as in Proposition 6.4, the dimension function determines [X]. Let
/: X-*X be an arbitrary G-map. For its class [f]^L(G, R) we have

LH[f](w) - l - ( - l ) D

making [/] into a mixture of the degree function (degfH) and the orientation
behavior (eXtff). The product {/} = p ] - l ) ( [ f ] - l ) G L ( G , ί ) has class
functions
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L»if} (w) = deg j*ex^wf, w<=WH.

The projection of {/} in A(G> R) has characters φH{f} = degfH, H<G.

This gives

Proposition 6.5. If f:X-*X is a self-G-map of an R-homology representa-

tion X, its degrees deg fH satisfy the Burnside ring congruences mod R.

Proposition 6.5 can be used to derive degree relations for G-maps / : X —> Y

between different homotopy representations with the same dimension function,

as we did for finite groups G in [11, Th. 2]. The key point is the existence of

an auxiliary map h:Y-+X which has degrees prime to o(G). For compact Lie

groups G the map h is constructed in [6, Th. II 10.20].
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