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0. Introduction

This paper studies equivariant fixed point theory of G-complexes with cellu-
lar methods. We introduce the universal Lefschetz ring UL(G) and the Lefschetz
ring L(G) of a compact Lie group G. They are both quotients of the set of
G-endomorphisms of finite G-complexes by an equivalence relation based on
Lefschetz numbers of the induced maps on X#|/WH, and XZ. The ring L(G)
bears a similar relation to UL(G) as the Burnside ring A(G) to the universal
additive invariant U(G). There is a commutative square of ring homomorphisms

UL(G) - L(G)

Uu(G) —~ A(G)

where the horizontal arrows are quotient maps and the vertical arrows are
inclusions sending a finite G-complex X to id: X — X.

The groups UL(G) and U(G) are in fact defined for arbitrary topological
groups G by certain universal properties. This universal property is mainly
used for constructing homomorphisms with UL(G) as source.

Let Con G be the set of conjugacy classes of subgroups {(H)|H <G} and
con G be the set of conjugacy classes of elements {{g>|g& G}. Denote by
CI(ZG) the free abelian group generated by con G or, equivalently, the group
of class functions G— Z with finite support. Under a mild technical condition
which is satisfied for compact or discrete G we can define the wuniversal
Lefschetz class

UL(f)e @ Cl(ZmWH)

of a G-endomorphism f of a finite G-complex by applying the Hattori-
Stallings trace to the induced chain map on the cellular Zz,WH-chain complex
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C(X#, X>%) for (H)eCon G. We can use UL(f) to define the universal Euler
class UX(X)e g}) Z. Denote by r(w): G/H—G|H for weWH the G-map

gH—gwH. Let [(g) for gG always denote left multiplication with g.

Theorem A. Suppose for G that any G-map G|H— G|H is a G-homeomor-
phism (This holds for compact G). Then UL(f) and UX(X) induce isomorphisms

UL(G) = ®CI(ZnWH) and UG)=~®Z
CH) CH)

where the sums run over Con G. A Z-base for UL(G) is {[r(w)]|<{w) E con =, WH,
(H)eCon G} and {{G/H]|(H)< Con G} is a Z-base for U(G).

The groups UL(G) and U(G) give rise to a general method of constructing
homotopy invariants of G-maps f: X— X (resp. spaces X): assign to the basis
elements [r(w)] (resp. [G/H]) arbitrary values in an abelian group. This frame-
work covers Brown’s equivariant Euler characteristics of discrete group actions
[3, Ch. IX. 7] and tom Dieck’s Burnside ring of a compact Lie group [6, Ch. IV].
Indeed, the first one is obtained by mapping [G/H] to the Euler characteristic
of H in the sense of group cohomology, whereas the second one results by con-
sidering the Euler characteristics of the spaces G/H and their fixed point sets.

For the rest of the introduction, let G be a compact Lie group. If f: X—X
is a self-map of a finite G-complex X and H <G then the Lefschetz numbers

(0.1) LE(f)(w) = L(X"[WH,, (w™*)of *|WH,), wSz,WH

define a class function L#(f) on n,WH=WH|WH,. The universal Lefschetz
ring UL(G) is obtained by identifying f, and f, when LZ#(f,)=L#(f,) for each
H<G@G. The homomorphisms L# define an injective group homomorphism

L: UL(G) — IICI(Zn,WH))

which is a ring homomorphism only for finite groups. To get an invariant more
accessible to computations, consider the class functions L#(f): w,WH— Z de-

fined by
0.2) LA(f)(w) = L(X#, (w™)o fH), we WH

If f, and f, are identified when L#(f,)=L#(f,) for each H <G the result is the
Lefschetz ring L(G). It admits a ring embedding L: L(G)—>(11;[) Cl(Zr,WH).

For finite groups G the rings UL(G) and L(G) coincide. In general, the class
of r(w): G/IH—G|H in UL(QG) maps to zero in L(G) if w has infinite centralizer
in WH, and the remaining generators form a basis of L(G):

L(G) =@ Cly(Zn,WH)
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where Cly(Zn,WH) is the free abelian group on those conjugacy classes {w)>
of z,WH for which Cpy(w) is finite. The ring UL(G) is of theoretical interest
whereas L(G) is adequate for explicit computations.

The quotient set of G-maps under the coarse relation based on the Lefschetz
numbers L(X#, f#) turns out to be the Burnside ring 4(G). The fact that 4(G)
is also the quotient of the same relation on spaces has important consequences
and has no counterpart for UL(G) and U(G).

So far the spaces have been finite G-complexes. Next we apply homologi-
cal algebra in the category of modules over the orbit category to weaken the
finiteness assumption. The idea is to approximate the cellular chain complexes
of all fixed point sets simultaneously by finite projective complexes, replacing
thus the arguments based on induction over orbit types. This approach was
used in the context of finiteness obstructions of finite groups by tom Dieck [5].

We are ready to state the main results. Let X be a Z-homology finite G-
complex, i.e. Hy(X#; Z) is finitely generated for each H<G. Then we prove
that Hy(X#|/WH,, Z) is also finitely generated for each H <G, so that the class
functions L#(f) and LZ(f) from (0.1) and (0.2) are defined for all G-maps
f: X—X. Recall that L¥ and L# define homomorphisms UL(G)—Cl(Z=,WH).

Theorem B. Let G be a compact Lie group and let X be a finite-dimensional
Z-homology finite G-complex of finite orbit type. Then every G-map f: X—X
has an equivariant Lefschetz class [f] in UL(G) such that L¥(f)=L#([f]) and
LE(f)y=LA([f]) for each subgroup H <G.

Thus the relations between L#(f) or LZ(f) for various H are the same as
those that occur for the maps r(w): G/K—G/K. In particular

Corollary C. With the assumptions of theorem B the Lefschetz numbers
L(f¥) satisfy the Burnside ring congruences : let H < L be closed subgroups of G.
1) If L|H is finite then

L(ff)=—3 ¢(| K/H|)L(f¥) mod | L/H|

summed over those K <L which correspond to non-trivial cyclic subgroups of L|H.
i) If L/H is a torus then L(f¥)=L(f*).

Corollary D. (Lefschetz fixed point formula). With the assumptions of
theorem B, L(g)=X(X?) for each element g=G.

Verdier [18] and Brown [4] have proved versions of Corollary D for finite
groups.

Section 1 contains the definition of UL(G) for topological groups G and the
proof of Theorem A. In section 2 we relate it to ordinary Lefschetz numbers,
when G is a compact Lie group, and prove the main results in the special case
of finite G-complexes. Section 3 deals with homological algebra over the orbit
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category. In section 4 we give axioms for Lefschetz invariants of chain map-
pings. In section 5 we apply the algebra to G-complexes and prove Theorem
B and Corollaries C and D in slightly more general form allowing arbitrary coef-
ficients. Section 6 is devoted to homotopy representations which formed the
authors’ original motivation for constructing Lefschetz classes in A(G) for finite
G-complexes in [11] and [12].

The paper was written while the first author was visiting Sonderforschungs-

bereich 170, Geometrie und Analysis, at Gottingen. He wishes to thank SFB
for its hospitality.

1. The universal Lefschetz group of a topological group

Let G be a topological group. Topological groups as well as G-spaces are
supposed to be Hausdorff. For a general discussion of G-complexes we refer
to [6, II. 14-2]. We call a G-complex pointed if we have chosen a base point,
i.e. a G-fixed point in the zero-skeleton X,. A G-map is pointed if it preserves
the base point. Given a G-map f: X— Y, let X, and Y, be the pointed
G-spaces X, =X || {G/G} and Y,=Y || {G/G} with base point G/G and
f+: X, =Y, be the pointed G-map f ]| id. Denote by [X, Y]¢ (resp. [X, Y]$)
the set of (pointed) G-homotopy classes of (pointed) G-maps from X to Y.
If S” has trivial G-action and V: S"— 8"V S" denotes the pinch map then
[f1+[g]=[fV goV] defines a group structure on [S"AX, S"AX]$ for n>1
which is abelian when n>2.

A Lefschetz invariant for G consists of an abelian group 4 and a function
assigning to a pointed G-endomorphism f: X—X of a pointed finite G-complex
an element L(f)E 4 satisfying

i) Homotopy invariance
If f, g: X— X are pointed G-homotopic then L(f)=L(g).

ii) Commutativity
If f: X— Y and g: Y—X are pointed G-maps then L(gof)=L(fog).

iii) Additivity
Consider the commutative diagram of pointed finite G-complexes with 7 the
inclusion of such G-complexes

i

A -X -~ X|A4

f g h
i

A - X X|A

Then L(f)—L(g)+L(k)=0.
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iv) Linearity
For f,g: S'AX—S'AX we have L(f+g)=L(f)+L(g). (This makes sense
because of i).

Remark 1.1. Notice that homotopy invariance and commutativity imply
that L(f)=L(g) if there is a G-homotopy commutative square

X f . x
2 3
y g Y

with a pointed G-homotopy equivalence #.

Example 1.2. Consider the function assigning to a pointed G-endomor-
phism f: X—X of a pointed finite G-complex the ordinary reduced Lefschetz
number of f/{G: X/G— X|/G in Z. 'This is a Lefschetz invariant for G.

In the sequel we need the following condition (0) on G which is satisfied for
all abelian or compact or discrete groups G

(0) The Weyl group WH=NH|/H= {geG|g'Hg=H}|H is open in
G/Hi:={geG | g 'Hgc H}|H for any H<G.

Notice that WH is always closed in G/H# as H <G is closed, Hence G/H#
is the topological sum WH || G/H>#. Therefore the G-complex structure on X
induces a relative WH-complex structure on (X#, X>#). If Ris a commutative
ring and H, denotes singular homology with R-coefficients define the cellular
chain complex C°(X*#, X>¥) with R-coefficients by

A,
Ay H,(X*H, X>H),, (X%, X>%),_|)—

A,
Hn-l((XH: X>H))n—1’ (XH: X>H)n-2) 5

where A, is the boundary operator of the corresponding triple. By naturality
and homotopy invariance C°(X#>, X#) is a Rx,WH-chain complex. It is finite
free becasue of H,((X#, X>H) (X%, X>H),_)=@®H,(WH x (D", S*™1)) =
@H,(WH) where the sum runs over the z#-dimensional WH-cells in X#\X>#,
A cellular G-map f: X— X induces C°(f%, f>#): C° (X%, X>#)—C(XH, X>H),
We make the convention that for a pointed G-complex X with base point x X>¢
is {x}. Then we have C°(X%, X>#)=C"(X¥, X3¥) for a G-complex X and
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we can treat in the sequel the unpointed and pointed case simultaneously.

Let K be a group. Denote by CI(RK) the free R-module generated by
the conjugacy classes <k> of elements kK. There is a canonical epimor-
phism of R-modules

(1.3) T: RK — CI(RK)

with the group ring RK as source. It is bijective if and only if K is abelian.
Consider an endomorphism f: P—P of a finitely generated projective RK-
module. In[8],[17] and [1] there is defined a trace Trgx(f) € CI(RK) as follows.
Choose a finitely generated RK-module Q and an isomorphism A: RK"—>P@HQ
from the based free RK-module of rank #n. The endomorphism A~'e(fEP0)ok
of RK" is given by a (n, n)-matrix A=(a; ;). Then the Hattori-Stallings trace
of fis

(14) Trex(f) = 3 T(ai) €CI(RK)

Consider a finitely generated projective RK-chain complex C and a RK-chain
map f: C—C. Define

(1.5) Lpe(f)eCl(RK) .
by i (—1) Treg(f;). This is a Lefschetz invariant in the sense of section 4,
i=o

i.e. homotopy invariance, additivity, linearity and commutativity are satisfied.

Consider a (pointed) G-endomorphism f: X— X of a (pointed) finite
G-complex. Let UL#(f)ECl(ZnyWH) be Lzewu(C(X#, X>H), C*(g)) for any
cellular G-map g with f=<g. Define the universal Lefschetz class

(1.6) UL(f) & @ ClUZn,WH)

by the collection {ULZ(f)} where (H) runs over the set Con G of conjugacy
classes (H) of subgroups H <G. This makes sense as ULZ(f) depends only on
(H) and is different from zero only for H €Iso X. One easily checks using the
remarks above that the universal Lefschetz class defines a Lefschetz invariant
for G. In particular we get from remark 1.1 that UL(f) does not depend on
the G-complex structure on X. We will see that UL is the most general
Lefschetz invariant.

We call a Lefschetz invariant (4, L) universal if for any Lefschetz invariant
(A', L") there is exactly one homomorphism ¢: A— A’ such that ¢(L(f))=
L'(f) holds for any pointed G-endomorphism f of a pointed finite G-complex.
Up to unique isomorphism there is only one universal Lefschetz invariant.
One can construct a model by introducing on the abelian group generated by the
isomorphism classes of pointed G-endomorphisms of pointed finite G-complexes
the necessary relations corresponding to the axioms.
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DreriNrTiON 1.7. Let UL(G) together with the function f—[f]e UL(G)
be the universal Lefschetz invariant of the topological group G. We call
UL(G) the universal Lefschetz group of G.

Notice that we obtain by the universal Lefschetz class UL(f) and the uni-
versal property UL(G) a homomorphism

(1.8) UL: UL(G)— (?Cl(Zno WH)
p]
uniquely determined by UL([f])=UL(f). We can define a homomorphism
(1.9) yr: (EIB Cl(Zn,WH) — UL(G)
]

by sending the base element {w)>&Cl(Zz,WH) represented by wer, WH
to [r(w),] where r(w):G/H— G/H sends gH to gwH. This is independent of
the choice of @ by homotopy invariance and commutativity since any path from
w to w’ in WH induces a G-homotopy between 7(w) and r(w’) and r(w)or(v)=
r(vw) holds. One checks directly that ULeq)r is the identity. Now assume
that G satisfies the condition

(EI) Any G-endomorphism of a homogeneous G-space is a G-homeomor-
phism.

This is equivalent to G/H#*=WH so that (EI) implies (0). If G is compact
(EI) is satisfied. Now we can prove Theorem A of the introduction.

Theorem 1.10. If G satisfies (E1) then UL and ) are inverse isomorphisms.

Proof. It remains to prove that ) is surjective. We write (H)<(K) if
H <K holds for appropriate representatives H and K. This is equivalent to
the existence of a G-map G/H—G|K. We get from condition (EI) that
(H)<(K) and (K)<(H) implies (H)=(K). Consider a pointed G-map f: X—>X
of a pointed finite G-complex. Numerate {(H)|H Iso X}={(H,), (H,), ***,
(H,)} such that (H;)<(H;) implies i>j. Then X(k)=U}f., X#is a G-sub-
complex of X and f induces by restriction f(k): X(k)— X(k). We obtain from
additivity

[f1= S fR)fk—1)] -
Similarly we obtain from the skeletal filtration
1= 3 [hlfunal

Hence it suffices to show [ f]€image 4» under the assumption X=V 7., G/H, A
S” for n>0. By additivity and homotopy invariance [S'A f]=—[f] holds as
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we have the cofibration X—-I AX—->S'AX and I A X is contractible. There-
fore we can also suppose n>2. If M, (Z=,WH) is the ring of (r, r)-matrices
over Zn,WH we next construct an isomorphism of abelian groups

F: M Z=,WH) — [X, X]¢ .

Let X be aspace. One shows inductively for n>2 that S"A X, is (n—1)-con-
nected and the Hurewicz homomorphism 7,(S" A X,)—H,(S" A X,) is bijective.
In the start #=2 use the theorem of Seifert-van Kampen. Hence we obtain
an isomorphism of abelian groups for n>2

HY(X) = ByX,)—> H,(X,) > [S"S"AX,]. .

We define F as the compostion

M,(ZzWH) = & @ H(WH) = & B\ GIH")
— @[S, V GIHIAS"), = @ [GIH.AS", V GIH,AS"]S

= [V GIH,AS", V GIH.AS"¢ = [X, X]¢.

i=1

Let Ae M,(Z=n,WH ) be given. Let §; ; be the Kronecker symbol: §; ;=0
fori==j and §;;=1, The matrix E(i, j)=(8; .+, j7)i,;» has always 0 as entry
except at (7, j) where it is 1. We get

F(Ad) = > F(a;,; EG, )) -

Applying additivity to

v G/H,AS" V G/H,AS" G/H. A S"
e ket

F(0) F(a;, ;E(i, j)) 8;,;F(a;,;)
N, GIHLAS" V,GIH,AS" GIH..AS"
ki -

and linearity to O+0=0 yields

[F(a:,; £, )] = 85,5(F (a:,)] -

Hence it remains to show for a&€Z»,WH that [F(a)]€im+r holds for F(a):
G/H, ANS"->G|H,A\S". Since we can write a=>3] a,,+w We can assume a=u.
But [F(w)] is (—1)"[r(w)+] and [r(w).]Eim r is obvious. O
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Let U(G) be the universal additive invariant for pointed finite G-complexes
(see [6, IV.1.]). It is universal with respect to homotopy invariance and additi-
vity. By the universal property we obtain unique homomorphisms

(1.11) I: UG)— UL(G), [X] ~ [id: X — X].

Let B(X, H, n) be the number of cells of type G/HxD" in (X, x). Define
UXE(X)eZ by 3.0 (—1)"B(X, H, n). Suppose that G satisfies (0). Since
Tt zeyway (ZmsWH, id)e Cl(Zn, WH) is the base element given by the unit
e€ WH we have ULH#(id: X—>X)=UX#(X)-[e]. Hence we get a well-defined
homomorphism

(1.12) Ux: U(G) > & Z, [X] = (UXH (X))

such that the map i: @ Z— Cl(Z»n,WH) sending (ngz € Z)y to (ny-le]E
an
Cl(Zn,WH))g) makes the following diagram commute

UL(G) @ Cl(Zn,WH)
(1.13) ] ;
U(G) Ys - ®Z

If G satisfies (EI) the map UX is an isomorphism. We call UX(X) the universal
Euler characteristic. 'The possibility of defining equivariant Euler characteri-
stics for general groups was suggested to us by Séren Illman.

If one drops in the definition of the Lefschetz invariants the linearity
axiom one is led to larger universal groups (see Dold [7], Okonek [15]).

2. Lefschetz invariants for compact Lie groups

In this section G is always a compact Lie group. We continue the study of
UL(G) and U(G) and the universal Lefschetz class UL. Next we show how to
compute UL by ordinary Lefschetz numbers. This is based on the following

observation for a finite G-complex X.
There is a relative z,WH=WH|WH,-complex structure on (X%, X>#)/WH,.
Let C°((X#, X>%)|/WH,) be its cellular Zz, WH-chain complex.

Lemma 2.1. The canonical projection pr: C°(X¥#, X>#)— C°(X¥, X>¥)/
WH,) is a base preserving ZmyWH-chain isomorphism.

Proof. If @ runs over the cells of type G/H X D" we can write pr, as the
composition of isomorphisms
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H,(X*", X>8),, (X", X>H),_,) = @H,(WHX(D", §*7))
=@QH(WH)=3H(WH|WH,)=®H,(WH|WH,x (D", S*™*))
=H,(X*#, X>#),[WH,, (X#, X>#),,/WH,) . O
Denote by L;((Y, B), f) the ordinary Lefschetz number of an endomor-
phism f: (Y, B)— (Y, B) of a finite relative CW-complex. If Tr, denotes the

ordinary trace of an endomorphism of a finitely generated abelian group we have
for any cellular approximation g of f

22) L) = 5 (=1 Trz(Ci(e) = 3 (—1)" Trz (Ha(f)) -

Consider the (pointed) endomorphism of a (pointed) finite G-complex
f: X—=X. Given H <G, let {w) be the conjugacy class of wez,WH. Write
ULH(f) as (2)} ULA(f)}Xwy+{w) in Cl(Zn,WH). Let [(w™') be the map given

by left multiplication with @™ and Cyyu(w)={ver,WH |vw=wov}be the cen-
tralizer of w in z,WH. Let ¢ be |Cryyu(w)|. Denote by (f#, f>#) the map
(f%, f>5)|WH,: (X#, X>¥)[WHy— (X ¥, X>#)|WH,.

Theorem 2.3.

ULA(f)a = Lo X, X5 WH, 1w™)o(F7, >2) .

Proof. By Lemma 2.1 and the definitions of L.y and L, it suffices to
prove for an endomorphism ¢: Zn,WH— Zr,WH

Trz¢o(WH) b= <Ew> %Trz (Aw™)ogp)-<w) .

Given w, w,E Zz,WH let [(w™")or(w,) be the endomorphism Zz,WH —Z=,WH,
v—>w lvw, One easily computes

0, <wp=*<wy
¢ <wd =<wy .

This proves the claim. O
The coefficients L,((X#, X>#)/WH,, l(w™*)o(f¥, f>¥)) are rather difficult

to compute in practice since even in the case of a linear representation sphere
X=SV of a finite group G the singular set X># in X# is a union of subspheres
whose intersections form a complicated combinatorial object. We shall therefore
study the following absolute numbers

(2.5) L*(f)Xw) = Lo (X*|WH,, l(w™)e f¥)

(24 Ty () or(w) — |
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(2.6) L) = 3 LA )<wp-<wp> & Cl(ZmWH)
and their collection {L#(f)|(H)& Con G} denoted by
2.7) L(f)E(g) Cl(Z=,WH) .

Since X— X#|/WH, is compatible with equivariant homotopy and inclu-
sions of equivariant CIW-complexes and (S'A X )¥|/WH=S* A\ (X#|WH,) holds,
L is a Lefschetz invariant. Hence we get a homomorphism

(2.8) L: UL(G)~ II CUZ=,WH), [f] > L(f) -

Theorem 2.9. L is injective.

Proof. By Theorem 1.10 it suffices to show that the composition

D ClZmWH) 2, uL@) L, I Cl(Zm,WH)
H)

is injective. Consider a a:%} a(H) with a(H)eCl(Z=z,WH) in the kernel of
D

Lo+). Suppose that a is not zero. Then choose (H) maximal with a(H)=0.
Since G/KZ=@ implies (H)<(K) L#or(a) is L¥oyr(a(H)). Write a(H)=
2 n,<w). As G/H># is empty we get from Theorem 2.3 and 2.4

{w)

LA orp(a(H)) = 2 | Cagwa(w)| 1+ <0 .
This is a contradiction to | Cy wa(w)| >0. O

Now we show that the universal property of UL(G) induces the structure of
a commutative ring with unit. Let f: X— X be a pointed G-endomorphism of
a pointed finite G-complex. If g: Y—Y is another such map over G’ fAg:
XAY—->XAY is a pointed G X G'-endomorphism of a pointed finite GX G'~-
complex and defines [f A g€ UL(GXG"). One easily checks that g—[f A g]lE
UL(G X G") is a Lefschetz invariant for G’, so that there is a unique
homomorphism ¢ (f): UL(G")— UL(GXG') [g]—=[fAgl. Now f—¢(f)e
Hom(UL(G')— UL(GXG")) is a Lefschetz invariant for G. The induced
homomorphism UL(G)— Hom (UL(G")—UL(G X G")) can be viewed as a pairing

(2.10) P(G, G'): UL(G)QUL(G") - UL(GRG’)

uniquely determined by the property P(G, G') ([f1Q[g])=[fAg£].

Let i: H—G be a subgroup. Consider the pointed endomorphism f: X —X
of the pointed finite G-complex X. It follows from the triangulation theorem
that there is a pointed finite H-complex and a pointed H-homotopy equivalence
h: Y—res X, see [9, Th. A] or [13]. We get [res fle UL(H) by [A ‘o fok].
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This is independent of the choice of %, £~! and Y by homotopy invariance and
commutativity. We leave it to the reader to check that f— [res fle UL(H) is
a Lefschetz invariant for G. Hence we get a homomorphism

(2.11) i*: UL(G) — UL(H)

sending [f] to [res f]. If A: G— GXG is the diagonal map we get from 2.10
and 2.11.

Theorem 2.12. The composition A*oP(G, G): UL(G)QUL(G)—UL(G)
induces the structure of an associative commutative ring with unit [id,: G/G.—
G|G.] on UL(G).

One should compare this with [14, section 6]. Because of Theorem 2.9 and
2.12 we can also define UL(G) as the set of equivalence classes [f] of pointed
G-endomorphisms of pointed finite G-complexes under the equivalence relation
f~geL(f)=L(g). The ring structure is induced from V and A. Given
f: X— X, an inverse of [f] under addition is given by [fAidy] for any finite
CW-complex Y with trivial G-action and ordinary Euler characteristi X(Y)=—1.

The evaluation of the product in UL(G) is in practice very difficult when
dim G>0 so we study a weaker equivalence relation. Call two pointed G endo-
morphisms f: X— X and g: Y—Y of pointed finite G-complexes equivalent if
we have for any H CG and wenr,WH that L,({w™")o f#)=L,(((w™*)og¥) holds.
Let L(G) be the set of equivalence classes. It becomes a commutative ring with
unit [id,: G/G.—G|G.] by V and A. We call L(G) the Lefschetz ring of G.
Let LA(f)eCl(Zr,WH) be the element <Z; L,((w™")o f%)-{w>. The collection

{LA(f)|(H)=Con G} defines an inductive ring homomorphism
(2.13) L: L(G)— (1;[ Cl(Zn,WH)
)

if the equip Cl(Z=,WH) with the ring structure induced by Cl(Z=z,WH)=

II Z. The advantage of L(G) is that L is a ring homomorphism which is not
<wp
true for L from (2.8) when G is infinite.

One easily checks that the function f—L(f)e I CI(Z»,WH) is a Lefschetz
[¢:5)
invariant of G. By 2.13 and the universal property we get a ring homomorphism
(2.14) P: UL(G)— L(G), [fl—I[f].

Theorem 2.15. Let cony(n,WH) be the set of conjugacy classes CwWH,) of
elements wWH,= WH|WH,=r,WH such that Cyg(w) is finite. Then a Z-base
for L(G) is given by

B = {[r()]|<eWH,>E cony(n( WH)), (H)E Con G} .
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Proof. Consider we WH and ve WK. Then l(v™")or(w)¥: G/HX*—-G/H%
is a Cyy(w)-map under the right Cyz(w)-action. If Cypx(w) is infinite it contains
a circle so that L,(l(v™)or(w)¥) vanishes by Lemma 2.16 below. Suppose K=H
and Cypy(w) to be finite. If (oWH,»+=<{wWH,) then [(v™")or(w)¥ has no fixed
points so that L (I(v™")or(w)#) vanishes by the Lefschetz fixed point theorem.
If <oWH,)=<{wWH,) holds we can suppose v=w by remark 1.1. Then we
obtain from the Lefschetz fixed point formula 2.18 below L ({(w™")or(w)¥)=
X(Cyu(w))=|Cya(w)|.

This shows that the condition “Cyx(w) is finite”” depends only on {wWH,>.
By Theorem 1.10 and the epimorphism 2.14 the set B generates L(G). Suppose
that a=3] a(H, w)-[r(w)] is zero where the sum runs over B. Assume that
not all a(H, w) vanish. Choose (H) maximal with a(H, w)#=0 for some w.
Then L#(a){w) equals |Cyg(w)]|, a contradiction. |

Lemma 2.16. Let f: X— X be a G-endomorphism of a finite free G-com-
plex. If G is S* we have L,(f)=X(X)=0. If G is a finite group L,(f)=X(X)
=0mod|G|.

Proof. Obviously it suffices to show for finite G that L,(f)=0 mod |G|
is valid since S! contains Z/p as a subgroup for all prime numbers p and L,(id)=
X(X) holds. If fis cellular then L,;(C°(f))eCl (ZG) is defined. The homo-

morphism
Cl(ZG) - Z, <z>‘, acgy<g>—> |G| -aq

maps it to L,(f). d

ReMARK 2.17. Theorem 2.15 implies that the property “Cypy(w) is finite”
depends only on the conjugacy class <wWH,) of wWH,& WH|WHy=n,WH).
This can be seen directly as follows. Choose a Cartan subgroup ScWH
containing @ such that @S, generates 7,S=.S/S,. Then S is finite if and only

if Cyy(w) is finite and the conjugacy class <wWH,)> determines the conjugacy
class of S in WH.

Proposition 2.18. (Lefschetz fixed point formula.) We have for a finite
G-complex X and g€ G

LA(X, [(g)) = X(X¥).

Proof. Let C be the closed subgroup of G generated by g. Choose a
finite C-complex Y and a C-homotopy equivalence ¥Y— X. Then L,(X, I(g))
=L, (Y, l(g)) and X(X*)=X(Y?), so we may suppose that X=Y and G=C'is
topologically generated by g. By additivity we can even suppose Y=C/H.
If H=C then /(g): Y—Y is fixed point free so that Ly(/(g))=0=X(Y#) holds.
If H=C then Y is a point, /(g)=id and clearly L,(I(g))=1=X(Y*). O
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Now we look at the ring L'(G) defined analogously to L(G) but using the
equivalence relation f~g e L(f¥)=L(g¥) for all HCG. The Burnside ring
A(G) is the set of equivalence classes [X] of pointed finite G-complexes under
the relation X ~Y «X(X¥, x)=X(Y#, y) for all HCG. There is a natural
ring homomorphism

I': AG)—~ L'(G) [X]—>[id: X - X].

Let pr: L(G)— L'(G) be the obvious epimorphism [f]—[f]. Condider a base
element [r(w): G/H—G[/H]. If <wWH,) =+ <{eWH,> then r(%) has no fixed
points so that L(r(w)¥: G/HX¥—G|H¥) is zero for all K C H by the Lefschetz
fixed point theorem. Since Cyy(w) is assumed to be finite WH is finite in
the case w=eH. Hence a set of generators in L’(G) is given by {[id: G/H—
G/H]|(H)eCon G, WH finite}. This set is also linearly independent. Suppose
that >} n(H)-[id: G/H—> G/H] is zero but not all #(H) vanish. Choose (H)
maximal with #(H)=0. Then the homomorphism L'(G)—Z, [f]—=L(f#) maps
this sum to #(H)- | WH | a contradiction. As {[G/H]|(H)& Con G, WH finite}
is a Z-base for A(G) we have

Theorem 2.19. I': A(G)— L'(G) is a ring isomorphism.

This implies in particular that the Burnside ring relations of Corollary C
in the introduction are valid for the Lefschetz numbers L(f¥) if f: X— X is a
(pointed) G-endomorphism of a (pointed) finite G-complex. This includes the
case of a compact smooth G-manifold.

The authors constructed Lefschetz classes [f] in A(G) for finite G-com-
plexes in [11] for finite and in [12] for compact Lie groups. If J: L(G)— 4(G)
is (I') *epr they are the images of the present classes [f]€ UL(G) under

UL(G) i» L(G) —L A(G).

We have already constructed a homomorphism I: U(G)— UL(G), [X]—
[id: X—X] in section 1. The same formula defines I: A(G)— L(G). There
is a ring homomorphism P: U(G)—A4(G) sending [X] to [X]. Hence we obtain
a commutative diagram of ring homomorphisms

P

UL(G) L(G)

(2.20) ; s

ve) —L o ae

The splitting J: L(G)—A(G) sends explicitly the class of r(w): G/H—G/[H to
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[G/H] when w represents ez, WH and to 0 otherwise. It is a ring homo-
morphism and satisfies

(2.21) éa(J[f]) = L(f*), H<G,

where ¢4[X]=X(X*#). Of course one can define a splitting of abelian groups
UL(G)— U(G) similarly but the analogue of (2.21) is no more valid. For general
infinite G it cannot be satisfied by any map UL(G)— U(G).

Indeed, let UL’(G) denote the set of equivalence classes of endomorphisms
of finite G-complexes under the equivalence relation

f~ge L(ff|WH,) = L(g7|WH,), H<G.

The inclusion I’: U(G)— UL’(G) is usually not surjective, so that the projec-
tion UL(G)— UL’(G) cannot factor through it.

ExampLE 2.22. Regard G=O(2) as R-automorphism of C. The complex
conjugation ¢& O(2) has normalizer N=<{¢, —1> in G. Let X=G/{c>==S" and
let f: X— X be multiplication by --1. Then L(f#/WH,)=1 for H=1 and 0 for
H=1. However, if Y is any finite G-complex with X(Y#/WH,)=0 for H =1
then the class of Y in U(G) is a multiple of [G] and X(Y/SO(2)) is divisible by
X(0(2)/SO(2))=2. Thus [f]€UL'(O(2)) does not lie in the image of U(O(2)).

3. Homological algebra over the orbit category

The purpose of this section is to reformulate the technique of induction
over orbit types in the language of modules over the orbit category. Given a
G-space X, each G-map G/H—G|K gives rise to a map X¥—X¥# g0 that X can
be regarded as a functor from the orbit category consisting of homogenous spaces
G/H to the category of spaces. The cellular chain complexes C4(X#) of a G-
complex X, and the singular chain complexes C§(X#) of a general G-space X,
form similar functors from the orbit category to the category of chain complexes.
Our aim is to give conditions on X which guarantee that the complexes Cy(X#)
can simultaneously be replaced by finite projective complexes, since these are the
ones where Lefschetz numbers can be computed on chain level. Some syste-
matic approach is needed for compact Lie groups G since then the category of
modules over the orbit category is not Noetherian. To simplify notation, we
shall work with general functor categories. For more details and other appli-
cations, see tom Dieck 6, [Ch. I. 11] and Luck [13].

Let T be a small category and let R be a commutative ring with unit. An
RT-module is a contravariant functor M: T'-=MOD—R from I" to the category of
R-modules. A homomorphism between RT'-modules is a natural transformation.
Let MOD-RT" denote the category of RT'-modules.
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ExampLE 3.1. Any group G can be considered as a category with a single
object and one morphism for each group element. Contravariant functors
M: G—MOD—R are equivalent to right modules over the group ring RG.

The category MOD—RT inherits a structure of abelian category from
MOD—R. For example, a sequence of RT-modules is exact if its value at
each object of T" is exact. An RI'-module P is projective, if it has the following
lifting property:

M—2% o N —

if » is a morphism and # is an epimorphism, there exists a morphism w such
that ww=v. Projective modules are related to free modules in the usual way,
once free modules are defined as adjoints to suitable forgetting functors as follows.

A T-set is a family (B,) of sets B, indexed by Ob(T"). A T'-map between
two T'-sets (B,) and (C,) is a family (f,: B,— C,) of maps. If |T'| denotes the
category having the same objects as I" and only identities as morphisms, we can
interpret I'-sets as functors |I'|—Sez. Each RI'-module M has an underlying
T'-set, also denoted by M. It is essential that we forget not only the R-module
structure but also the non-identity morphisms in T'.

An RT'-module F is free with T'-set BC F as basis if each T'-map h: B—> M
into an RI-module M has a unique extension to an RI'-homomorphism
H: F— M. A free module F with basis B is unique up to isomorphism by the
universal property. It is constructed as follows. Let RS denote the free R-
module with basis S. For each object x of I" the RT'-module

RT(x) = R Hom (?, x)

is free with basis id,& R Hom (x, x) by the Yoneda Lemma. The free module
over a I'-set B=(B,) is now defined as
RT'(B)= & @DRI'(x).
x€0bT Bz

It is clear that every RI’-module M is a quotient of the free module RT(M),
and that projective RI'-modules are precisely the direct summands of free ones.

Let M be an RI'-module and let ECM be a I'-subset. The submodule
generated by E is the smallest RI"-submodule of M containing E, i.e. the image
of the RT"-homomorphism RI'(E)— M extending the inclusion. An RI’-module
is finitely gemerated if it is generated by a finite I"-subset or equivalently, if it is
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a quotient of some finitely generated free RT"-module.

The chain complexes over the abelian category MOD— RT" form an abelian
category. We shall always assume that chain complexes C are positive, i.e.
C,=0 for n<<0. We call C free (resp. projective), if each C, is free (resp. pro-
jective), and finite-dimensional if C,=0 for n>0. A finite projective RI'-chain
complex is a finite-dimensional projective RT'-chain complex C such that each
C, is finitely generated. A chain map f: C— D between RI'-chain complexes
is a weak equivalence if f,.: C(x)— D(x) induces an isomorphism in homology for
each object x of I'.  'We can now state the

ProBLEM When is a RI'-chain complex C weakly equivalent to a finite
projective complex P?

Its relevance to topology becomes clear in the following example.

ExampLE 3.2. i) Let G be a topological group and let X be a G-space.
The orbit category Or G has the homogeneous spaces G/H as objects and
G-maps as morphisms. The natural bijection Maps(G/H, X)— X# sending
f: GJH— X to f(eH)e X" gives rise to a contravariant functor from the orbit
category to the category of topological spaces

X:0rG—-Top, X(G/H)=X*.
Explicitly, if f: G/K— G/H is a G-map with f(eK)=gH then g7'KgC H and
X(f) is the composite map

X(f): xrc xo-ns X8) Xk,

Let G be a compact Lie group. The discrete orbit category Or,; G is the
homotopy category of Or G: it has the same objects but homotopy classes of
maps as morphisms. Since G/HX is a disjoint union of finitely many WK-
orbits [2, II. 5.7] the space G/H¥|WK, is discrete. We get an identification

[GIK, GIH]® = =((G/H)¥) = (G/H)*|WK, = Map;(G/K, G/H)|WK, .
Hence a G-space X gives rise to a contravariant functor
X: Or,G—Top G/H— X%|WH,.

Composing X with the functor singular chain complex with R-coefficients gives
an R Or, G-chain complex C°(X), called the singular R Or; G-chain complex of X.

ii) Let G be a compact Lie group. If X is a G-complex then X can be
regarded as a functor from Or; G to CW-complexes. Indeed, X(G/H)=
X¥Z|WH, is a myWH-complex, and hence an ordinary CW-complex with skele-
tons XJ/WH,. The quotient X#/WH, is the largest quotient of X# with a
natural CW-structure. 'The cellular R Or, (G)-chain complex C°(X) of X is the
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composite of X and the functor cellular chain complex with R-coefficients.

If J, is the set of mn-dimensional equivariant cells of X, choose a charac-
teristic map ¢;: G/H; X (D", S* )= (X, X,_,) foreachj& J,. By restriction to
eH; x D" and composition with the projection it induces

i (D", S* Y — (X7 |/WH,, X7_,|WH,) .
The image under +; of a generator we H,(D", S*™'; R) is an element
b,& Ci(X)(GH) = H,(X?/WH, XT,/WH,; R).
The set B,={b;|j < J,} forms a basis for the R Or, G module C;(X), since
CyX)G/H)= H(XZIWK,, X ,|WK,) giEGJB" H,(G/H;)?|WH,x (D", S*71))

and (G/H;)¥|WH, is precisely the Hom-set [G/H, G/H;]°.
The cellular chain complex C°(X) is thus a free R Or; G-chain complex,
which is finite-dimensional (resp. finite) if X is finite-dimensional (resp. finite).

RemMARK 3.3. The Bredon-Illman equivariant cohomology of a G-complex
X with coeficients in an R Or, G-module M is obtained from the cellular chain
complex C°(X) by setting
H¥X, M) = H*(Hom(C‘(X), M)),
where Hom means homomorphism of R Or, G-modules.
For arbitrary G-spaces X we can difine an equivariant cohomology theory
by
H¥X; M) = H*(Hom (C*(X), M)).
If G is finite, it agrees with Illman’s equivariant singular cohomology. We
conjecture that this holds for compact Lie groups, too. Equivariant homology
theories H §(X; M) are constructed similarly using tensor product of R Or, (G)-
modules, see [6, Ch. II. 9].

To compare the cellular and singular chain complexes of a G-complex we
first recall the following standard lemma (see eg. [10, Ch. IJ).

Lemma 3.4. Let P be a projective RT'-chain complex. Any weak equi-
valence f: C—D of RT'-chain complexes induces an isomorphism

f«: [P, C]— [P, D].

There is a functor D from CW-complexes to chain complexes over Z and
natural transformations ¢: D— C° and j: D— C° such that (X) and j(X) are
homology equivalences for any CW-complex X, see Wall [19, Lemma 1]. If X
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is a G-complex, the composite functor DoX gives rise to a third Z Or, G-chain
complex D(X) together with natural weak equivalences #(X): D(X)— C*(X),
J(X): D(X)—C(X). Since C°(X) is free (Example 3.2ii), applying Lemma 3.4
twice yields

Proposition 3.5. Let G be a compact Lie group and let X be a G-complex.
There is a weak equivalence of Z Or; G-chain complexes C°(X)—C*(X) which is
natural in X up to chain homotopy.

(In the derived category of MOD — RT" where weak equivalences are formally
inverted, 7 and j define directly a natural isomorphism C°(X)— C*(X), cf. [10,
Ch. IX].)

The orbit categories Or G and Or; G of a compact Lie group G have the
property that each endomorphism is an isomorphism. A small category T°
having this property is called an El-category. If T' is an El-category, we can
define a partial order on the set Is(I') of isomorphism classes ¥ of objects
x€Ob (T') by setting X< ¥ Hom (», y)==@. For the orbit categories this means
that G/H< G/K if and only if H is subconjugate to K.

Let T" be an El-categroy. In the sequel R[x] stands for the group ring
R[Aut (x)] and MOD—R[x] is the category of right R[x]-modules. For each

object x of T" we introduce a splitting functor

(3.6) S,: MOD—RT — MOD — R[x]
and an extension functor
3.7) E.: MOD—R[x] - MOD—RT

as follows. Given an RI'-module M, let M (x) be the R-submodule of M(x)
generated by the images of M(f): M(y)— M(x) where f: x— y runs through the
morphisms with 3. Then M(x) is an R[x]-submodule of M(x), and we set
S;M=M(x)/M,(x). If N is a right R[x]-module, we define an RT-module
E,N=NRQ[§>] R Hom (?, x).

The functors S, and E, are right exact and additive. They are easily seen
to preserve the properties freeness and finite generation. In particular, the
image of a finitely generated projective module under S, and E, is again a

finitely generated projective module.

ExampLE 3.8. Let G be a compact Lie group. The automorphism group
of G/H in Or,; G is (m,WH)** and so right R[G/H ]-modules correspond to left -
Rr,WH-modules. Let X be a G-complex with cellular R Or; G chain complex
C°(X). Then Sg/zC*(X) is isomorphic to C(X#|WH,, X>%|WH,) as a complex
of left RmyWH-modules. If X is a single cell G/K, this equals Rz,WH if
G/K=G|H and 0 otherwise. On the other hand, E;,; maps Rz,WH to
CY(G/H).
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Let FCIs(T") be a subset. An RT'-module M is of type F if it is generated
by a I'-subset E such that E,—=@ when ¥&F. An RT'-chain complex Cy is
of type F if each C, has type F. A module or chain complex has finite type, if
it is of type F for some finite F. This should not be confused with finite genera-
tion. For example, Is(Or, G) can be identified with the set of conjugacy classes
(H) of closed subgroups of G. If X is a G-complex then C°(X) is of type
F={(H)|H Iso X}, and it finite type if and only if X has finite orbit type.

Let FCIs(T") be a finite family. Choose a maximal element X&F, i.e.
yeF, X<y implies ¥=3. Let M be an RT[*-module of type F. 'Then M(y)=0
for X<y, so that M(x)=0 and S, M=M(x). We define a natural transfor-
mation I,: E,oS,— Id of functors on the category of modules of type F by the
formula

I.M: M(x)RglR Hom (2, x) — M(?), mQ f — M(f)(m) .

The cokernel of I,M is denoted by Cok, M. It is an RI-module of type
F\{x}. Let Pr,M: M— Cok, M be the projection. The result is an exact
sequence

I.M Pr,M
E.SM—> M ——— Cok, M — 0

which is natural in M.
So far M has been an arbitrary module of type F. For projective modules

Wwe can say more.

Theorem 3.9. Let T' be an El-category. If P be a projective RT'-module
of finite type F and X F is maximal, then E,S,P is projective of type {X} and
Cok, P is projective of type F\{X}. The sequence

I.,P _Pr,P
0—-~ESP—> P—Cok,P—0

is exact and splits.

Proof. Since the sequence above is compatible with direct sums, we may
assume that P is free, and has the typical form R=RT[y]. If =3, then I(P)
is an isomorphism and Cok, P=0. Otherwise E,S,P=0 and Cok, P=P.

Theorem 3.9 implies by induction a splitting P= @ E,S, P, see [6, Th.
zEF

11.18 p. 83]. However, this splitting is not natural. Since we study Lefschetz
invariants of mappings f: P— P, we shall have to use the naturality properties of
I, and Pr,. If X is a G-complex with finite orbit type and x=G/H is an orbit
of maximal type, the sequences of 3.9 for P=C;(X) take the familiar form

0— Cy(X®)— CyX)— CyX, X¥)—0.
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We are now ready to handle the problem of approximating complexes by
finite projective ones. The induction step will use

Lemma 3.10. Let T be a small category. Assume that two members of the
exact sequence
0-Ci—-C—->C,—0

of RT'-chain complexes are weakly equivalent to finite projective complexes. Then
50 is the third one, and there exists a commutative diagram

0 > P, » P > P, - 0
hy h h,
0 - C, - C - C, -0

with exact rows where P,, P and P, are finite projective complexes and h,, h and h,
are weak equivalences.

Proof. Standard manipulation with the cone and cylinder functors, see
[10, Prop. I 6.10] for a proof of the dual statement about injective complexes.

Theorem 3.11. Let T be an El-category with finite Hom-sets. Let R be
a Noetherian ring. If C is a finite-dimensional projective RT'-chain complex of
finite type F and H,(C(x)) is finitely generated over R for X F, then C is homotopy
equivalent to a finite projective RT-chain complex.

Proof. We use induction over the cardinality of F. If | F|=0 then C=0
and the claim holds trivially. In the induction step, let ¥F be maximal.
Then S,C=C(x) is a finite-dimensional projective chain complex over the
Noetherian ring R[x]. Since its homology is finitely generated, S,C is homo-
topy equivalent to a finite projective R[x]-chain complex P [3, Lemma IX 5.4].
Then E,S,C is homotopy equivalent to the finite projective RI'-chain complex
E.P. Theorem 3.9 gives an exact sequence

0— E,S,C— C— Cok,C— 0.

If yeF then Hy(C(y)) is finitely generated by assumption and Hy(E,S,C(»))
= Hy(E,P(y)) is finitely generated since Hom (y, x) is finite, Since R is
Noetherian, Hy(Cok, P(y)) is a finitely generated R-module. As Cok, C has
type F\{x}, it is homotopy equivalent to a finite projective complex by the
induction assumption. Lemma 3.10 implies that C is weakly equivalent to a
finite projective RI'-chain complex. But a weak equivalence between projective
complexes is a homotopy equivalence by Lemma 3.4.
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Corollary 3.12. Let G be a compact Lie group and let X be a finite-dimen-
sional G-complex of finite orbit type. If R is a Noetherian ring and Hy(X*®|WH,; R)
is a finitely generated R-module for each H &Iso (X)), then the cellular R Or, G-
chain complex C°(X) is homotopy equivalent to a finite projective R Or, G-complex.

Proof. The Hom-sets [G/K, G|H ]s=m,((G/H)¥) are finite and C°(X) has
finite type F={(H)|H € Iso (X)}. U

4. Trace and Lefschetz invariants

We give axioms for trace invariants of RI-module homomorphisms and
Lefschetz invariants of RT'-chain mappings. We show how the trace invariants
for finitely generated projective modules determine the Lefschetz invariants for
finite projective complexes and how they extend uniquely to complexes having a
finite projective approximation. The universal trace and Lefschetz invariants
are computed for El-categories. If G is a compact Lie group, the universal in-
variant group relevant to cellular chain complexes turns out to be the universal
Lefschetz group UL(G).

Let T be a small category and let R be a commutative ring. We fix first
notation for some subcategories of the category MOD — RT" of RT'-modules and
the category C —RT" of RT'-chain complexes. Considering a module as a chain
complex concentrated in dimension zero, we have following inclusions of full
subcategories

P—RI' CcHP—RT' CMOD—RT

N N N
C(P)—RT'C HC(P)—RT'C C—RT" .

Here P — RT" consists of finitely generated projective modules and HP —RT" of
modules having a finite projective resolution. Similarly, C(P)— RI" stands for
finite projective complexes and HC(P)—RT for complexes C having a finite
projective approximation, i.e. a weak equivalence P— C with finite projective P.

DErFINITION 4.1. A trace invariant (A, T) for P —RT is an abelian group A
together with a function T assigning an element T(f)= A4 to each endomorphism
f: M— M in P— RT such that axioms a, b and ¢ hold.

(a) Additivity. If the following diagram commutes and has exact rows,

0 M, - M - M, >0

fi f f2

0 —> M, —->M —>M, —
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then T(f)=T(f)+T(f,)-

(b) Linearity. 1If f, g&End (M), then T(f+2)=T(f)+T(g).

(c) Commutativity. If f: M— N, g: N—M, then T(fg)=T(gf).
A trace invariant (4, T') is universal, if for any trace invariant (4’, T') there is
a unique homomorphism ¢: A— A" such that T'(f)=¢(T(f)).

A universal trace invariant is unique and can be constructed by taking as
generators all isomorphism classes of endomorphisms and introducing the rela-
tions that follow from a, b and c.

ExampLE 4.2. Let T be a group G considered as a category as in example
3.1. The universal trace invariant for finitely generated projective RG-modules
was determined by Hattori [8] and Stallings [17]. Namely, it is the Hattori-
Stallings trace Trge ()€ CI(RG) of 1.4.

The axioms of trace invariants make sense also for chain complexes and
chain mappings. Each trace invariant (4, T') for P—RI" defines an invariant
(4, L;) for chain maps in C(P)—RT by

(#:3) Li(f) = Z (=1'T(£) -

It is clear that L, satisfies again the axioms, and that is extends T from the sub-
category P—RT. We would like to show that L, is the unique extension. For
this we have to require homotopy invariance.

DEFINITION 4.4. A Lefschetz invariant (B, L) for C(P)—RT is an abelian
group B together with a function L assigning an element L(f)E B to each chain
map f: C— C in C(P)—RT such that L satisfies axioms a, b, ¢ and

(d) Homotopy invariance. If f—~g then L(f)=L(g).

Proposition 4.5. If (4, T) is a trace invariant for P—RT, then (A, Ly) s
its unique extension to a Lefschetz invariant for C(P)—RT".

Proof. Homotopy invariance for L, follows easily from the linearity and
commutativity of 7. Hence L, is a Lefschetz invariant extending 7. If L is
another extension, additivity implies by induction that L(fy)=23],50 L(f,), where
f»: C,— C, is considered as a chain map concentrated in dimension n. Hence
we have to prove L(f,)=(—1)"T(f,). If M is any module, the mapping cone
Cone (M) of id: M — M is contractible and the diagram

Cone (M)

|
f f f1]

00— M M[1] ——= 0

M[l] —— 0

00— M —— » Cone (M)
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implies that L(f[1])=—L(f) by additivity and homotopy invariance. Hence
L(f[s)=(—1)"L(f)=(—1)"T(f). O

In particular, the universal Lefschetz invariant for C(P)—RI" has the same
value group as the universal trace invariant for P—RI".

Next we want to extend a Lefschetz invariant (B, L) to complexes having
a finite projective approximation. Let C be an RI'-chain complex, P a finite
projective RI'-chain complex and 4#: P— C a weak equivalence. If f: C—Cis
a chain map, it follows from Lemma 3.4 that the diagram

h e

f

P
|
g
¥

h

P _.C
can be filled to a homotopy commutative square by a lift g which is unique up
to homotopy. Thus L,(f)=L(g) depends only on f and 4. For other choice
h': P'— C of a projective approximation and lift g’: P'— P’, we may construct

similarly a weak equivalence k: P— P’ such that g’k==kg. Then k is a homotopy
equivalence with inverse &7

Lu(f) = L(g") = L(kgk™) = L(g) = Li(f)

by the homotopy invariance and commutativity of L. Hence L(f)=L(g) depends
only on f.

Proposition 4.6. If (B, L) is a Lefschetz invariant for C(P)—RT, then
(B, L) is its unique extension to HC(P)— RT" which satisfies axioms a to d and

(e) Homology invariance. Given a homotopy commutative square with a

weak equivalence h

h

D—C

b

D C

then L(f)=L(g).
The pair (B, L) is called a Lefschetz invariant for HC(P)—RT if it satisfies

axioms a to e.

Proof. Axiom (e) is designed to guarantee the uniqueness of the exten-
sion. We have to show that L satisfies all axioms. Only the verification of
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additivity is non-trivial. It follows from the next lemma.
Lemma 4.7. Let T be a small category. Let
0-C,—->C—->C,—>0

be a short exact sequence of complexes in HC(P)—RT'. Let f: C— C be a chain
map which preserves C, and denote by f;: C,— C; the induced maps. For any
[finite projective approximation

0 P, P P,—0
hy h h,
0 =C, - C C, - ()

as in Lemma 3.10 there exists a lift g: P— P of f such that g preserves P, and that
the induced maps g;; P;— P; are lifts of f;, i=1, 2.

Proof. A chain map g,: P,— P, together with a chain homotopy ¢, : P,—C,;
between f,oh, and A, og, is equivalent to a commutative square of chain complexes

P, &———= Cone (P))
|
f1°h1 l(gli $1)

C, &—— Cone ()

The canonical inclusion P,>»Cone (P;) has a projective cokernel and is therefore
a cofibration. As Cone (%) is acyclic, an extension (g, ¢,) exists.

Next we want to extend g, to a lift g: P— P of f. We must construct an
arrow which makes the following diagram commutative.

P, » Cone (P)) ~

l P i ~ Cone (P)
I

C, »~ Cone (A,) |

'

~ Cone (k)

|
N

The sequence 0— P, — Cone (P,)@P— Cone (P) is exact and the image of the
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last map is a direct summand with projective complement. Since Cone (k) is
acyclic, the dotted arrow exists and yields a map g: P— P with a homotopy
¢: foh—=hog extending g, and ¢;. The last map g,: P,— P, and the homotopy
b, fr0h,==h,0 g, are induced uniquely. O

The modules having a finite projective resolution can be considered as a
subcategory of HC(P)—RT". Let M € HP—RT and let P be a finite projective
complex with a weak equivalence #: P— M. Each homomorphism f: M—M
can be lifted to a chain map g: P— P such that

P M
g lf
Pt M

is a strictly commutative square. If (4, T') is a trace invariant for P—RT" then
T(f) = 2 (—1/'T(2)

coincides with the Lefschetz invariant L,(f), and is therefore a trace invariant.
An easy argument based on additivity shows

Proposition 4.8. If (4, T) is a trace invariant for P—RT then (A, T) is
its unique extension to a trace invariant for HP—RT. (|

Propositions 4.5, 4.6 and 4.8 imply

Corollary 4.9. Let T be a small category. A universal trace invariant
(A4, T) for finitely generated projective RT'-modules determines the universal trace
invariant T for HP—RT" and the universal Lefschetz invariants Ly for C(P)—RT
and L, for HC(P)—RT'. They all have the same value group A.

From now on, let T' be an EIl-category. We are going to compute the
universal invariants. By Corollary 4.9 it suffices to consider finitely generated
projective RIT'-modules P. Let f: P—P be a homomorphism. Using the
splitting functor S, (3.6) we get endomorphisms S, f: S,P— S,P of finitely
generated modules over the group ring R[x] for each object x&Ob(T"). By ex-
ample 4.2 their universal trace invariants are the Hattori-Stallings traces Trgr,;.

Choose for each isomorphism class ¥Is(T") a representative x< Ob (T")
and define a trace invariant (4, T') by

(4.10) A= @ CIR[x]), I(f) = (Traa(S:fNserem -

For a finitely generated module P we have S,P=0 for almost all X&Is(T") so
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that T'(f) lies in the direct sum A.

Theorem 4.11. Let T be an El-category. Then (A, T) is the universal
trace invariant for finitely generated projective RT*-modules.

Proof. Let (A’, T') be a universal trace invariant for P—RI. Since
(4, T) is clearly a trace invariant, there is a unique homomorphism a: 4’'— 4
satisfying

I(f) = «(T'(f)) -

For each xOb (T") the assignment f— 7"(E,f) defines a trace invariant for
P—R[x] where E, is the extension functor (3.7). Since Trg,;is universal among
such trace invariants there exists a unique homomorphism B,: CI(R[x])—A’
such that

T(E.f) = B(Trpaf) -

A direct sum of the homomoprhism B, over ¥&Is(T") defines a homomorphism
B: A—A’ in the other direction. We claim that & and @ are inverse isomor-
phisms.

Each element a= CI(R[x]) can be represented as the trace of some endo-
morphism f: R[x]—>R[x]. Then

aB(a) = aB(Trwaf) = a(T'E.f) = T(E,f) = (Tra,(S,E.f));

equals a since S,E,=id and S,E,=0 for y+X. Hence aB=id.

To show that Ba=id we have to proceed inductively since E,S,=id only
on modules of type {¥}. We claim that 7'(f)=gR(T(f)) for each endomor-
phism f: P—P of a finitely generated projective R[*-module P. Choose a finite
subset F CIs(T") such that P has type F. We prove the claim by induction on
n=|F|. The case n=0 is trivial since then P=0. If =1 and P has type
{x}, then S,P=0 for y=& so that (T(f));=0 when y=+X. Thus

B(T(f)) = B: Traa(S.f) = T'(E:S.f) = T'(f) .

For the induction step choose a maximal ¥ F. Theorem 3.9 gives a com-
mutative diagram with exact rows

0 E.S.P P ~ Cok, P 0
ES,f f Cok, f
0 E.S.P P Cok, P 0
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where E,S,P has type {&}, Cok, P has type F\{&}, and all modules are projec-
tive. By the induction hypothesis the claim 7"(%)=/8(7T'(k)) holds both for
h=E,S, f and ~=Cok, f. Hence it holds for f by additivity.

ExampLE 4.12. Let G be a compact Lie group. The automorphism
group of G/H in the discrete orbit category Or, G is mo( WH)*?. 'The universal
Lefschetz invariant for Z Or; G-chain complexes takes values in the universal
Lefschetz group

UL(G) = @ Cl(Zm,WH).

If C is the cellular chain complex of a finite G-complex X and fy: C—C'is
induced by a G-map f: X — X, then the universal Lefschetz invariant L(fy)E
UL(G) agrees with the universal Lefschetz class UL(f) of 1.6 (cf. Ex. 3.8).

5. The equivariant Lefschetz class

This section contains a proof of Theorem B and Corollaries C and D.

Let G be a compact Lie group. Homology will mean singular homology
with coefficients in a fixed principal ideal domain R. If X is a G-space and
f: X— X is a G-map, we define class functions LZ(f) and LE(f) as in (2.6) and
(2.13) using homology with R-coefficients, provided the homology is finitely
generated over R. Denote the universal Lefschetz invariant group for R Or,; G-
modules

(5.1) UL(G, R) = ULG)@R = @ CI(RmWH).

The homomorphisms L%, L¥: UL(G)— Cl(Zz,WH) extend linearly to homo-
morphisms UL(G, R)— CI(Rz,WH) which we again denote by L¥ and L%,
They are characterized by L#[w]=L%(r(w)) and L¥[w]=L%(r(w)) for each gen-
erator [w] given by we WH.

A G-complex Y is called an R-homology approximation to the G-space X
if there exists a G-map Y — X which induces an isomorphism

Hy(Y®|WH,; R)—> Hy(X®|WH,; R)
for each H <G.

Theorem 5.2. Let X be a G-space which admits a finite-dimensional R-
homology approximation of finite orbit type. Assume that Hy(X%|WH,; R) is
finitely generated over R for each H<G. Then every G-map f: X— X has an
equivariant Lefschetz class [flg€ UL(G, R) such that LE(f)=L*([f1z) for each
H<G.

Proof. Let Y—X be an R-homology approximation by a finite-dimensional
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G-complex Y of finite orbit type. It induces a weak equivalence C*(Y)—C*(X)
between the singular R Or; G-chain complexes. For any G-complex Y there
is a weak equivalence C°(Y)—C*(Y) between the cellular and singular R Or,; G-
chain complexes by Proposition 3.5. The finiteness assumptions made on X
and Y guarantee that C°(Y) is homotopy equivalent to a finite projective com-
plex P by Corollary 3.12. Composing these equivalences we get a finite pro-
jective approximation 4: P—C*(X). Using Proposition 4.6 we can construct a
universal Lefschetz invariant UL(fy) € UL(G, R) for each chain map fy: C*(X)—
C(X).

A G-map f: X—X induces a chain map f: C(X)—C*(X), and we define
the equivariant Lefschetz class of f to be [f]lz=UL(fx)€ UL(G, R). The class
functions L%(f) can be defined in terms of the R Or, G-complex C=C*(X) by

LE(f) (@) = L(HyC(G/H), Kw™)of+(G/H)), wen, WH

where Ly is the ordinary Lefschetz number. The right hand side defines a
Lefschetz invariant LE(fx)ECl(z,WH) for every chain map fyx: C—C in
HC(P)—ROr; G. Hence there is a unique homomorphism ¢#: UL(G, R)—
Cl(myWH) such that LZ(fx)=¢#(UL(fx)). We claim that ¢¥=L# It is
enough to check this on the generators [r(w)], w: G/H—G/|H, but then the claim
is simply the definition of L¥.

The theorem holds in particular if X itself is a finite-dimensional
G-complex of finite orbit type. If G is finite, we have proved Theorem B since
WHy=1 and L¥=L? for each H<G. For a general compact Lie group, we
have to compare the assumptions on Hy(X#/WH,) and Hy(X¥) and to
strengthen the conclusion from L# to L¥. We start with a result which might
have independent interest.

Proposition 5.3. Let G be a compact Lie group and let X be a finite-dimen-
sional G-complex of finite orbit type. Let R be a principal ideal domain. If
Hy(X; R) is finitely generated over R, then Hy(X|G;R) is finitely generated over R.

Proof. If G is a finite group or a torus and R=Z or Z, this is a well-known
consequence of P.A. Smith theory and the existence of transfer for finite group
actions, see [2, Ch. ITI]. It is not hard to extend the proof to arbitrary coef-
ficients R. We are going to reduce the theorem to these special cases by using
Oliver’s transfer for compact Lie groups [16].

First, since X/G=(X/G,)/(G|G,) we may assume that G is connected.
Let N be a normalizer of a maximal torus 7' in G. 'The transfer

try: Hy(X/G) — Hy(X|N)

has the property that its composition with the projection py: Hy(X/N)—
Hy(X|G) is multiplication by X(G/N). Since X(G/N)=1, it suffices to prove
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the claim for the group N. Notice that the N-space X is homotopy-equivalent
to a finite-dimensional N-complex Y, and that the orbit structure remains finite
[9, Th. A].

The group N is an extension of T by the finite Weyl group W. Hence
X/N=(X/T)/W and we are reduced to the classical cases.

Theorem 5.4. Let G be a compact Lie group and let X be a finite dimen-
sional G-complex of finite orbit type. Then the following conditions are equivalent

(a) Hx(X#; R) is finitely generated overR for each H<G

(b) Hy(X#; R) is finitely generated over R for each H & Iso (X)

(¢) Hy(XH|WH,; R) is finitely generated over R for each H <G

(d) Hy(X#|WH,; R) is finitely generated over R for each H Iso(X)
for any principal ideal domain R.

Proof. The implication (a)=>(b) is trivial and (b)=>(d) follows from Pro-
position 5.3. Similarly (a)=(c)=>(d). Hence it suffices to show that (a)
follows from (d). We shall use the Atiyah-Hirzebruch spectral sequence for
the equivariant homology theory X — Hy(X#; R) with a fixed H<G. If M¥
is the coefficient system

ME(G/K) = Hy(G/K)*; R)
it takes the form
HF(X; M{)=> H,, (X*; R),

where H§ is the Bredon-Illman homology H§(X; M)=: H(C‘(X) ® M). If
Or, &

(d) holds then C°(X) is homotopy-equivalent as an R Or,; G-complex to a finite
projective complex P by Corollary 3.12. Then the E*term H$(X; M,)=
HE(PQ®DMy) is finitely generated over R since My is finitely generated. It
follows that the E~-term is also finitely generated.

A finite-dimensional G-complex X of finite orbit type which satisfies the
conditions of Theorem 5.4 is called R-homology finite.

Theorem B. Let G be a compact Lie group, X be a finite-dimensional G-
complex of finite orbit type and R be a principal ideal domain. If X is R-homology
finite then each G-map f: X — X has an equivariant Lefschetz class [ f1,€ UL(G, R)
such that

Li(f) = LA([f1e) »  LE(f) = L*([f1e)
for each H<G.

Proof. It follows from Theorem 5.4 that L%(f) and L%(f) are defined for
each H<G. The existence of [f]; and the equation for L% was shown in
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Theorem 5.2. We compute L%(f) from cohomology using the Atiyah-
Hirzebruch spectral sequence

H%(X; M%) = H**(X*; R), M¥G|/K)= H¥G|K)¥;R).

The E,-term H§(X; M%)=: H*(Homo,,o(C(X), MY%)) is finitely generated
since C°(X) is homotopy equivalent to a finite projective complex. By the
Hopf trace formula LZ(f) can be determined from the E,-term. Now we define
for any R Or; G-chain complex C and a chain map fy: C—C in HC(P) a
Lefschetz invariant

L’,{(f*) = LR(H*(Homowc(C; Mﬁ)), f*) .

It factors through the universal Lefschetz invariant [f],e UL(G, R). To show
that LE(fx)=L#([f]g), it suffices to check the generators C=C‘(G/K), f=r(w),
weWK. But then Homy,,(C, M%)=M#(G/K)=H*((G/K)#; R) and L#([w])
=L%(w) by the definition of L¥.

Corollary C. With the assumptions of Theorem B the Lefschetz numbers
Ly(f¥) satisfy the Burnside ring congruences mod R: let H <|L be closed subgroups
of G.

1) If L|H is finite, then

Le(f*)= =2 ¢(| K[H | )Lg(f*) mod | L/H | R
where ¢ denotes the Euler function and the summation is over mon-trivial cyclic

subgroups K|H of L|H.
il) If L|H is a torus, then Lg(f*)=Ly(f*).

Proof. Since all occuring Lefschetz numbers can be computed from
[f1€ UL(G, R), this is a question about the relations between the homomor-
phisms

¢ = LA(e): UL(G, R)— R.

They are R-linear extensions of the corresponding integral homomorphisms
¢u: UL(G)—Z, which factor through the projection J: UL(G)— A(G) (see 2.21).
The relations between ¢5: A(G)— Z are determined in tom Dieck [6, Ch. IV 5].

Given a compact Lie group G, tom Dieck has shown that there exists a
finite upper bound for the numbers |z,/WH | over all closed subgroups H of G
[6, Th. IV 6.9]. Hence they have a least common multiple

(5.5) o(G) = Lem.{| =, WH| | H<G}.
If G is finite the number o(G) is simply the order of G.
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Corollary D. With the assumptions of Theorem B
Li(g) = Xa(X?)

for each g € G, provided char R=0 and no prime factor of o(G) is invertible
in R.

Proof. Let C be the closed subgroup generated by g. Write [X],=[idx]z
in UL(G, R). We claim that the relation L°([X];)(g)=L°([X]z)(e) holds for
each X. By Proposition 2.18 it is valid on the image of I: U(G)— UL(G, R)
so it is enough to show that [X]; belongs to this image. The H-component
of [X]; is the rank 7(P)=L(id,) € Cl(Rz,WH) of some finite projective
Rr,WH-complex P. Now =,WH is a finite group and no prime factor of its
order is invertible in R. A theorem of Swan implies that the rank of every
finitely generated projective Rz JWH-module is an integral multiple of [e], see
Bass [1, Th.4.1]. Hence the H-component of [ X ] has the form n[e]=I(n[G/H])

for some integer # and their sum [X] lies in Im 1.

Remark 5.6. Let p and g be different primes. Conner and Floyd have
constructed a simplicial action of the cyclic group Z,, on R" with (R")?»=,
see [2, Ch. I 8. B]. The other fixed point sets are Moore spaces

= ]1), e =L}

where k& and [ are such that Ap+Ilg=—1. This shows that the conditions on
X and R are necessary in Corollary D.

6. Homotopy representations

We shall study elementary homological properties of homotopy representa-
tions of compact Lie groups [6, Ch. IT 10]. For these purposes the following
weaker notion suffices. Let R be a principal ideal domain.

DEerINITION 6.1. An R-homology representation of a compact Lie group G
is a finite-dimensional G-complex of finite orbit type such that for each H <G
the fixed point set X# is an R-homology sphere.

Let n(H) denote the unique integer for which Hy(X#; R)=H,(S"*1; R).
If X# is empty, then n(H)=0. The dimension function of X is the integral-
valued function Dim(X) defined on the conjugacy classes of closed subgroups
of G by

(6.2) Dim (X)(H) = n(H).

Let CX denote the cone on X. For each H <G we have H,)(CX¥#, X%, R)
=R. The action of WH on this homology group defines a homomorphism
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(6.3) ex.n: WH — Aut(R) = R*

called the orientation behaviour of X at H. By homotopy invariance it actually
factors through z,WH. If R is suitably restricted, the dimension function
determines the orientation behavior. Recall the number o(G) from (5.5).

Proposition 6.4. Let X be an R-homology representation of a compact Lie
group G. Assume that charR=0 and that no prime divisor of o(G) is invertible
inR. Then

ex.q(w) = (—1)PmEDE@-DimXE) e WH,

where C is the inverse image in NH of the closed subgroup generated by w in WH.

Proof. We begin with the case H=1. The Lefschetz fixed point for-
mula applied to the element w e G gives

1—(— 1P () = Lo(w) = Xa(X?) = 1—(—1)P=m0©

whence the claim for H=1. The general case reduces to this by considering
the WH-space X#, once we show that o( WH) divides o(G).

Let K<WH have normalizer L in WH. Denote by K and L their inverse
images in NH. Then L=Ny(K). The normalizer NK of K in G may be
larger than L, but we claim that they have the same identity component.
Indeed, if g (INK), choose a path p from g to e in (NK),. Let ¢,: K—K be
conjugation by g. Then ¢, is homotopic to identity via p, and hence it is an
inner automorphism of K [6, Ex. I 5.18.1]. In particular, ¢, preserves H and
geNH. Since L=NH N NK we have g &L, The inclusion L— NK induces
thus injective homomorphisms 7y(L)— 7o(INK) and zo(L/K)—> wo(NK/K). As
wo(L|R)=my(L|K), o WH) divides o(G).

Proposition 6.4 holds in particular for homotopy representations, since they
are Z-homology representations.

We denote the Euler characteristic [ X]< L(G, R) of an R-homology repre-
sentation X as the class of idy in the Lefschetz ring. It is determined by the
class functions L#[X], which are now

LAX|(w) = 1 —(—1)P™@ ey o(w), weWH .

If R is as in Proposition 6.4, the dimension function determines [X]. Let
f: X— X be an arbitrary G-map. For its class [f]€L(G, R) we have

LA[f)(w) = 1—(—1)*" % deg ey n(w)

making [f] into a mixture of the degree function (deg f#) and the orientation
behavior (ex,z). The product {f}=([X]—1)([f]—1)€ L(G, R) has class

functions
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LE{f} (w) = deg f¥ex, x(w)?, weEWH .

The projection of {f} in A(G, R) has characters ¢,{f} =degf?, HZG.
This gives

Proposition 6.5. If f:X— X is a self-G-map of an R-homology representa-

tion X, its degrees deg f¥ satisfy the Burnside ring congruences mod R.

Proposition 6.5 can be used to derive degree relations for G-maps f: X—Y

between different homotopy representations with the same dimension function,
as we did for finite groups G in [11, Th. 2]. The key point is the existence of
an auxiliary map 4:Y—X which has degrees prime to o(G). For compact Lie
groups G the map £ is constructed in [6, Th. IT 10.20].
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